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    Abstract— Clustering is the process of subdividing an input data 

set into a desired number of subgroups so that members of the same 

subgroup are similar and members of different subgroups have 

diverse properties.  Many heuristic algorithms have been applied to 

the clustering problem, which is known to be NP Hard.  Genetic 

algorithms have been used in a wide variety of fields to perform 

clustering, however, the technique normally has a long running time 

in terms of input set size.  This paper proposes an efficient genetic 

algorithm for clustering on very large data sets, especially on image 

data sets. The genetic algorithm uses the most time efficient 

techniques along with preprocessing of the input data set.  We test 

our algorithm on both artificial and real image data sets, both of 

which are of large size.  The experimental results show that our 

algorithm outperforms the k-means algorithm in terms of running 

time as well as the quality of the clustering.  

Keywords—Clustering, data mining, genetic algorithm, image 

data.

I. INTRODUCTION

HE task of grouping data points into clusters of "similar" 

items is a form of unsupervised learning that has 

application in many fields.  For instance, current techniques 

used for machine vision require processing of digital 

information obtained from pixels. A very important step in 

this digital information processing is to group the data in some 

fashion so that patterns can be recognized. Clustering can be 

used for this task.  In the medical field, clustering of data can 

be used to determine if a drug provides greater benefits to a 

certain group of patients.  Grouping of information is used in 

the engineering field to determine what factors lead to the 

failure of a component in a system.  And in marketing, data 

clustering can give a clearer picture of how to focus an 

advertising campaign to the proper audience. 

This paper will discuss the use of Genetic Algorithms 

(GAs) for the task of clustering data.  In particular, the 

application of GAs for clustering on very large data sets, such 

as image data sets, will be addressed.  The running time for 

most clustering GAs becomes quite large as the size of the 

input data set increases.  We propose an efficient genetic 

algorithm for clustering on very large image data sets. 
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The paper is organized as follows. In section II, we review 

the clustering problem and genetic algorithms.  In Section III, 

we detail our genetic algorithm for clustering on very large 

data sets.  Experimental results on both artificial and real 

image data sets are given in Section IV.  Section V concludes 

the paper.

II.CLUSTERING PROBLEM AND GENETIC ALGORITHMS

A. Clustering Problem 

The diversity of applications for clustering has lead to many 

problem definitions.  The objective of all clustering algorithms 

is to divide a set of data points into subsets so that the objects 

within a subset are similar to each other and objects that are in 

different subsets have diverse qualities [6], [8], [9].  The fact 

that there are many different methods used to quantify the 

similarity and diversity of data points leads to the many 

different variations of the problem.  For our research, we 

defined the clustering problem as the task of dividing an input 

data set into a desired number of subgroups so that the 

Euclidean distance between each data point and its 

corresponding cluster center is minimized.  This is a very 

common method of defining the clustering problem.  The total 

of the distances of each point to its cluster center is known as 

the total distance measurement of the clustering and is 

calculated as shown in (1). 
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In this formula K is the number of clusters, x represents a 

data point, Ck represents cluster k, mk represents the mean of 

the cluster k, and A is the total number of attributes for a data 

point.  This formula simply calculates the Euclidean distance 

of each point in the input data set to its cluster center.  

Minimizing the total distance measurement of a clustering 

leads to an optimal clustering solution.  This definition, like 

all clustering definitions, requires finding an optimal 

collection of subsets for a group of data points.  This class of 

problem is known to be NP-Hard. Work has been done to 

develop both approximate and exact solution algorithms for 

solving various clustering problems [1] but the solutions 

appear to be impractical, as either the number of data points in 

the input set or the number of clusters desired becomes large.   

As a result, there have been a wide variety of heuristic 

algorithms developed for the clustering problem.  These 

algorithms do not  
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Fig. 1.  Process of Genetic Algorithms 

guarantee any quality in the solutions they find but they do 

run in polynomial time with respect to the number of objects 

in the input data set and the number of desired clusters. 

B. Genetic Algorithms 

Evolutionary Computation (EC) is a field of computer 

science that uses biological processes as a model for solving 

computer-based problems [2].  Genetic Algorithms (GAs), 

first proposed by John Holland in the 1960s, are a category of 

EC that use concepts derived from evolution. Proper 

application of a GA finds a balance between exploration and 

exploitation of a given optimization problem's search space. A 

good overview of how to design a GA is given in [11].  Fig. 1 

shows the structure that is used by GAs.  First, a population of 

chromosomes is created an initialized.  These chromosomes 

each contain a collection of genes and each gene has a value 

(called an allele).  A single chromosome is an encoded version 

of a solution to the problem that the GA is attempting to 

optimize. The GA performs exploration/exploitation of the 

problems search space by evolving the population of 

chromosomes through a series of generations.  During each 

generation of the GA, parent chromosomes are selected from 

the population.  These parent chromosomes are combined to 

form children chromosomes and then the child chromosomes 

are mutated.  In a generational type GA, an entirely new 

population for each generation is formed by creating multiple 

child chromosomes.  For a steady state GA, the child 

chromosomes are used to replace members of the current 

population but a new population is not formed during each 

generation.   

A very important step in the GA is the selection of parents 

for the next generation of chromosomes.  In order to provide a 

guided search, which is appropriate for the given optimization 

problem, the selection of parents needs to be based on the 

quality of the solution that their chromosomes represent.  A 

property called fitness is used to quantify the quality of a 

given solution and a fitness function is used to calculate the 

fitness value of each chromosome in a given population 

before parent selection is made.  A variety of different 

selection methods are used by GAs but they all use the 

principle that higher fit chromosomes are more likely to be 

chosen as parents.  This fitness selection provides the GA 

direction for the search of an optimization problems search 

space.  

III. A GENETIC ALGORITHM FOR CLUSTERING ON IMAGE 

DATA

A. Genetic Algorithms for Clustering Data 

Using a GA to solve data clustering problems is not a new 

idea.  GAs have been successfully implemented for various 

clustering problems using different chromosome encoding 

schemes and fitness functions. In [12] a GA is used to solve 

the clustering problem for a data set of geographical data.  

Each data point in the input data set is assigned a unique 

integer value from 1 to n, where n is the total number of data 

points in the input set.  The chromosomes in a population 

contain one gene for each data point that is to be clustered and 

the allele values of the genes designate the assignment of all n 

points to the desired number of clusters.  The total length of a 

chromosome is n.  The fitness function used in the GA mimics 

the objective function of the k-means algorithm, which is 

shown in (1).   The algorithm described in [3] uses a multi-

step procedure. The authors refer to this procedure as a semi-

supervised form of learning.  A GA performs clustering on an 

input set of data objects so that supervised learning can be 

applied to predict class labels in the second step. The input for 

the GA is a set of data objects that have both numeric and 

label attributes and a desired number of clusters. The goal of 

the GA is to produce clusters of data objects that minimize 

cluster dispersion and are as pure as possible in relation to the 

label attributes. The GA uses a two component fitness 

function where the first component measures the within 
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cluster variance using a distance metric and the second 

component measures the similarity of the labeled attributes of 

the data objects using the GINI index.  The encoding in [3] 

uses gene values to define the location of the cluster centers. 

An alternate encoding of chromosomes is used in [5].  This 

encoding uses medoid-based centers in which k input data 

points are chosen to be the centers of the corresponding k 

clusters.  Each data point is assigned a unique number.  The 

data point numbers are used in the chromosomes to designate 

the medoids for the encoded clustering.  A novel idea of using 

variable length chromosomes is presented in [10].  The fitness 

function used is very similar to equation (1) and the encoding 

of the chromosome is the same as [12] where there are two 

genes to represent each cluster center in the 2D space. 

B. A Genetic Algorithm for Clustering on Image Data 

All of the algorithms discussed above become impractical 

as the input data set becomes very large. The encoding scheme 

of [12] requires one gene in the chromosome for each data 

point in the data set.  Obviously, this encoding scheme cannot 

be used for very large data sets because the memory 

requirements to maintain a population of chromosomes would 

be restrictive.  The long running times of each of the 

clustering GAs discussed above makes its application to very 

large data sets unrealistic. If the input data set contains one 

million objects with six attributes and a GA run involves 

50,000 fitness evaluations, which is not uncommon, then there 

will be on the order of 3 1011 (1,000,000 50,000 6) 

calculations executed while performing the clustering task.   

To solve this problem, we need to use efficient techniques, 

such as efficient encoding techniques, in the GA process. In 

addition, preprocessing the input data set can be a possible 

way to significantly reduce the execution time of clustering 

GAs for very large data sets.  Preprocessing has been applied 

to clustering algorithms, other than GAs.  The preprocessing 

results in a smaller data set can then be used as representation 

of the full input data set. Two ways of preprocessing are 

sampling and summarizing.  Sampling of the input data set is 

straightforward. Summarizing the input data is a more 

complicated subject.  Various algorithms have been devised to 

perform the task of summarizing data sets.  Reference [4] 

provides a grid-based method of replacing a region of space 

containing a large number of points with a smaller number of 

representative points. The representative points contain 

attributes that summarize information about the whole set of 

points in the region of space.   

The clustering algorithm that we designed for application 

on very large data sets, such as image data sets, is discussed 

below.  We designed our GA with the intent of making it as 

fast as possible by choosing genetic algorithm techniques that 

are optimal in terms of quickness of execution.  Our algorithm 

also uses data set preprocessing to reduce the running time.  

1)  Algorithm 

The input to the clustering algorithm is a data set along with 

the desired number of clusters. The goal of the algorithm is to 

divide the input data set into the desired number of clusters so 

that the Euclidean distance between each data point and its 

corresponding cluster center is minimized.   

A steady state GA was used.  This steady state GA was 

chosen over the generational type of GA because in 

preliminary tests it was faster. The GA starts with an initial 

population of chromosomes and then the population is 

evolved through generations. During each generation two 

parents are selected and two child chromosomes are created 

using a recombination genetic operator. Each child is mutated 

and the most fit child is identified and used for replacement 

operator.  The number of chromosomes in the population stays 

constant as the population is evolved through generations.  

Evolution is continued until a termination condition, in our 

case a given number of generations, is met.  

The encoding technique used in our GA is similar to the 

one described in [3].  Fig. 2 illustrates how a sample gene is 

used to encode a clustering for a data set containing data 

points with two numeric attributes. The circles denote data 

points and the x’s indicate the cluster centers that are specified 

in the encoded chromosome.  In this encoding technique the 

cluster centers are encoded into the chromosome and the 

length of each chromosome is proportional to the number of 

attributes of a data point and also the number of desired 

clusters. As long as the desired number of clusters times the 

number of attributes is much less than the total number of 

input data points (which is normally true), this type of 

encoding is scalable for use with a very large data set. It is 

also a simple encoding technique that allows for quick 

decoding during fitness evaluation.  For the encoding 

technique we used genes with real values, an alternative was 

to use binary values. The topic of using real values or binary 

equivalent representations is discussed in [7] where it is 

concluded that using real allele values in the genes resulted in 

a faster algorithm with nearly the same quality of solutions.  

We therefore choose to use chromosomes with real valued 

alleles.

As many as 50,000 fitness evaluations are common during 

one run of a GA.  The impact that the fitness function has on 

the running time of the GA can easily be seen. The 

complexity of the fitness function, in terms of the number of 

calculations, must be kept very simple for any GA that is to be 

used to perform clustering on a very large data set.  The 

fitness function we used for the GA is the same as the one 

shown in (1).  Since the objective function of the k-means 

clustering algorithm is also equal to the equation in (1), it is 

easy to compare the results of the resulting GA to the k-means 

algorithm.   

With the fitness function and encoding chosen, the next 

step was to specify the genetic operators for the GA. Roulette 

wheel selection was used to determine each parent for 

recombination. For recombination, one-point crossover with 

two parents and two offspring was used. Each allele in each 

offspring chromosome gene was mutated with probability of 

7%.  The mutation of an allele was accomplished by randomly 

picking a value from a normal distribution with mean of zero 

and  standard  deviation  equal to MAX/40, where MAX is  
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Fig. 2. Encoding in Genetic Algorithms 

maximum attribute value of any data point in the original data 

set.  The mutated value was then checked to make sure that it 

was no larger than MAX or smaller than MIN, where MIN is 

the smallest attribute value for any data point.  If the value 

was greater than MAX or less than MIN the mutation was 

cancelled.

2) Preprocessing of Input Data Set 

A very large input data set can be preprocessed to make a 

representative set that can be used by the algorithm for better 

time and space efficiency.  We implemented two alternate 

preprocessing methods for our clustering algorithm.  The first 

preprocessing method used random sampling to obtain a data 

set with fewer points.  This reduced data set was then used in 

evaluating the fitness of the chromosomes. The second 

preprocessing method used summarization of the input data 

set and is based on the work presented in reference [4].  For 

this method, a grid is first constructed and then the input data 

set is applied to this grid. A single point location and 

corresponding weight is calculated for each region defined by 

the grid. The location of the representative point is chosen as 

the mean value of all the points in the region and the weight of 

the representative point is equal to the number of points that it 

replaces.   

   

                                                  

                                                                 

                              

                               

                                                                           

                                                                      

                             

                                        

                                                                           

                                                                                           

Fig. 3. Summarization of input data  

Fig. 3 shows an example summarization of an input data set 

where each data point contains two attributes.  The circles 

represent the data points and the Xs denote the representative 

points for each of the grid regions.  The number in the 

parenthesis indicates the weight of the representative point for 

this example.  A region of the grid with no points from the 

input data set has no representative data point. This grid 

process is extendable to input data sets with data points that 

have n attributes by using grid regions containing n 

dimensions. 

IV. PERFORMANCE ANALYSIS

A. Input Data Sets  

To test the performance of our GA, artificial as well as real 

image data sets were used.  Both the artificial data sets and 

real data sets contain six numerical attributes with values 

between 0 and 255.  The artificially generated data sets were 

generated using a method of generation that is a modification 

to the one used in [5]. A data set contains n points with the 

points centered around k cluster centers.  The k cluster centers 

are first determined by randomly and uniformly choosing each 

of the six attributes values from a range of 0 to 255.  The 

minimum distance between any two cluster centers is then 

calculated, call this value D.  To generate a data point a cluster 

center is chosen randomly.  This cluster center is then used to 

calculate the six attribute values for the data point.  Each 

attribute value for the data point is calculated by taking the 

attribute value of a cluster center and adding an offset to it.  

The offset is chosen randomly from a normal distribution with 

mean of 0 and standard deviation of D/r, where r is a variable 

that can be used to specify the tightness of the clusters.  This 

process is repeated until the data set contains n data points and 

k clusters.

Each real data set contains a group of aerial photographs 

and associated ground data. The clustering problem is to 

group the pixels based on the attribute (also called band) 

values in those images. For example, Fig. 4 is a set of four 

X(4

)

X(3

)

X(9)

X(2

)

X(7

)

X(3

)

X(4

)

X(5

)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1431

images about the Oakes area in North Dakota in 1997. The 

first image is an aerial photograph containing three bands, i.e. 

red, green and blue. The other three images contain 

synchronized soil moisture, nitrate, and yield values 

respectively.  Each image is of the size 1320 1320. The 

35MB file containing 1,700,000 records and 6 attributes is 

available at: http://www.midas.cs.ndsu. 

nodak.edu/~ding/images. 

      

           (a) TIFF image                      (b) Yield Map 

          

         (c) Moisture Map                       (d) Nitrate Map 

Fig. 4. A Real Image Data Set 

B. Results 

We ran several tests to evaluate the performance of our 

clustering GA on very large image data sets. All of the tests 

were conducted on a PC with processor speed of 2.5 GHz and 

512 MB of RAM running windows XP.  The clustering 

quality and running time was determined for the clustering 

GA for a variety of input data sets and desired cluster sizes.  

The quality of the clustering was calculated as the sum of the 

Euclidean distance of each input data point to its 

corresponding cluster center.  A lower distance measurement 

indicates a better quality clustering. 

We tested our clustering GA using both forms of data 

preprocessing.  For the clustering GA with summarization 

preprocessing (GA-SUM) the processed data set used to 

evaluate the fitness function was obtained using a grid system 

as previously explained.  The grid was chosen such that each 

attribution range was divided into seven parts.  A grid region 

was represented by a six-dimension cube, one dimension for 

each attribute of a data point in the data set.  A representative 

point and corresponding weight was calculated for each 

region.  For the clustering GA with random preprocessing 

(GA-RAN) the fitness of each chromosome was calculated by 

using a random sample of the input function.  For comparison 

purposes the size of the sample set for each input data set was 

chosen so that the running times of the GA-SUM and GA-

RAN were about equal.  This was done in an attempt to see if 

one preprocessing method would provide a better quality of 

clustering given a set amount of time. 

The GA-SUM and GA-RAN were tested using a 

combination of different input data sets.  The k-means 

algorithm was also tested on the same input data sets to 

provide a performance benchmark.  We implemented the k-

means algorithm using open source software from the 

University of Tokyo, Institute of Medical Science, Human 

Genome Center (http://bonsai.ims.u-tokyo.ac.jp/).  

Table I provides a summary of the results of the tests that 

we ran on the artificially generated data sets.  For the artificial 

data set, calculation of the total distance of all the data points 

from their actual center is possible because the number of 

cluster centers and their location are known.  This calculation 

provides a good benchmark for evaluation of our GA.  The 

total distance of the k-means algorithm also provides a good 

benchmark for evaluating the quality of solutions found and is 

included in Table I. Each algorithm was run through 100 trials 

for a given input set and the average was computed for the 

running time and distance measurement. 

TABLE I

RESULTS ON ARTIFICIAL DATA SET

Input Set Algorithm 
Running 

Time (sec) 

Distance  

Measurement* 

GA** 312 6.59  106

GA-RAN 3 1.67  107

GA-SUM 2 4.59   107

k-means .38 2.27  107

5 Centers 

10000 

Points

Actual Centers - 8.15  105

GA-RAN 22 1.23  108

GA-SUM 20 1.55  108

k-means 20 1.84  108

7 Centers 

100000 Points

Actual Centers - 2.81  107

GA-RAN 49 5.15  108

GA-SUM 50 6.07  108

k-means 98 8.20  108

10 Centers 

250000 

 Points 

Actual Centers - 9.05  107

     * a smaller distance measurement indicates a better solution 

     ** the GA with no preprocessing was run for only 10 trials 

Table II shows the results obtained from running the GA-

RAN, GA-SUM and k-means algorithm on the real image data 

set.  For this real image data set there is no notion of actual 

data cluster centers used to generate the data.  The goal of 

running an algorithm on real image data sets is to choose a 

number of cluster centers to see if interesting and meaningful 

patterns can be obtained.  Again, each algorithm was run 

through 100 trials on the data set with the average of the 

running time and distance measurement computed.  The GA-
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SUM and the GA-RAN both found better quality clusterings 

faster than the k-means algorithm for the two larger artificial 

data sets.  They also outperformed the k-means algorithm for 

all cluster values on the real image data set.  The test results 

indicate that the GA-RAN slightly outperforms the GA-SUM 

in terms of the quality of clustering that are found.  For the 

artificial data set containing 10,000 data points, the GA with 

no input set preprocessing was run for 10 trials instead of 100 

trials because of the longer running time.  The result shows 

that some type of preprocessing is needed because the running 

time for the GA alone becomes very long as the input set size 

becomes large. 

TABLE II 

RESULTS ON REAL IMAGE DATA SET

Cluster 

Centers 
Algorithm 

Running

Time (sec) 

Distance 

Measurement 

GA-RAN 89 2.27  109

GA-SUM 91 2.87  1095

K-Means 193 3.02  109

GA-RAN 133 2.25  109

GA-SUM 123 2.25  1097

K-Means 385 2.35   109

GA-RAN 241 1.72  109

GA-SUM 226 1.74  10910

K-Means 524 1.85  109

V.CONCLUSIONS

Clustering is an important task with applications in many 

fields.  Heuristic algorithms are used for this task in an 

attempt to provide acceptable results, both in terms of solution 

quality and running time, because all of the non-trivial 

clustering problem variations are NP-Hard.  GAs have been 

applied to the clustering problem for many applications with 

some success as described in section III.  For clustering on 

very large data sets, such as image data sets, the size of the 

associated databases makes it necessary to modify traditional 

GAs because of their slow running times.  In this paper we 

proposed a steady GA algorithm with efficient encoding 

technique and GA operators along with input set 

preprocessing. Experimental results were promising.  For 

input data sets with 100,000 points and larger, our GA 

provided better quality solutions faster than the k-means 

algorithm. 

The results of our tests indicate that, given about the same 

amount of time to run, the GA-RAN provides slightly better 

quality solutions than the GA-SUM.  The input data set 

characteristics, such as number of outliner points and tightness 

of data grouping determine which preprocessing technique is 

better. The summary preprocessing method that we 

implemented could be refined to prevent the creation of 

representative points for regions that contained less than a 

certain minimum threshold of points.  This refinement would 

remove the negative effect that outlier points have on the 

clustering quality.  It would also make the GA-SUM run faster 

because there would be fewer points in the processed data set. 
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