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Abstract—It is estimated that the total cost of abnormal 

conditions to US process industries is around $20 billion dollars in 
annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum 
refineries is a conversion process that leads to high profitable 
economical returns. However, this is a difficult process to control 
because it is operated continuously, with high hydrogen pressures 
and it is also subject to disturbances in feed properties and catalyst 
performance. So, the automatic detection of fault and diagnosis plays 
an important role in this context. In this work, a hybrid approach 
based on neural networks together with a pos-processing 
classification algorithm is used to detect faults in a simulated HDT 
unit. Nine classes (8 faults and the normal operation) were correctly 
classified using the proposed approach in a maximum time of 5 
minutes, based on on-line data process measurements. 
 

Keywords—Fault detection, hydrotreatment, hybrid systems, 
neural networks. 

I. INTRODUCTION 

HE latest progress in process control has brought various 
benefits for industrial segments and also a very wide 

range of new variables for control systems. This situation 
might lead to an information overload, which is quite alarming 
since human operators manage the industrial plant in a 
computer-based environment. 

Manufacturing plants are a large source of complexity, 
since multiple sensors and actuators are inherent. Potential 
sources of faults or abnormal situations can easily be found.  

 
Manuscript received July 28, 2005. This work was supported by Brazilian 

Research and Projects Financing Agency (FINEP) and PETROBRAS, the 
Brazilian State Oil Company,  by grant No. 2100/04. 

Luciana Salvatore is withq the Graduate Program in Chemical and 
Biochemical Process, School of Chemistry, UFRJ  (e-mail: 
luciana_salvatore@yahoo.com.br).  

Bernardo Nunes Pires is a fellow researcher with Escola de Química, UFRJ 
(e-mail:  bnpires@eq.ufrj.br). 

Mário M. M. de Campos is a senior automation engineer working in the 
research and development center of Petrobras, the Brazilian State Oil 
Company, Petrobras/CENPES, Cidade Universitária, Quadra 7, Ilha do 
Fundão, 21949-900, Rio de Janeiro, Brazil;  (e-mail: 
mariocampos@petrobras.com.br). 

Maurício B. De Souza Jr. (corresponding author) is a professor at the 
School of Chemistry, CT, Ilha do Fundão, Bloco E – CP 68542, 21.949-900, 
Rio de Janeiro – RJ, Brazil (phone: +55-21-2562-7636; fax: +55-21-2562-
7567; e-mail: mbsj@eq.ufrj.br). 

 

In regard to this scenario, the process fault detection and 
diagnosis becomes imperative for the current industrial plant 
operation. 

The use of artificial neural networks (ANNs) has become 
very successful in process fault detection. There are some very 
important characteristics that suit the ANNs in the fault 
diagnosis field. Their ability to analyze non-linear processes, 
noise tolerance and on-line adaptability enable its industrial 
use. Also good properties held by ANNs are parallel 
distributed processing, high degree of robustness or fault 
tolerance due to the distributed representation, and ability to 
adapt and continue learning to improve performance [1].  

Hoskins and Himmelblau [2] have made a pioneering study 
of the feasibility of using neural networks for fault detection 
and diagnosis, using a multilayer feedforward analog 
perception model. Since then different network architectures 
have been used for the problem of fault diagnosis [3]. 

Recently, Venkatasubramanian [3]-[5] performed a 
systematic and comparative study of various diagnostic 
methods from different perspectives, including neural 
networks approaches. 

II. HYDROTREATMENT UNIT MODEL AND SIMULATION 

A. Hydrotreatment Unit (HDT) 
Hydrotreating process has become very important in 

petroleum industry, especially in Brazil. The main objective in 
this refining process is to give a better use to heavier oil 
fractions. In this process several components− present in the 
oil feed − react with hydrogen, following a parallel reaction 
scheme, inside trickle bed reactors. Hydrogen is mixed to oil 
in a proportion higher than the stechiometric. The temperature 
along the beds rises from the inlet to the outlet, depending on 
the extent of the exothermic reactions. This catalytic process 
is carried under severe operational conditions (high 
temperature and pressure), demanding high production costs, 
for instance, in hydrogen generation. It is important to 
mention the environmental advantages in terms of pollutants 
removal. Therefore, any kind of resistance related to HDT has 
been disappearing as its advantages increases.  

A hydrotreating plant is composed by a reaction section − 
which includes a series of pre-heating furnaces, the reactors, 
the hydrogen flash system and the make-up compressor for 
hydrogen − and a stabilization section. In this work, only the 
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reaction section is focused. Usually, two reactors are 
employed. The reactors are trickle bed ones as the inflow 
enters in gaseous and liquid phases, composing a triphasic 
system together with hydrogen and the catalyst solid bed. 

A quench system is used to control the temperature of the 
reactors. This is achieved with the injection of a H2 flow in the 
middle of catalytic beds. 

The yield products of this unit are finally directed to 
stabilization section, where all commercial specifications will 
be adjusted. 

In the present work, the pre-heating and reaction sections 
are being explored. The flow-chart of this part of the unit can 
be seen on Figure 1. 

 

 
 

Fig. 1 Reactor and pre-heating section 
 

B. HDT Unit Modelling 
Fixed bed reactors usually show a complex behavior, 

troubling its control. The difficulties can be summarized as: 
· The most important process variable, product 

concentration is also the most difficult to analyze; 
· Inverse response of some dependent variables in relation 

to variations in the independent variables; 
· Dead time associated to thermal wave propagation 

through the bed; 
· Non-linear interaction between kinetic and energetic 

process;  
. Physical-chemical parameters vary in space and time. 
In this work, a HDT model developed by Carneiro [6] was 

selected to represent the real unit and was simulated in 
MatLab™ and Simulink™ platforms. The modeling equations 
were chosen in such way that the process shows a similar 
dynamic to the existing units, by means of concentration and 
temperature profiles trough the catalytic beds. For the furnace 
and mixer, the model representativity may be relaxed, since 
these units are accessory and should not demand 

computational effort. 
In the present investigation, only the first reactor was 

modeled. The first reactor comprises two beds in series, being 
designated as first bed and second one. The assumptions of 
the model for the reactor are: 

· Only one reaction occurs and this reaction is 1st order 
with respect to the average concentration of a unique pseudo-
reactant A in the pores of the solid phase; 

· There is only one fluid phase, with constant physical-
chemical properties; 

· There is only one solid phase; 
· There are no transversal transport phenomena, only 

longitudinal; 
· There is no phase equilibrium; 
· The reaction rate is described by the Arrhenius equation; 
· There is no variation of volume in the reaction; 
· Non-linear interactions between thermal and kinetic 

processes exist. 
The model of the reactor was built assuming that the reactor 

is composed by n CSTR-cells (or stages) in series, as 
previously proposed by Hlavácek [7]. A total of 12 stages 
were used here. The equations describing this unit were 
obtained by mass and energy balance in each stage. In the 
equations described below the mass balances, energy and 
kinetic model for the HDT unit can be found. 

Initially, the flow of mass is described. The fluid phase 
flows from the left to the right, but back mixtures (in the 
reverse direction) also happen between successive stages. 
Then, the flow of the fluid phase between stages is composed 
by two parcels: VZ (direct volumetric flow) and gm 
(volumetric flow associated to reverse flow). It is also 
assumed that gm is constant along the bed and proportional – 
through adimensional constant Km – to VZ:  

 
                              mZm KVg .=          (1) 

 
The molar flow of component A – where C is the reactant A 

concentration in fluid phase - is described in the following: 
 

Forward direction:   ( ) ( ) CVK1CgV ZmmZ +=+           (2) 
 

Reverse direction:  CVKCg Zmm ... =         (3) 
 
The fluid phase, which is outside the pores of the catalyst, 

behaves as a perfectly mixed tank, in each stage. The intra-
stage mass transfer between solid and gas is based in the 
external solid catalyst particles surface. The concentration of 
reactant A inside the pores of the particles (Cs) is also 
considered homogeneous in each stage. The mass flow is 
proportional to the difference between inside and outside pore 
particle concentration as shown in equation (4): 

 
       ( )Sg CCV.a.K −              (4) 
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so that  Kg is the mass transport coefficient through the extern 
catalyst particle surface; a is the external surface area of solid 
catalyst particles per total stage volume and V is the total 
stage volume. 

The mass balance for compound A in fluid phase at stage i 
can now be written: 

 
( ){ } ( ) ( ){ }
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⎫

⎩
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⎧ν=−++−++ +− dt

dCVCCV.a.KC.V1K2C.K.VCK1V i
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(5) 
 

where the symbols in the equation above can be described as 
follows: ν  is the interparticle porosity; Ci-1 is the 
concentration in previous stage; Ci+1 is the concentration in 
next stage; Ci is the concentration in stage i; Cis is the 
concentration in the inner catalyst pore. 
  

The mass balance in solid region at stage i is given by: 
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where: k0 is the Arrhenius kinetic constant; E is the activation 
energy; R is the universal gas constant and TiS is the absolute 
solid temperature.  

For the heat transport, gt is the flow of fluid associated to 
the reverse flow of heat, so that gt is also proportional – 
through adimensional constant Kh  – to VZ:  

 
      hZt K.Vg =                              (7) 

 
The expressions for heat transfer rate intra-stage are given 

by Equation 8 – in the forward direction – and 9 – in the 
reverse direction, respectively. 

 
 ( ) ( ) ( ) ( )*

eePZh
*

eePtZ TTC..VK1TT.C.gV −ρ+=−ρ+             (8) 
 

( ) ePZheePt TCVKTTCg ...... * ρρ =−                                   (9) 
 
where: ρ is the gas specific mass; Cp is the gas specific heat; 
Te is the fluid temperature; Te

* is the reference temperature for 
heat transfer enthalpy calculation 

The heat transfer mechanism intra-stage uses a global heat 
transfer coefficient U between flow phase and catalyst, based 
in the external particle surfaces.  It is also assumed that the 
fluid in the catalyst pores is at the same temperature than the 
solid, as shown in Equation (10) below: 

 
                      ( )ee TTV.a.U

S
−                      (10)                   

 

where SeT
is the fluid temperature in the bed; 1ieT

−  is the fluid 

temperature in the previous stage; 1ieT
+  is the fluid 

temperature in the next stage; ieT
 is the fluid temperature in 

stage i. 
The energy balance in fluid phase at stage i is described by: 
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The energy balance in solid region at stage i is presented 

in the following:   
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The reaction rate rA is described by the following kinetic 

model:  

( )Si

S

T.R
E

i0A e.C.kr
−

=               (13) 

 
The furnace modeling consisted solely in the use of an 

empirical equation of energetic balance. The mixer located in 
the first bed was modeled with a mass balance generating only 
one equation.  

There are 48 equations described for the first bed, 1 for the 
mixer, 1 for the furnace and 48 for the second bed. A 
simulation algorithm was developed to represent the model 
and was implemented in Simulink™.  

The simulation parameters were maintained according to 
the Simulink™ default, adjusting the integration method to 
ode15s, able to solve stiff algebraic-differential equations. The 
simulation time was of 25000 seconds for all points tested.  

The process exhibited inverse response and time delay. 
Two PI (Proportional-Integral) controllers were tuned by the 
Internal Model Control method [8], one to control the outlet 
temperature of the furnace, manipulating the flow of fuel to be 
burned, and another to control the outlet temperature of the 
second bed, manipulating the hydrogen quench flow to the 
mixer. It was assumed for the closed loop experiments that 
there are no instrumental errors and that there is no noise in 
the instruments. 

III. FAULT ANALYSIS 
For the generation and analysis of faults in this process, two 

input variable of the system were chosen to be disturbed: the 
inlet feed concentration and the inlet flow rate. The normal 
process operational range for reactant concentration is 17-22 
mol/m3 and between 0.07-0.1 m3/h for the inlet flow. 

From these values of concentration and flow, the conditions 
of abnormal situation for the system were established. These 
ranges and combination of values for concentration and flow 
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are described on Table I. 
 

 
After disturbances, the following process responses were 

analysed: 
· Furnace outlet temperature; 
· Outlet reactor 1 temperature; 
· Outlet reactor 1 concentration; 
· Hydrogen quench flow in the mixer; 
· Outlet concentration of the mixer; 
· Outlet temperature of the mixer; 
· Outlet temperature of reactor 2; 
· Outlet concentration of reactor 2.  

IV. NEURAL NETWORK STRUCTURE 
MLP (Multilayer Perceptron) and RBF (Radial Basis 

Function) [9] networks were used.  The following variables, 
generated in the previous step, were chosen as input ones, 
where k is the sampling time: T1(k) and T1(k-1) - outlet 
reactor 1 temperature, T2(k) and T2(k-1) - outlet temperature 
of reactor 2, (dT2/dt)(k) – outlet temperature derivative of 
reactor 2,  H2(k) - Hydrogen quench flow in the mixer and 
CARGA(K) - inlet feed concentration.  

The conditions described in Table I were divided in nine 
classes of faults and defined as the output to the network, as 
follows in Table II: 

 
 

All neural network methodology, including training and 
validation were carried out in Statistica™ 6.0 software.  

For a better comparison, another procedure was tested.  
Three networks were trained to become specialized in a group 
of classes. The faults cases were separated according to the 
logic showed in Figure 2. 

 
 Load flow 

0.07 ≤ flow ≤ 0.1 ANN 3 
3, 13, 23 

ANN 1 
0, 1, 2 

flow ≤ 0.1 

ANN 2 
4, 14, 24 

yes 
no 

yes 

no 

 
 

Fig. 2 Separated network approach flow-chart 

V. THE  POS-TREATMENT ALGORITHM 
In this section, it is proposed a MatLab™ algorithm called 

WINNER in order to show to the operator the classification of 
a abnormal event. The steps followed were: 

· The network generates data in a period of 1 second; 
· At each 2,5 minutes, 150 classifications are checked. 
A winning class will be found if the net achieves at least the 

best performance percentage during classification. This means 
that this algorithm searches the number of times when the 
same class was identified. In this case, the system  informs the 
winning class. If that percentage is not reached the net renders 
a NK (“not known”) status. 

  

VI. RESULTS 

A. Faults Generation in Simulink™  
Figures 3 to 5 show, respectively, the results of variations 

in the temperature of first and second beds and flow of 
hydrogen response with time in normal and abnormal 
conditions.  These results are showed accordingly to the class 
faults separation described earlier. It must be noticed that only 
the first 900 seconds were shown because it is our purpose to 
detect the faults in an interval of minutes.  The curves in the 

TABLE I 
PROCESS CONDITIONS TESTED 

Condition  Feed  concentration 
(mol/m3) 

Feed flow (m3/h) 

1 22 0.1 
2 17 0.1 
3 22 0.07 
4 17 0.07 
5 24.5 0.115 
6 24.5 0.055 
7 14.5 0.115 
8 14.5 0.055 
9 24.5 0.1 

10 14.5 0.1 
11 22 0.055 
12 22 0.115 
13 17 0.055 
14 17 0.115 
15 24.5 0.07 
16 14.5 0.07 

TABLE II 
CLASSES OF FAULTS 

Conditions  Fault Process situation 
1, 2, 3, 4 0 Normal 

9, 15 1 High Concentration 
10, 16 2  Low Concentration 
11, 13 3  Low Flow 
12, 14 4 High Flow 

5 14 High Concentration and Flow 
6 13 Low Concentration and Flow  
7 24 Low Concentration and High Flow 
8 23 Low Concentration and Low Flow 
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first graphic in the left, show the responses corresponding to 
normal operation, while the other curves show the classes of 
abnormal operation, separately. 
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Fig.3  Temperature responses in the first bed 
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Fig. 4 Temperature responses in the second bed 
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Fig. 5 Hydrogen quench flow response 

 

B. Neural Network Results 
Table III shows the final networks obtained in both 

strategies (one single network and three networks). 
 

 
 

C. Post-Treatment Results 
After neural network training and validation a prediction 

analysis was carried out in order to compare and evaluate the 
time required by the detection system to inform the fault status 
to the operator. 

As all networks showed at least a 96% performance, when 
the WINNER program verified 144 equal classifications, it 
was said that a class was recognized. 

Table IV shows the comparison between the each neural 
network ensemble. It can be seen how long, in minutes, each 
net takes to send the error signal to the operator. 

  

TABLE III 
 NEURAL NETWORKS OBTAINED 

 Network type Training 
performance 

Selection 
performance 

1 network 
tested 

RBF 97% 96% 

RBF 97% 96% 
RBF 98% 98% 

3 
networks 

tested RBF 97% 97% 
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For the approach using only one neural network, the tests 
presented 100% performance when in the normal process 
operation range, sending after 2.5 minutes a fault signal to 
the operator. For the disturbances cases, this time turned to 
5 minutes. 

For the other methodology, where three specialized 
neural networks were used, net 1 took 5 minutes to 
recognize faults 1 and 2 (2,5 minutes to identify normal 
operation), net 2 took 5 minutes for all faults and net 3 took 
5 minutes for faults 13 and 23 (2,5 minutes for fault 3). 

VII. CONCLUSIONS 
The two approaches tested for conjunction of neural 

networks with a post-processing classification algorithm 
resulted in very efficient hybrid systems for fault detection 
of the HDT unit. In 5 minutes both approaches were able to 
correctly classify the fault classes. However, the approach 
that considers multiple networks might work better in a 
case where more faults are present.  

In the continuation of this work it is intended to simulate 
the section of hydrogen compression and to extend the fault 
diagnosis system in order to include the disturbances 
associated with that section. 
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TABLE IV 
NEURAL NETWORKS DETECTION  PERFORMANCES 

Ensemble Fault Stand-
alone Net Net 1 Net 2 Net 3 

0 2,5 2,5 - - 
1 5 5 - - 
2 5 5 - - 
3 2,5 - - 2,5 
4 5 - 5 - 

14 5 - 5 - 
13 5 - - 5 
24 5 - 5 - 
23 5 - - 5 


