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Abstract—The purpose of the present paper is to show that the 

problem of geometrically nonlinear free vibrations of functionally 
graded beams (FGB) with immovable ends can be reduced to that of 
isotropic homogeneous beams with effective bending stiffness and 
axial stiffness parameters by using an homogenization procedure. 
The material properties of the functionally graded composites 
examined are assumed to be graded in the thickness direction and 
estimated through the rule of mixture. The theoretical model is based 
on the Euler-Bernouilli beam theory and the Von Kármán 
geometrical nonlinearity assumptions. Hamilton’s principle is applied 
and a multimode approach is derived to calculate the fundamental 
nonlinear frequency parameters, which are found to be in a good 
agreement with the published results. The non-dimensional 
curvatures associated to the nonlinear fundamental mode are also 
given for various vibration amplitudes in the case of clamped-
clamped FGB. 
 

Keywords—Nonlinear vibrations, functionally graded materials, 
homogenization procedure. 

I. INTRODUCTION 
ECENTLY, the developments in materials engineering 
have led to consideration of special composites called 

“functionally graded materials” (FGMs). They are 
characterized by smooth and continuous variations in their 
thermomechanical properties along the thickness of a structure 
obtained by gradually varying the volume fraction of the 
constituent materials. FGMs possess various advantages over 
the conventional composite laminates, such as smaller thermal 
stresses and stress concentrations and they can be designed to 
achieve specific properties for different applications. Indeed, 
FGMs are generally made of a mixture of ceramic and metal 
to satisfy the demand of ultra-high-temperature environment 
and to eliminate the interface problems. Hence, this new kind 
of materials has been employed in the design of many 
engineering structures such as aircrafts, space vehicles, 
defense industries, electronics and biomedical equipments.  

Because of the wide applications of FGMs, it is important 
to study the dynamic behavior of FGM structures such as 
beams which are used extensively as structural members and 
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often subjected to relatively large vibration amplitudes, 
compared to their thickness. Consequently, many structural 
problems are encountered in these severe work conditions due 
to material fatigue which is accelerated leading to structural 
damages and catastrophic failures. These phenomena are more 
significant around the natural frequencies of the structure, for 
which the nonlinear vibration analysis becomes essential for a 
reliable structural design.  

Recently, the dynamic response of FG beams has been the 
purpose of many research works. In [1], fundamental 
frequency analysis of FG beams having different boundary 
conditions has been made within the framework of the 
classical, the first-order and different higher-order shear 
deformation beam theories. Exact solutions for the bending 
vibration problem of FG beams with variation of material 
properties in a one-layer beam or in the layers of a 
multilayered sandwich beam have been proposed in [2]. The 
linear beam theory has been used for establishing the 
equilibrium and kinematical equations, taking into account the 
effect of the shear deformation and the effect of consistent 
mass distribution and mass inertia moment. In [3], the 
dynamic characteristics of a functionally graded beam with 
axially or transversally material graduation through the 
thickness have been presented. The finite element method has 
been employed under the assumptions of the Euler–Bernoulli 
beam theory to develop the discretized model and obtain a 
numerical approximation of the motion equation. A mixed 
method for forced vibration of functionally graded beams 
subjected to moving loads has been developed in [4]. The 
theoretical formulation is based on the Euler–Bernoulli beam 
theory, and the governing equations of motion of the system 
have been derived using Lagrange’s equations. Then, the 
Rayleigh–Ritz method has been employed to discretize the 
spatial partial derivatives and the differential quadrature 
method has been used for the discretization of the temporal 
derivatives. Static and free vibration analysis of functionally 
graded layered beams have been conducted in [5] using a third 
order zigzag theory based model. Two systems, Al/SiC and 
Ni/Al2O3, fabricated using powder metallurgy and thermal 
spraying techniques respectively, have been considered for the 
experimental validation. The detection of cracks in structural 
members made of a functionally graded material has been a 
significant subject due to their increasing applications in 
various important engineering industries. A model-based 
approach has been developed in [6] to determine the location 
and size of an open edge crack in an FGM beam. The p-
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where  is the nonlinear axial strain,  is the curvature of 

the beam. The total elastic strain energy  of Euler-
Bernoulli beams is given by: 
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in which and are the axial internal force and the 

bending moment respectively, which are related to the strains 
as follows: 
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where 11A , 11B and 11D  are the extension-extension, 
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respectively, and can be evaluated using the classical laminate 
plate theory. 
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Expression (10) for the total strain energy is the basis of the 
proposed homogenisation procedure for replacing the FGM 
beam problem with an equivalent classical isotropic beam 
problem [8]. 

The kinetic energy, in which the axial and rotary inertia are 
ignored, is given by: 
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For a general parametric study, we use the following non 

dimensional formulation by putting: 
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Applying Hamilton’s principle and expanding the 

displacement in the form of a finite series, the following 
set of nonlinear amplitude equations is obtained: 
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To obtain the nonlinear vibration response of a clamped-

clamped FG beam in the neighborhood of its first resonant 
frequency, the values of the linear rigidity matrix kij

* and the 
nonlinear geometrical rigidity tensor bijkl

* have been calculated 
using the first six normalized symmetric linear beam function 
w1

*, w3,* …, w11
*. The functions wi

* have been normalized in 
such a manner that the obtained mass matrix equals the 
identity matrix.  

IV. NUMERICAL RESULTS AND DISCUSSIONS 
In the present work, the functionally graded material of the 

beam is that considered in reference [7]. The top surface of the 
FG beam is ceramic rich (Ec=322.03 GPa, ρc =2370 Kg/m3), 
whereas the bottom surface of the FG beam is metal rich 
(Em=207.08 GPa, ρm =8166 Kg/m3). 

In Table I, It is noted that the first nonlinear frequency 
ratios ωnl/ωl, calculated in the present work at various 
vibration amplitudes in the case of an isotropic clamped-
clamped beam, agree very well with the results obtained in 
[8], since the percentage error does not exceed 0.3%. 
However, the solutions given in [7] overestimate the 
frequencies of the clamped beams, especially for high values 
of dimensionless amplitude.  
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