
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

88

Abstract—Previous the 3D model texture generation from

multi-view images and mapping algorithms has issues in the texture
chart generation which are the self-intersection and the concentration
of the texture in texture space. Also we may suffer from some
problems due to the occluded areas, such as inside parts of thighs. In
this paper we propose a texture mapping technique for 3D models
using multi-view images on the GPU. We do texture mapping directly
on the GPU fragment shader per pixel without generation of the
texture map. And we solve for the occluded area using the 3D model
depth information. Our method needs more calculation on the GPU
than previous works, but it has shown real-time performance and
previously mentioned problems do not occur.

Keywords—Texture Mapping, Multi-view Images, Camera
Calibration, GPU Shader.

I. INTRODUCTION
HE texture of the 3D model which is made from voxel-
carving [1] algorithm is created by storing the texture

information from acquired multi-view images to the texture
map. The 3D model is segmented for generation of the texture
chart [2] using parameterization [3] algorithm which will be
used for making texture map on the image space.

The texture information is acquired from multi-view images
using camera parameters for each image and the polygon
vertices (x, y, z) of the 3D model. Once the texture information
is stored in the texture map it is used for texture mapping on
the3D model per each frame.

But if the occluded area like inside of the thighs is not
considered when the generation of texture, the texture mapping
result is not clear because the occluded area will be mapped for
using outside texture information from the selected image. And
some of the texture chart suffers from the concentration of the
texture space of the texture chart. It will be shown that the
texture mapping result seems to be blurred. Also after the
parameterization process, because it is angle-based algorithm,
the some of the texture charts have a self-intersection problem.
In this paper we propose a texture mapping technique for 3D
models using multi-view images on the GPU. For solving a
mentioned problem, we do the texture mapping directly on
GPU shader without generation of the texture map. Also, we

In Lee is with the Soongsil University, Dongjak-gu, Seoul, Korea (phone:
+82-2-821-2889; fax: +82-2-821-2889; e-mail: einable@magiclab.kr).

Kyung-Kyu Kang is with the Soongsil University, Dongjak-gu, Seoul,
Korea (phone: +82-2-821-2889; fax: +82-2-821-2889; e-mail: rcrookie@
magiclab.kr).

Jae-Woon Lee is with the Soongsil University, Dongjak-gu, Seoul, Korea
(phone: +82-2-821-2889; fax: +82-2-821-2889; e-mail: woori9000@
magiclab.kr).

Dongho Kim is with the Soongsil University, Dongjak-gu, Seoul, Korea
(phone: +82-2-820-0721; fax: +82-2-821-2889; e-mail: cg@su.ac.kr).

use the depth map for calculation of the occluded area in the
texture mapping process. Our algorithm solves the previous
mentioned problems fundamentally and performs in real-time
frame rate, per pixel.

II. RELATED WORKS
The texture map is generated for packing the texture chart [2]

on the image space. It is made that the 3D model is segmented
by using the segmentation area decision algorithm like the SOD
(Second Order Difference) [4]. The segmented mesh is
converted from 3D to 2D space using parameterization [4]
algorithm such as LSCM [2] or ABF [5]. But it has a possibility
that the texture chart has a concentration of the texture space
because it conducts angle-based. Also it has the
self-intersection problem in some of the texture chart that the
texture information corresponding to intersected area will be
duplicated. It means that the some part of the texture in the
texture chart is not represented.

The multi-view images are used for generation of the texture
on the texture map. The camera calibration information needs
for acquiring the texture from the multi-view images. It is the
process of the finding camera information that consists of
intrinsic and extrinsic parameters and represents 3x3, 3x4
matrix form respectively. For finding the suitable image for
texture acquisition, find the image by calculating the smallest
angle between a normal vector of the polygon in the 3D model
with the camera direction vector corresponding to each image.
Next, project 3D model vertex(x, y, z) to the selected image
using corresponding camera projection matrix that is calculated
by multiplying between intrinsic and extrinsic parameters.

For finding the camera parameters, Tsai [6] proposed using
calibration board such as black-white chessboard. He is used
two perpendicular calibration board for measurement of the
camera parameter, but Zhang [7] proposed the new approach
that uses many pictures of one calibration board.

The some of the previous research consider the texture
mapping of the occluded area [8]. Proposes the texture mapping
technique for the 3D human model made from the modeling
tool. It is used for the depth map, normal vector of the vertex
and calculated before texture mapping [9]. Proposes for texture
mapping method of the occluded area for the visual hull [10].
Also it proposes the soft visibility map method for detection of
the occluded area and lerp texture mapping. It calculates before
the texture mapping on the GPU.

III. GPU BASED TEXTURE MAPPING
In this section we will present our GPU based texture

mapping technique for 3D models using multi-view images.

In Lee, Kyung-Kyu Kang, Jaewoon Lee, and Dongho Kim

A GPU Based Texture Mapping Technique for 3D
Models using Multi-View Images

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

89

Our algorithm has two parts that is depth map creation before
texture mapping and detection of the occlusion for selecting the
texture acquired image on the GPU fragment shader.

A. Depth Map Creation
Some of the previous texture mapping algorithms based on

the multi-view images is based on the angle between camera
direction vector and polygon normal vector for selection of the
texture acquisition image. But it has a mismatch problem on the
occlusion area’s texture mapping like Fig. 1 because the camera
just only available to take a 2D image. If the occlusion is not
considered when performing the texture mapping, its result will
be mismatched.

Fig. 1 The case of the occlusion problem. For finding of the B’s texture
(top left), the image taken from camera C is selected (top right) and the

mapping result using C’s image on the inside of the thigh.

In Fig. 1, the surface information of the B is not existence in
the top-right image. But some of the multi-view images have
information of surface B. For this situation we create and use
the depth maps for detection of the occluded area like [8] before
do the texture mapping on the GPU fragment shader.

The depth map for the 3D model is made using for each
camera parameters. The conventional transformation from 3D
to 2D in the computer graphics needs model-view, perspective
projection and viewport transformation matrix. We made the
each transform matrix using camera parameters.

The model-view transformation matrix, convert world to
camera coordinates, is consist of the rotation information and
transformation in the camera coordinates. The extrinsic
parameter is already represented it, we just convert 3x4 to 4x4
matrix form. But (y,z) coordinates of the camera space is
converted for world coordinates system, we reverse the
extrinsic matrix (y,z) elements sign for creation of model-view
matrix equally. The perspective projection transformation
matrix needs FOV(field of view), aspect ratio, near distance
and far distance of z coordinates value. The FOV is calculated
using principle point Oc(Ox, Oy), the coordinates of 0 of the y in
Oc‘(Ox, 0) and focal length like an equation below:

xSfhfocalLengt /−= (1)

2)
)'(

(tan
2

1 ×
−

= −

hfocalLengt
OO

fov cc (2)

The aspect ratio we use principle point Ox /Oy division result.

And near and far distance value we set the 3000, 7000
respectively. The last is viewport transformation value we set
the image size like (0, 0, Ox × 2,Oy ×2).

All of the values for creation of the depth map are done, we
create the depth map corresponding for each image. Fig. 2 is
shown overall process of creation of the depth maps.

Fig. 2 The depth map generation process for each image

B. GPU Based Texture Mapping Technique
The key concept of the proposing texture mapping algorithm

is the process of the occlusion areas before do the texture
mapping using depth maps. For solving it, our texture mapping
consists of the creation of the texture acquisition candidate
array, comparison of the occlusion for selection of the texture
acquisition image and fetching the texture and mapping. It is
performed on the GPU fragment shader per pixel in real-time
per each frame.

The creation of the texture acquisition candidate array, the
first step of our texture mapping algorithm, consists of the
(camera number, angle) set which is used for comparison of the
occlusion on the next step. The angle is calculated by the dot
product between the GPU fragment shader’s normal vector and
for each camera direction vector. The camera direction vector is
calculated using extrinsic matrix using (3) equation. The set for
each camera is calculated, we sort the smallest angle value first
and store to the array. This process is important for
enhancement of the hit ratio for real-time performance on the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

90

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−

=

1000
3333231

2232221

1131211

TRrrr
TRrrr
TRrrr

ModelView
T

T

T

 (3)

GPU fragment shader that only some areas of the 3D model are
shown the occlusion from the cameras. Fig. 3 is shown the
process of the creation of the texture acquisition candidate
array.

Fig. 3 The process of creation of the texture acquisiton candidate array

The comparison of the occlusion is performed for

comparison of the occlusion area. The GPU fragment shader
performs the pixel value calculation. So this process is the
decision of the texture acquired image for the decision of the
pixel color. It uses camera number in the texture acquisition
candidate array sequentially, transformation matrices generated
above and depth maps. The GPU fragment shader provides the
vertex information of the output pixel. It is transformed using
each transformation matrices for calculation of the position of
the depth map and depth value. After the perspective projection
transformation, the depth value is calculated and after the
viewport transformation, the position of the depth map is
calculated. We compare the depth value and value fetched from
the depth map. If it is equal, the area is not occluded. Else this
area is an occlusion area using its camera number. In other
words, the image corresponding camera number is not acquired
the texture information and performs previous process using
next camera number in the texture acquisition candidate array.

The image number for acquisition of the texture is selected,
fetch the texture information of the image and return the texture
value by multiplying between the GPU fragment
shader’s vertex and the camera projection matrix
corresponding to selected image number. Fig. 4 is shown the

process of the selection of the image.

Fig. 4 Image selection process for texture acquisition

IV. EXPERIMENTS
We implement our algorithm in OpenGL and Cg Shader and

was run on an Intel i7 @ 2.93GHz, 8GB RAM, NVIDIA
GeForce GTX 480. We use the 3D model, twenty 1280 x 720
multi-view images and the camera parameters for each image.
Fig.7 shows the 3D model vertex and normal information made
from Fig. 8’s multi-view images.

Before do the real-time texture mapping on the GPU
fragment shader, we make the Fig. 7 depth map for comparison
of occlusion area using the camera parameter information for
each image.

Fig. 5 The 3D model vertex (Top) and normal vector (Bottom)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

91

Fig. 6 Twenty multi-view images for using our experiment

Fig. 7 The depth map generation results using corresponding camera

information and the 3D model

The Fig. 8 is our texture mapping result. It is shown that our

algorithm is well performed and the occluded area inside of the
thighs is possible.

But, some parts of the occlusion area (crotch areas in Fig. 8)
have not performed because the texture information of this area
has not in images. Our test model is made by automatic
voxel-carving algorithm, so some areas are unnecessary. Fig. 9
is shown the comparison of crotch areas between an image that
is suitable case for fetching texture information and our
mapping result.

As mentioned above, previous researches had shown the
texture chart concentration, self-intersection problems. Our
algorithm works per each pixel so it is possible to solve
fundamentally. But, it needs much calculation because out
texture mapping algorithm was run on the fragment shader and
performs per each frame. Nevertheless, our algorithm in our
test environment is shown about 60 FPS in real-time.

Fig. 8 The result of our GPU based texture mapping

Fig. 9 The crotch area comparison between our texture mapping

results(left top and bottom) and related images(right top and bottom)

V. CONCLUSION AND FUTURE WORK
We have proposed a texture mapping technique for 3D

models using multi-view images on the GPU fragment shader.
Previous problems of the proposed algorithm mentioned above
are shown in the texture map generation process. But we
conduct the texture mapping on the GPU directly without
generation of the texture map, the problems have not occurred
fundamentally.

However, because our algorithm operates on the GPU
fragment shader, it needs a calculation for texture mapping per
each frame. Despite of the much calculation, it has shown 60
frames per second in real-time performance on our
experimental environment.

But it still has a problem that some part of the texture mapped
seam area is unmatched because our algorithm is performed
using multi-view images. Our future work will solve the
unmatched mapping problem on the GPU fragment shader. [11]
proposes the solving method of this problems, but it just applies

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

92

using texture map. So we need another approach for our case.
And the resolution of our texture mapping result is low

because the 3D model size is big. Also we try to enhance the
texture mapping quality, called superresolution [12]. But
previously proposed algorithm performs on the image space,
we will try directly to it on the GPU in real-time.

ACKNOWLEDGMENT
This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No.2011-0015620).

This paper was supported by BK 21 Program in Soongsil
University.

REFERENCES
[1] K. N. Kutulakos, S. M. Seitz, “A Theory of shape by space carving”,

International Journal of Computer Vision, Vol.38, No.3, pp.199-218,
2000.

[2] B. Lévy, S. Petitjean, N. Ray, J. Maillot, "Least Square Conformal Maps
for Automatic Texture Atlas Generation", ACM Transactions on
Graphics, Vol.21, No.3, pp.362-371, 2002.

[3] A. Sheffer, E. de. Sturler, "Parameterization of Faceted Surface for
Meshing using Angle-Based Flattening", Engineering with Computers,
Vol.17, No.3, pp.326-337, 2001.

[4] A. Hubeli, M. Gross, “Multiresolution features extraction from
unstructured meshes”, In Proc. of IEEE Visualization Conf., 2001.

[5] A. Sheffer, B. Lévy, M. Mogilnitsky, A. Bogomyakov, "ABF++: Fast and
Robust Angle Based Flattening", ACM Transactions on Graphics,
Vol.24, No.2, pp.311-330, 2005.

[6] R. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy
3D Machine Vision Metrology using Off-the-shelf TV Camers and
Lenses", IEEE Journal of Robotics and Automation, Vol. RA-3, No.4,
1987.

[7] Z. Zhang, "A Flexible New Technique for Camera Calibration", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.22,
No.11, pp.1330-1334, 2000.

[8] J. Carranza, C. Theobalt, M. A. Magnor, H. P. Seidel, "Free-Viewpoint
Video of Human Actors", ACM Transactions on Graphics, Vol.22, No.3,
pp.569-577, 2003.

[9] M. Eisemann, B. D. Decker, M. Magnor, P. Bekaert, E. de. Aguiar, N.
Ahmed, C. Theobalt, A. Sellent, "Floating Textures", Proceedings of the
Eurographics, Vol.27, No.2, pp.409-418, 2008.

[10] A. Laurentini, “The Visual Hull Concept for Silhouette-Based Image
Understanding”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol.16, No.2, pp.150-162, 1994.

[11] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, Seamless Montage for Texturing
Models, Computer Grpahics Forum(Eurographics), Vol.23, No2,
pp.479-486, 2010.

[12] G. Bastian, C. Daniel, "Superresolution Texture Maps for Multiview
Reconstruction", IEEE International Conference on Computer Vision,
pp.1677-1684, 2009.

