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Abstract—This paper presents a hybrid approach for solving     n-

queen problem by combination of PSO and SA. PSO is a population 
based heuristic method that sometimes traps in local maximum. To 
solve this problem we can use SA.  Although SA suffer from many 
iterations and long time convergence for solving some problems, By 
good adjusting initial parameters such as temperature and the length 
of temperature stages SA guarantees convergence. In this article we 
use discrete PSO (due to nature of n-queen problem) to achieve a 
good local maximum. Then we use SA to escape from local 
maximum. The experimental results show that our hybrid method in 
comparison of SA method converges to result faster, especially for 
high dimensions n-queen problems. 
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I.  INTRODUCTION  
CSP is defined by a set of variables and a set of 
constraints. Variable has a nonempty domain of possible 
values. Each constraint involves some subset of the 

variables and specifies the allowable combination of values for 
the subset. A state of the problem is defined by an assignment 
of values to some or all variables. A complete assignment is 
one in which every variable is mentioned, and solution to CSP 
is a complete assignment that satisfies all the constraints. Some 
CSPs also require a solution that maximize an objective 
function [1].  

The n-queens problem is a CSP that consists of placing n 
queens on an N by N chess board, so that they do not attack 
each other, i.e. on every row, column or diagonal, there is only 
one queen, Its complexity is O(n!) [2][3]. There are many 
heuristics for solving n-queen problem, some of these 
heuristics cooperate better with some search methods than the 
others. The complexity of heuristic used in this paper is O(n). 
There are several search strategies for n-queen problem such as 
Depth First Search, Beam Search, Branch and Bound, local 
search methods and Evolutionary algorithms (EA). 

The sections of the papers are as follows: Section II reviews 
the basic and discrete forms of PSO. Section III reviews the SA 
algorithms. In section IV we described our hybrid algorithm, 
and section V summarizes experimental results. Finally, 
conclusions and future works are presented in VI. 

II. PARTICLE SWARM OPTIMIZTION  

A. Basic PSO 
The Particle Swarm Optimization (PSO) [Kennedy and 

Eberhart, 1995, Eberhart et al.,2001] evolved from an analogy 
drawn with the collective behavior of the animal displacements 
[4].  

The system is initialized with a population of random 
solutions and searches for optima by updating potential 
solution over generation. In PSO, the potential solutions, called 
particles, ”fly” through the problem space by following the 
current better performing particle [2]. The solution updating 
can be represented by the concept of velocity [5]. By 
definition, a velocity is a vector or, more precisely, an operator, 
which, applied to a position (solution), will give another 
position (solution). It is in fact a displacement, called velocity 
because the time increment of the iteration is always implicitly 
regarded as equal to 1 [6]. Velocity of each particle can be 
modified by the following equation: 

௜ݒ
௞ାଵ ൌ ௜ݒݓ

௞ ൅ ܿଵ݀݊ܽݎଵ ൈ ൫ݐݏܾ݁݌௜ െ ௜ݏ
௞൯ ൅ ܿଶ݀݊ܽݎଶ ൈ

ሺܾ݊݁ݐݏ௜ െ ௜ݏ
௞ሻ                (1) 

Where ݒ௞
௜  is velocity of particle ݅ at iteration ݇, ݓ is weighting 

function, ௝ܿ is weighting coefficients, rand is random number 
between 0 and 1, ݏ௜

௞  is the current position of particle ݅  at 
iteration ݇, ݐݏܾ݁݌௜ is the best state of particle ݅  and ܾ݊݁ݐݏ௜ is 
the best state among the neighbors of particle ݅ (until iteration 
݇) [5].  A general flowchart of basic PSO is shown in figure 1. 

B. Disceret PSO 
The basic PSO treats nonlinear optimization problem with 

continuous variables. However, practical engineering problems 
are often formulated as combinatorial optimization problems. 
Kennedy and Eberhart developed a discrete binary version of 
PSO for these problems. They proposed a model wherein the 
probability of an agent’s (particle) deciding yes or no, true or 
false and 0 or 1 by the following factors:  

 
Fig. 1. A general flowchart of PSO ሾ5ሿ. Agent is the same particle. 

A
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ܲ൫ݏ௜
௞ାଵ ൌ 1൯ ൌ ݂ሺݏ௜

௞, ௜ݒ
௞, ,௜ݐݏܾ݁݌  ௜ሻ  (2)ݐݏܾ݁݊

 

The parameter ݒ, a particle’s tendency to make one or the 
other choice, will determine a probability threshold. If ݒ  is 
higher, the particle is more likely to choose 1, and lower values 
favor 0 choice. Such a threshold requires staying in the range 
[0, 1]. The proper function for this feature is the sigmoid 
function: 

௜ݒ൫݃݅ݏ
௞൯ ൌ  ଵ

ଵାୣ୶୮ ሺି௩೔
ೖሻ

                                (3) 

Like the basic continues version, the formula for the binary 
(discrete) version of PSO can be describe as follows [5]: 

௜ݒ
௞ାଵ ൌ ௜ݒ

௞ ൅ ଵ݀݊ܽݎ ൈ ൫ݐݏܾ݁݌௜ െ ௜ݏ
௞൯ ൅ ଶ݀݊ܽݎ ൈ ሺܾ݊݁ݐݏ௜ െ ௜ݏ

௞ሻ 

(4) 

ߩ ൏ ௜ݒ൫݃݅ݏ
௞ାଵ൯     ݏ   ݄݊݁ݐ௜

௞ାଵ ൌ 1; 

௜ݏ  ݁ݏ݈݁                                  
௞ାଵ ൌ 0;    (5) 

Where rand and ߩ  are random numbers in ሾ0,1ሿ . The entire 
algorithm of the binary version of PSO is almost the same as  
that of the basic continous version (figure 1) except for the 
above equations[5]. 

III. SIMULATED ANNEALING (SA) 
In statistical mechanics, a physical process called annealing 

is often perform in order to relax the system to a state with 
minimum free energy [8]. The idea to use annealing technique 
in order to deal with optimization problems gave rise to the 
simulated annealing technique. It consists in introducing a 
control parameter in optimization, which plays the rule of 
temperature. The “temperature” of the system to be optimized 
most have the same effect as the temperature of the physical 
system: it must condition the number of accessible states and 
lead to the optimal state, if the temperature is lowered 
gradually in a slow and well controlled manner (as in the 
annealing technique) and towards a local minimum if the 
temperature is lowered abruptly. The flowchart of the 
algorithm is shown in figure 2 [9]. 

If  ∆ܧ ൑ 0 (i.e. new state is better than the current state) the 
modification will be accepted, when ∆ܧ ൐ 0 if the probability 
expሺെ ܧ∆ ܶ⁄ ሻ  is greater than a random number drawn 
uniformly between 0 and 1, the modification, making the state 
worse, also will be accepted (Metropolis rule [9]).  

 

 
By repeatedly observing the rule of acceptance, described 

above, a sequence of configurations (states) is generated, 
which constitutes a Markov chain (in a sense that each 
configuration depends on only that one which immediately 
precedes it) [9].  

IV. THE HYBRID ALGORITHM 
According to the diagram of our method (figure 3), PSO 

and SA algorithms were implemented consecutively. The 
evaluation functions of two algorithms are the same. Diagram 
shows that PSO works with four particles, then SA takes the 
state of best particle from PSO and after generating the initial 
temperature, performs sufficient iterations (Markov chains) 
toward a global maximum. In the following paragraphs the 
important parameters and steps of algorithm are represented. 

A. Representaiton of  problem states 

NO 

YES 

STOP 

YES 

frozen system? 

NO thermodynamic 
equilibrium? 

ANNEALING 
PROGRAM  

Slow decrease of T 

Metropolis ACCEPTATION RULE 

-if ∆E ൑ 0 : modification accepted 

-if ∆E ൐ 0 : modification accepted with  

 probability exp(-∆E/T) 

INITIAL CONFIGURATION 

INITIAL TEMPERATURE T 

elementary MODIFICATION 

energy variation ∆E 
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Fig. 2. Flowchart of SA [10]. 
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Fig. 6. Pseudo code of the updating procedure. 

V. EXPERIMENTAL RESULTS 
The algorithm is implemented in Java language and tested 

by chess boards with different dimensions. The machine used 
was Intel Core 2 Duo CPU 2.40 GHz, 2GB of memory, 
running Windows 7 Ultimate and jdk1.7.0. The results are 
shown in tables 1 and 2 and figures 7 and 8. 

Table 1 shows the number of iterations required to achieve a 
good local maximum in PSO step. 
 
TABLE I THE NUMBER OF ITERATIONS THAT PSO PERFORMS TO TRAP IN LOCAL 
MAXIMUM (THE RESULTS ARE THE AVERAGE OF 10 RUNNING OF ALGORITHM) 

Dimension 20 200 500 700 1000

PSO 
iteration 353 2489 5784 8078 11189 

 
Following table is a comparison of the hybrid approach and 
SA method, for solving n-queen problem for 5 different 
dimensions (number of queens), according to their running 
times for finding solution. Afterward you can see diagrams of 
this comparison that are obtained from running algorithms 
with more different dimensions.  
 

TABLE II COMPARISON OF SA AND HYBRID ALGORITHM FOR 5 DIFFERENT 
DIMENSION OF CHESS BOARDS, ACCORDING THE DURATION OF RUNTIMES IN 

MILISECOND 

        Dim 
 

Algorithm   
20 200 500 700 1000 

Hybrid 
PSO&SA 57.6 5545.7 53601.6 131050.6 345855.3 

SA 3.1 1911 63451.5 203503.9 776577.8 

 
Fig. 7. Comparison of hybrid algorithm and SA run times for solving 

different dimension n-queen problems. 

 
Fig.  8.  Column chart of the diagram in figure 7. 

Another result is that the majority of time consumes when 
the state receives to low conflicts (in range 10 to 1) situations 
(that is because of the nature of SA algorithm).   

VI. CONCOLUSION 
N-queen is a good NP-complete problem to test the new 

heuristic algorithms and compare them with old ones. The 
results of this paper show that the combination of PSO and SA 
has a capacity to improve the performance of each one in 
solving this problem, separately. The results also show that n-
queen problem can be solved in a reasonable time by this 
hybridization and this idea is better than SA (the same SA  
used in the hybrid approach) by an increasingly ratio for 
higher dimensions, that means when dimension becomes 
larger the hybrid algorithm receives to global maximum faster. 

The hybrid algorithm is capable to be implemented in 
parallel approach, with parallel PSO it is possible to increase 
the number of particles and improve reliability of the 
algorithm. In another parallelism approach if we can give 
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ሾ݅ሿሾ݆ሿݕݐ݅ܿ݋݈݁ݒ              ൌ  ሾ݅ሿሾ݆ሿݕݐ݅ܿ݋݈݁ݒ 
                ൅ 1݀݊ܽݎ ൈ  ሺݐݏܾ݁݌ሾ݅ሿሾ݆ሿ  െ  ሾ݅ሿሾ݆ሿሻ݁ݐܽݐݏ 
               ൅ 2݀݊ܽݎ ൈ ሺܾ݊݁ݐݏሾ݅ሿሾ݆ሿ െ  ;ሾ݅ሿሾ݆ሿሻ݁ݐܽݐݏ 

         
ሾ݅ሿሾ݆ሿ݁ݐܽݐݏ         ൌ ሾ݅ሿሾ݆ሿሻݕݐ݅ܿ݋݈݁ݒሺ݃݅ݏ 

൐ .݄ݐܽܯ ? ሺሻ݉݋݀݊ܽݎ  1 ׷  0; 

 ݊݋݅ݐܽݑ݈ܽݒ݁ ݀݊ܽ ݕܽݎݎܽ ݐݏܾ݁݊ ݁ݐܽ݀݌ܷ
 ;݈݁ܿ݅ݐݎܽ݌ ݄ܿܽ݁ ݂݋ 

ൌ ݅ ݎ݋݂   0 …    ሼ ݊݋݅ݏ݊݁݉݅݀
ൌ ݆  ݎ݋݂       0 … log ሺ݀݅݉݁݊݊݋݅ݏሻሼ 

        ሽ 
   ሽ   
൑  ݊݋݅ݐܽݑ݈ܽݒ݁ ݂݅ ሼ ݊݋݅ݐܽݑ݈ܽݒ݁ݐݏܾ݁݌    
;ݕܽݎݎܽ ݐݏܾ݁݌ ݋ݐ ݕܽݎݎܽ ݁ݐܽݐݏ ݕ݌݋ܿ           
ൌ ݊݋݅ݐܽݑ݈ܽݒ݁ݐݏܾ݁݌          ;݊݋݅ݐܽݑ݈ܽݒ݁ 
ሽ  
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more states of PSO (best states) to SA in parallel it is possible 
to achieve global maximum with a better speed. We think that 
this algorithm also can be useful in solving other CSPs (e.g. 
Graph Coloring, Time Scheduling, etc). 

Described algorithm has many parameters (e.g. number of 
particles, number of PSO iterations, initial temperature, length 
of temperature stages, decreasing rate of temperature, etc) to 
be adjusted. Here, these parameters are determined by 
statistical tests, this work (adjusting parameters) can be done 
more precisely by neural networks.  
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