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Abstract—This paper presents a hybrid approach for solving  n-
queen problem by combination of PSO and SA. PSO is a population
based heuristic method that sometimes traps in local maximum. To
solve this problem we can use SA. Although SA suffer from many
iterations and long time convergence for solving some problems, By
good adjusting initial parameters such as temperature and the length
of temperature stages SA guarantees convergence. In this article we
use discrete PSO (due to nature of n-queen problem) to achieve a
good local maximum. Then we use SA to escape from local
maximum. The experimental results show that our hybrid method in
comparison of SA method converges to result faster, especially for
high dimensions n-queen problems.
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L INTRODUCTION

CSP is defined by a set of variables and a set of
™\ constraints. Variable has a nonempty domain of possible

values. Each constraint involves some subset of the
ariables and specifies the allowable combination of values for
1e subset. A state of the problem is defined by an assignment
f values to some or all variables. A complete assignment is
ne in which every variable is mentioned, and solution to CSP
3 a complete assignment that satisfies all the constraints. Some
’SPs also require a solution that maximize an objective
anction [1].

The n-queens problem is a CSP that consists of placing n
ueens on an N by N chess board, so that they do not attack
ach other, i.e. on every row, column or diagonal, there is only
ne queen, Its complexity is O(n!) [2][3]. There are many
euristics for solving n-queen problem, some of these
euristics cooperate better with some search methods than the
thers. The complexity of heuristic used in this paper is O(n).
‘here are several search strategies for n-queen problem such as
depth First Search, Beam Search, Branch and Bound, local
earch methods and Evolutionary algorithms (EA).

The sections of the papers are as follows: Section II reviews
1e basic and discrete forms of PSO. Section III reviews the SA
lgorithms. In section IV we described our hybrid algorithm,
nd section V summarizes experimental results. Finally,

conclusions and future works are presented in VI.

II.  PARTICLE SWARM OPTIMIZTION

A. Basic PSO

The Particle Swarm Optimization (PSO) [Kennedy and
Eberhart, 1995, Eberhart et al.,2001] evolved from an analogy
drawn with the collective behavior of the animal displacements

[4].

The system is initialized with a population of random
solutions and searches for optima by updating potential
solution over generation. In PSO, the potential solutions, called
particles, “fly” through the problem space by following the
current better performing particle [2]. The solution updating
can be represented by the concept of velocity [5]. By
definition, a velocity is a vector or, more precisely, an operator,
which, applied to a position (solution), will give another
position (solution). It is in fact a displacement, called velocity
because the time increment of the iteration is always implicitly
regarded as equal to 1 [6]. Velocity of each particle can be
modified by the following equation:

vik+1

= wvf + c;rand; x (pbest; — sF) + c,rand, x
(nbest; — sK) (1)

Where v} is velocity of particle i at iteration k, w is weighting
function, ¢; is weighting coefficients, rand is random number
between 0 and 1, s¥ is the current position of particle i at
iteration k, pbest; is the best state of particle i and nbest; is
the best state among the neighbors of particle i (until iteration
k) [5]. A general flowchart of basic PSO is shown in figure 1.

B. Disceret PSO

The basic PSO treats nonlinear optimization problem with
continuous variables. However, practical engineering problems
are often formulated as combinatorial optimization problems.
Kennedy and Eberhart developed a discrete binary version of
PSO for these problems. They proposed a model wherein the
probability of an agent’s (particle) deciding yes or no, true or
false and 0 or 1 by the following factors:
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Fig. 1. A general flowchart of PSO [5]. Agent is the same particle.
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P(sf* = 1) = f(sk, vk, pbest;, nbest,) \(ﬁm’ No:7

The parameter v, a particle’s tendency to make one or the
other choice, will determine a probability threshold. If v is
higher, the particle is more likely to choose 1, and lower values
favor 0 choice. Such a threshold requires staying in the range
[0, 1]. The proper function for this feature is the sigmoid
function:

1
1+exp (-vk
p (=v;)

sig(vk) = 3)
Like the basic continues version, the formula for the binary
(discrete) version of PSO can be describe as follows [5]:

vt = vk + rand; x (pbestl- - slk) + rand, X (nbest; — sF)
4)

k+1)

p < sig(v} then sktl=1;

else sk*1=0; (5)

Where rand and p are random numbers in [0,1]. The entire
algorithm of the binary version of PSO is almost the same as
that of the basic continous version (figure 1) except for the
above equations[5].

III. SIMULATED ANNEALING (SA)

In statistical mechanics, a physical process called annealing
5 often perform in order to relax the system to a state with
inimum free energy [8]. The idea to use annealing technique
1 order to deal with optimization problems gave rise to the
imulated annealing technique. It consists in introducing a
ontrol parameter in optimization, which plays the rule of
>mperature. The “temperature” of the system to be optimized
10st have the same effect as the temperature of the physical
ystem: it must condition the number of accessible states and
cad to the optimal state, if the temperature is lowered
radually in a slow and well controlled manner (as in the
nnealing technique) and towards a local minimum if the
>mperature is lowered abruptly. The flowchart of the
lgorithm is shown in figure 2 [9].

If AE < 0 (i.e. new state is better than the current state) the
1dification will be accepted, when AE > 0 if the probability
xp(—AE/T) is greater than a random number drawn
niformly between 0 and 1, the modification, making the state
sorse, also will be accepted (Metropolis rule [9]).

_Val:4 2010-07-24
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Fig. 2. Flowchart of SA [10].

By repeatedly observing the rule of acceptance, described
above, a sequence of configurations (states) is generated,
which constitutes a Markov chain (in a sense that each
configuration depends on only that one which immediately
precedes it) [9].

IV. THE HYBRID ALGORITHM

According to the diagram of our method (figure 3), PSO
and SA algorithms were implemented consecutively. The
evaluation functions of two algorithms are the same. Diagram
shows that PSO works with four particles, then SA takes the
state of best particle from PSO and after generating the initial
temperature, performs sufficient iterations (Markov chains)
toward a global maximum. In the following paragraphs the
important parameters and steps of algorithm are represented.

A. Representaiton of problem states
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Fig. 3. The operation schema of the algorithm.

For adaptation between the problem and discrete PSO, states
were represented by binary matrices. Notice that this
representation is used only when we want to update the state
according to formulas (4) and (5), whereas for other parts of
algorithm these states representation will be transformed to a
one dimensional, due to a function that has a complexity of

. In matrix (that is a matrix for chess

board) each column shows the binary representation of row
number that is the position of queen on that column in chess
board. For example the 4 4 chess board in figure (4.a) will be
represented like 2 4 matrix shown in figure (4.b), used in
updating time, and the state shown in figure (4.c), the
transformed schema of figure (4.a), used in evaluation
rocedure.

HEEE

a b c
Fig. 4 Queens pos ition representation.

i. Number of particles
The number of particles in PSO is low because of:

1. We don’t want to solve the problem by PSO, we just
want to achieve a good local maximum (low number of
conflicts) for the next step of algorithm (SA).

2. If the number of particles is high, more iterations will
be required to achieve the local maximum.

>. Markov chains

According to figure 2 the modifications of the states in each
temperature stage should be sufficient to receive the thermal
equilibrium (i.e. no move can decrease the evaluation of the
state) in that temperature. After the thermal equilibrium the
temperature decreases by a coefficient (e.g. 0.99). The number
of temperature stages (Markov chains) is a function of
dimension of the problem, and the number of moves in each
stage (Markov length) is multiple of problem’s dimension and
the stage index (figure 4).

" li4, No: 72086,
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ension ( number of Markov chain);

for n=0...NxN/2{
for m=0...(n+1)xN {//Markov chain length
Modify state to neighbor configuration;

i
T=099xT;

}

Fig. 5. Pseudo code of using Markov chain in SA step

The initial temperature, after the PSO step and in the
beginning of SA step, is generated by using the evaluation of
the best state, the formula is as follow [11]:

T=(0.001)x(bestEvaluation)/(-log(0.15)) 6)

The coefficients are appropriate to avoid from the initial
divergence of SA, i.e. the state won’t go to very bad situations.

D. Determining the local maximum of PSO

The algorithm traps in local maximum in PSO step when
the evaluation of , and state are equal for each
particle.

E. Steps of algorithm

The algorithm consists of two parts (PSO & SA), and
total steps are as follows:

1. Generate four particles with random initial states and
velocities;

2. Perform the updating procedures (figure 6) of each
particle;

3. If the local maximum is not happened, go to step 2;

otherwise go to step 4;

Select the particle with best state;

Start SA with the selection result of the previous step;

Generate the initial temperature ( with (6);

Make modification on the state, accept that according

to the acceptation rule (Metropolis rule);

8. If the evaluation is zero it means that the algorithm
has achieved to the final state, then go to 11,
otherwise if the Markov length for the current
temperature stage is not finished go to step 7 if not,
go to step 9;

. Decrease the temperature;

10. If Markov chains loop is finished, go to step 11, else
goto7;

11. End of procedure.

N ks
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fori = 0..dimension {
for j = 0..log (dimension){
velocity[i][j] = velocity[i][j]
+randl X (pbest[i][j] — state[i][j])
+rand2 x (nbest[i][j] — state[i][j]);

state[i][j] = sig(velocity[i][j1)
> Math.random()? 1: 0;
}

}

if evaluation < pbestevaluation {
copy state array to pbest array;
pbestevaluation = evaluation;

}

Update nbest array and evaluation
of each particle;

Fig. 6. Pseudo code of the updating procedure.

V.

The algorithm is implemented in Java language and tested
by chess boards with different dimensions. The machine used
was Intel Core 2 Duo CPU 2.40 GHz, 2GB of memory,
~unning Windows 7 Ultimate and jdk1.7.0. The results are

hown in tables 1 and 2 and figures 7 and 8.

EXPERIMENTAL RESULTS

‘able 1 shows the number of iterations required to achieve a
ood local maximum in PSO step.

ABLE I THE NUMBER OF ITERATIONS THAT PSO PERFORMS TO TRAP IN LOCAL
MAXIMUM (THE RESULTS ARE THE AVERAGE OF 10 RUNNING OF ALGORITHM)

)imension 20 200 500 700 1000
_PSO 353 | 2489 | 5784 | 8078 | 11189
1teration

‘ollowing table is a comparison of the hybrid approach and
‘A method, for solving n-queen problem for 5 different
imensions (number of queens), according to their running
mes for finding solution. Afterward you can see diagrams of
1is comparison that are obtained from running algorithms
7ith more different dimensions.

TABLE II COMPARISON OF SA AND HYBRID ALGORITHM FOR 5 DIFFERENT
DIMENSION OF CHESS BOARDS, ACCORDING THE DURATION OF RUNTIMES IN

MILISECOND
Dim
20 200 500 700 1000
Algorithm
Hybrid
PSO&SA 57.6 | 5545.7 | 53601.6 | 131050.6 | 345855.3
SA 3.1 1911 63451.5 | 203503.9 | 776577.8
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Fig. 7. Comparison of hybrid algorithm and SA run times for solving
different dimension n-queen problems.
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Fig. 8. Column chart of the diagram in figure 7.

Another result is that the majority of time consumes when
the state receives to low conflicts (in range 10 to 1) situations
(that is because of the nature of SA algorithm).

VI. CONCOLUSION

N-queen is a good NP-complete problem to test the new
heuristic algorithms and compare them with old ones. The
results of this paper show that the combination of PSO and SA
has a capacity to improve the performance of each one in
solving this problem, separately. The results also show that n-
queen problem can be solved in a reasonable time by this
hybridization and this idea is better than SA (the same SA
used in the hybrid approach) by an increasingly ratio for
higher dimensions, that means when dimension becomes
larger the hybrid algorithm receives to global maximum faster.

The hybrid algorithm is capable to be implemented in
parallel approach, with parallel PSO it is possible to increase
the number of particles and improve reliability of the
algorithm. In another parallelism approach if we can give
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to achieve global maximum with a better speed. We think that
this algorithm also can be useful in solving other CSPs (e.g.
Graph Coloring, Time Scheduling, etc).

Described algorithm has many parameters (e.g. number of
particles, number of PSO iterations, initial temperature, length
of temperature stages, decreasing rate of temperature, etc) to
be adjusted. Here, these parameters are determined by
statistical tests, this work (adjusting parameters) can be done
more precisely by neural networks.
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