
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1427

 Abstract— Clustering is the process of subdividing an input data

set into a desired number of subgroups so that members of the same

subgroup are similar and members of different subgroups have

diverse properties. Many heuristic algorithms have been applied to

the clustering problem, which is known to be NP Hard. Genetic

algorithms have been used in a wide variety of fields to perform

clustering, however, the technique normally has a long running time

in terms of input set size. This paper proposes an efficient genetic

algorithm for clustering on very large data sets, especially on image

data sets. The genetic algorithm uses the most time efficient

techniques along with preprocessing of the input data set. We test

our algorithm on both artificial and real image data sets, both of

which are of large size. The experimental results show that our

algorithm outperforms the k-means algorithm in terms of running

time as well as the quality of the clustering.

Keywords—Clustering, data mining, genetic algorithm, image

data.

I. INTRODUCTION

HE task of grouping data points into clusters of "similar"

items is a form of unsupervised learning that has

application in many fields. For instance, current techniques

used for machine vision require processing of digital

information obtained from pixels. A very important step in

this digital information processing is to group the data in some

fashion so that patterns can be recognized. Clustering can be

used for this task. In the medical field, clustering of data can

be used to determine if a drug provides greater benefits to a

certain group of patients. Grouping of information is used in

the engineering field to determine what factors lead to the

failure of a component in a system. And in marketing, data

clustering can give a clearer picture of how to focus an

advertising campaign to the proper audience.

This paper will discuss the use of Genetic Algorithms

(GAs) for the task of clustering data. In particular, the

application of GAs for clustering on very large data sets, such

as image data sets, will be addressed. The running time for

most clustering GAs becomes quite large as the size of the

input data set increases. We propose an efficient genetic

algorithm for clustering on very large image data sets.

Manuscript received August 12, 2004.

Q. Ding is with the Pennsylvania State University – Harrisburg,

Middletown, PA 17057 USA (corresponding author to provide phone: 717-

948-6636; fax: 717-948-6352; e-mail: qding@psu.edu).

J. Gasvoda is with the Pennsylvania State University – Harrisburg,

Middletown, PA 17057 USA (e-mail: jmg289@psu.edu).

The paper is organized as follows. In section II, we review

the clustering problem and genetic algorithms. In Section III,

we detail our genetic algorithm for clustering on very large

data sets. Experimental results on both artificial and real

image data sets are given in Section IV. Section V concludes

the paper.

II.CLUSTERING PROBLEM AND GENETIC ALGORITHMS

A. Clustering Problem

The diversity of applications for clustering has lead to many

problem definitions. The objective of all clustering algorithms

is to divide a set of data points into subsets so that the objects

within a subset are similar to each other and objects that are in

different subsets have diverse qualities [6], [8], [9]. The fact

that there are many different methods used to quantify the

similarity and diversity of data points leads to the many

different variations of the problem. For our research, we

defined the clustering problem as the task of dividing an input

data set into a desired number of subgroups so that the

Euclidean distance between each data point and its

corresponding cluster center is minimized. This is a very

common method of defining the clustering problem. The total

of the distances of each point to its cluster center is known as

the total distance measurement of the clustering and is

calculated as shown in (1).

K

k Ckx

A

a
aa mkxE

1 1

2)((1)

In this formula K is the number of clusters, x represents a

data point, Ck represents cluster k, mk represents the mean of

the cluster k, and A is the total number of attributes for a data

point. This formula simply calculates the Euclidean distance

of each point in the input data set to its cluster center.

Minimizing the total distance measurement of a clustering

leads to an optimal clustering solution. This definition, like

all clustering definitions, requires finding an optimal

collection of subsets for a group of data points. This class of

problem is known to be NP-Hard. Work has been done to

develop both approximate and exact solution algorithms for

solving various clustering problems [1] but the solutions

appear to be impractical, as either the number of data points in

the input set or the number of clusters desired becomes large.

As a result, there have been a wide variety of heuristic

algorithms developed for the clustering problem. These

algorithms do not

A Genetic Algorithm for Clustering on

Image Data

Qin Ding and Jim Gasvoda

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1428

Fig. 1. Process of Genetic Algorithms

guarantee any quality in the solutions they find but they do

run in polynomial time with respect to the number of objects

in the input data set and the number of desired clusters.

B. Genetic Algorithms

Evolutionary Computation (EC) is a field of computer

science that uses biological processes as a model for solving

computer-based problems [2]. Genetic Algorithms (GAs),

first proposed by John Holland in the 1960s, are a category of

EC that use concepts derived from evolution. Proper

application of a GA finds a balance between exploration and

exploitation of a given optimization problem's search space. A

good overview of how to design a GA is given in [11]. Fig. 1

shows the structure that is used by GAs. First, a population of

chromosomes is created an initialized. These chromosomes

each contain a collection of genes and each gene has a value

(called an allele). A single chromosome is an encoded version

of a solution to the problem that the GA is attempting to

optimize. The GA performs exploration/exploitation of the

problems search space by evolving the population of

chromosomes through a series of generations. During each

generation of the GA, parent chromosomes are selected from

the population. These parent chromosomes are combined to

form children chromosomes and then the child chromosomes

are mutated. In a generational type GA, an entirely new

population for each generation is formed by creating multiple

child chromosomes. For a steady state GA, the child

chromosomes are used to replace members of the current

population but a new population is not formed during each

generation.

A very important step in the GA is the selection of parents

for the next generation of chromosomes. In order to provide a

guided search, which is appropriate for the given optimization

problem, the selection of parents needs to be based on the

quality of the solution that their chromosomes represent. A

property called fitness is used to quantify the quality of a

given solution and a fitness function is used to calculate the

fitness value of each chromosome in a given population

before parent selection is made. A variety of different

selection methods are used by GAs but they all use the

principle that higher fit chromosomes are more likely to be

chosen as parents. This fitness selection provides the GA

direction for the search of an optimization problems search

space.

III. A GENETIC ALGORITHM FOR CLUSTERING ON IMAGE

DATA

A. Genetic Algorithms for Clustering Data

Using a GA to solve data clustering problems is not a new

idea. GAs have been successfully implemented for various

clustering problems using different chromosome encoding

schemes and fitness functions. In [12] a GA is used to solve

the clustering problem for a data set of geographical data.

Each data point in the input data set is assigned a unique

integer value from 1 to n, where n is the total number of data

points in the input set. The chromosomes in a population

contain one gene for each data point that is to be clustered and

the allele values of the genes designate the assignment of all n

points to the desired number of clusters. The total length of a

chromosome is n. The fitness function used in the GA mimics

the objective function of the k-means algorithm, which is

shown in (1). The algorithm described in [3] uses a multi-

step procedure. The authors refer to this procedure as a semi-

supervised form of learning. A GA performs clustering on an

input set of data objects so that supervised learning can be

applied to predict class labels in the second step. The input for

the GA is a set of data objects that have both numeric and

label attributes and a desired number of clusters. The goal of

the GA is to produce clusters of data objects that minimize

cluster dispersion and are as pure as possible in relation to the

label attributes. The GA uses a two component fitness

function where the first component measures the within

 Initialize a

 population
 Evaluate the fitness

 of population

 Select

 parents

 Produce

 offspring

(recombination)

 Mutate

 offspring

Termination

 condition

met

 Output

solution represented

by best chromosome

 no

 yes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1429

cluster variance using a distance metric and the second

component measures the similarity of the labeled attributes of

the data objects using the GINI index. The encoding in [3]

uses gene values to define the location of the cluster centers.

An alternate encoding of chromosomes is used in [5]. This

encoding uses medoid-based centers in which k input data

points are chosen to be the centers of the corresponding k

clusters. Each data point is assigned a unique number. The

data point numbers are used in the chromosomes to designate

the medoids for the encoded clustering. A novel idea of using

variable length chromosomes is presented in [10]. The fitness

function used is very similar to equation (1) and the encoding

of the chromosome is the same as [12] where there are two

genes to represent each cluster center in the 2D space.

B. A Genetic Algorithm for Clustering on Image Data

All of the algorithms discussed above become impractical

as the input data set becomes very large. The encoding scheme

of [12] requires one gene in the chromosome for each data

point in the data set. Obviously, this encoding scheme cannot

be used for very large data sets because the memory

requirements to maintain a population of chromosomes would

be restrictive. The long running times of each of the

clustering GAs discussed above makes its application to very

large data sets unrealistic. If the input data set contains one

million objects with six attributes and a GA run involves

50,000 fitness evaluations, which is not uncommon, then there

will be on the order of 3 1011 (1,000,000 50,000 6)

calculations executed while performing the clustering task.

To solve this problem, we need to use efficient techniques,

such as efficient encoding techniques, in the GA process. In

addition, preprocessing the input data set can be a possible

way to significantly reduce the execution time of clustering

GAs for very large data sets. Preprocessing has been applied

to clustering algorithms, other than GAs. The preprocessing

results in a smaller data set can then be used as representation

of the full input data set. Two ways of preprocessing are

sampling and summarizing. Sampling of the input data set is

straightforward. Summarizing the input data is a more

complicated subject. Various algorithms have been devised to

perform the task of summarizing data sets. Reference [4]

provides a grid-based method of replacing a region of space

containing a large number of points with a smaller number of

representative points. The representative points contain

attributes that summarize information about the whole set of

points in the region of space.

The clustering algorithm that we designed for application

on very large data sets, such as image data sets, is discussed

below. We designed our GA with the intent of making it as

fast as possible by choosing genetic algorithm techniques that

are optimal in terms of quickness of execution. Our algorithm

also uses data set preprocessing to reduce the running time.

1) Algorithm

The input to the clustering algorithm is a data set along with

the desired number of clusters. The goal of the algorithm is to

divide the input data set into the desired number of clusters so

that the Euclidean distance between each data point and its

corresponding cluster center is minimized.

A steady state GA was used. This steady state GA was

chosen over the generational type of GA because in

preliminary tests it was faster. The GA starts with an initial

population of chromosomes and then the population is

evolved through generations. During each generation two

parents are selected and two child chromosomes are created

using a recombination genetic operator. Each child is mutated

and the most fit child is identified and used for replacement

operator. The number of chromosomes in the population stays

constant as the population is evolved through generations.

Evolution is continued until a termination condition, in our

case a given number of generations, is met.

The encoding technique used in our GA is similar to the

one described in [3]. Fig. 2 illustrates how a sample gene is

used to encode a clustering for a data set containing data

points with two numeric attributes. The circles denote data

points and the x’s indicate the cluster centers that are specified

in the encoded chromosome. In this encoding technique the

cluster centers are encoded into the chromosome and the

length of each chromosome is proportional to the number of

attributes of a data point and also the number of desired

clusters. As long as the desired number of clusters times the

number of attributes is much less than the total number of

input data points (which is normally true), this type of

encoding is scalable for use with a very large data set. It is

also a simple encoding technique that allows for quick

decoding during fitness evaluation. For the encoding

technique we used genes with real values, an alternative was

to use binary values. The topic of using real values or binary

equivalent representations is discussed in [7] where it is

concluded that using real allele values in the genes resulted in

a faster algorithm with nearly the same quality of solutions.

We therefore choose to use chromosomes with real valued

alleles.

As many as 50,000 fitness evaluations are common during

one run of a GA. The impact that the fitness function has on

the running time of the GA can easily be seen. The

complexity of the fitness function, in terms of the number of

calculations, must be kept very simple for any GA that is to be

used to perform clustering on a very large data set. The

fitness function we used for the GA is the same as the one

shown in (1). Since the objective function of the k-means

clustering algorithm is also equal to the equation in (1), it is

easy to compare the results of the resulting GA to the k-means

algorithm.

With the fitness function and encoding chosen, the next

step was to specify the genetic operators for the GA. Roulette

wheel selection was used to determine each parent for

recombination. For recombination, one-point crossover with

two parents and two offspring was used. Each allele in each

offspring chromosome gene was mutated with probability of

7%. The mutation of an allele was accomplished by randomly

picking a value from a normal distribution with mean of zero

and standard deviation equal to MAX/40, where MAX is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1430

y

the

 X (34.44, 40.22)

 34.44 40.22 48.42 6.88 24.40 7.99

 X (24.40, 7.99)

 X (48.42, 6.88)

 x

Fig. 2. Encoding in Genetic Algorithms

maximum attribute value of any data point in the original data

set. The mutated value was then checked to make sure that it

was no larger than MAX or smaller than MIN, where MIN is

the smallest attribute value for any data point. If the value

was greater than MAX or less than MIN the mutation was

cancelled.

2) Preprocessing of Input Data Set

A very large input data set can be preprocessed to make a

representative set that can be used by the algorithm for better

time and space efficiency. We implemented two alternate

preprocessing methods for our clustering algorithm. The first

preprocessing method used random sampling to obtain a data

set with fewer points. This reduced data set was then used in

evaluating the fitness of the chromosomes. The second

preprocessing method used summarization of the input data

set and is based on the work presented in reference [4]. For

this method, a grid is first constructed and then the input data

set is applied to this grid. A single point location and

corresponding weight is calculated for each region defined by

the grid. The location of the representative point is chosen as

the mean value of all the points in the region and the weight of

the representative point is equal to the number of points that it

replaces.

Fig. 3. Summarization of input data

Fig. 3 shows an example summarization of an input data set

where each data point contains two attributes. The circles

represent the data points and the Xs denote the representative

points for each of the grid regions. The number in the

parenthesis indicates the weight of the representative point for

this example. A region of the grid with no points from the

input data set has no representative data point. This grid

process is extendable to input data sets with data points that

have n attributes by using grid regions containing n

dimensions.

IV. PERFORMANCE ANALYSIS

A. Input Data Sets

To test the performance of our GA, artificial as well as real

image data sets were used. Both the artificial data sets and

real data sets contain six numerical attributes with values

between 0 and 255. The artificially generated data sets were

generated using a method of generation that is a modification

to the one used in [5]. A data set contains n points with the

points centered around k cluster centers. The k cluster centers

are first determined by randomly and uniformly choosing each

of the six attributes values from a range of 0 to 255. The

minimum distance between any two cluster centers is then

calculated, call this value D. To generate a data point a cluster

center is chosen randomly. This cluster center is then used to

calculate the six attribute values for the data point. Each

attribute value for the data point is calculated by taking the

attribute value of a cluster center and adding an offset to it.

The offset is chosen randomly from a normal distribution with

mean of 0 and standard deviation of D/r, where r is a variable

that can be used to specify the tightness of the clusters. This

process is repeated until the data set contains n data points and

k clusters.

Each real data set contains a group of aerial photographs

and associated ground data. The clustering problem is to

group the pixels based on the attribute (also called band)

values in those images. For example, Fig. 4 is a set of four

X(4

)

X(3

)

X(9)

X(2

)

X(7

)

X(3

)

X(4

)

X(5

)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1431

images about the Oakes area in North Dakota in 1997. The

first image is an aerial photograph containing three bands, i.e.

red, green and blue. The other three images contain

synchronized soil moisture, nitrate, and yield values

respectively. Each image is of the size 1320 1320. The

35MB file containing 1,700,000 records and 6 attributes is

available at: http://www.midas.cs.ndsu.

nodak.edu/~ding/images.

 (a) TIFF image (b) Yield Map

 (c) Moisture Map (d) Nitrate Map

Fig. 4. A Real Image Data Set

B. Results

We ran several tests to evaluate the performance of our

clustering GA on very large image data sets. All of the tests

were conducted on a PC with processor speed of 2.5 GHz and

512 MB of RAM running windows XP. The clustering

quality and running time was determined for the clustering

GA for a variety of input data sets and desired cluster sizes.

The quality of the clustering was calculated as the sum of the

Euclidean distance of each input data point to its

corresponding cluster center. A lower distance measurement

indicates a better quality clustering.

We tested our clustering GA using both forms of data

preprocessing. For the clustering GA with summarization

preprocessing (GA-SUM) the processed data set used to

evaluate the fitness function was obtained using a grid system

as previously explained. The grid was chosen such that each

attribution range was divided into seven parts. A grid region

was represented by a six-dimension cube, one dimension for

each attribute of a data point in the data set. A representative

point and corresponding weight was calculated for each

region. For the clustering GA with random preprocessing

(GA-RAN) the fitness of each chromosome was calculated by

using a random sample of the input function. For comparison

purposes the size of the sample set for each input data set was

chosen so that the running times of the GA-SUM and GA-

RAN were about equal. This was done in an attempt to see if

one preprocessing method would provide a better quality of

clustering given a set amount of time.

The GA-SUM and GA-RAN were tested using a

combination of different input data sets. The k-means

algorithm was also tested on the same input data sets to

provide a performance benchmark. We implemented the k-

means algorithm using open source software from the

University of Tokyo, Institute of Medical Science, Human

Genome Center (http://bonsai.ims.u-tokyo.ac.jp/).

Table I provides a summary of the results of the tests that

we ran on the artificially generated data sets. For the artificial

data set, calculation of the total distance of all the data points

from their actual center is possible because the number of

cluster centers and their location are known. This calculation

provides a good benchmark for evaluation of our GA. The

total distance of the k-means algorithm also provides a good

benchmark for evaluating the quality of solutions found and is

included in Table I. Each algorithm was run through 100 trials

for a given input set and the average was computed for the

running time and distance measurement.

TABLE I

RESULTS ON ARTIFICIAL DATA SET

Input Set Algorithm
Running

Time (sec)

Distance

Measurement*

GA** 312 6.59 106

GA-RAN 3 1.67 107

GA-SUM 2 4.59 107

k-means .38 2.27 107

5 Centers

10000

Points

Actual Centers - 8.15 105

GA-RAN 22 1.23 108

GA-SUM 20 1.55 108

k-means 20 1.84 108

7 Centers

100000 Points

Actual Centers - 2.81 107

GA-RAN 49 5.15 108

GA-SUM 50 6.07 108

k-means 98 8.20 108

10 Centers

250000

 Points

Actual Centers - 9.05 107

 * a smaller distance measurement indicates a better solution

 ** the GA with no preprocessing was run for only 10 trials

Table II shows the results obtained from running the GA-

RAN, GA-SUM and k-means algorithm on the real image data

set. For this real image data set there is no notion of actual

data cluster centers used to generate the data. The goal of

running an algorithm on real image data sets is to choose a

number of cluster centers to see if interesting and meaningful

patterns can be obtained. Again, each algorithm was run

through 100 trials on the data set with the average of the

running time and distance measurement computed. The GA-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1432

SUM and the GA-RAN both found better quality clusterings

faster than the k-means algorithm for the two larger artificial

data sets. They also outperformed the k-means algorithm for

all cluster values on the real image data set. The test results

indicate that the GA-RAN slightly outperforms the GA-SUM

in terms of the quality of clustering that are found. For the

artificial data set containing 10,000 data points, the GA with

no input set preprocessing was run for 10 trials instead of 100

trials because of the longer running time. The result shows

that some type of preprocessing is needed because the running

time for the GA alone becomes very long as the input set size

becomes large.

TABLE II

RESULTS ON REAL IMAGE DATA SET

Cluster

Centers
Algorithm

Running

Time (sec)

Distance

Measurement

GA-RAN 89 2.27 109

GA-SUM 91 2.87 1095

K-Means 193 3.02 109

GA-RAN 133 2.25 109

GA-SUM 123 2.25 1097

K-Means 385 2.35 109

GA-RAN 241 1.72 109

GA-SUM 226 1.74 10910

K-Means 524 1.85 109

V.CONCLUSIONS

Clustering is an important task with applications in many

fields. Heuristic algorithms are used for this task in an

attempt to provide acceptable results, both in terms of solution

quality and running time, because all of the non-trivial

clustering problem variations are NP-Hard. GAs have been

applied to the clustering problem for many applications with

some success as described in section III. For clustering on

very large data sets, such as image data sets, the size of the

associated databases makes it necessary to modify traditional

GAs because of their slow running times. In this paper we

proposed a steady GA algorithm with efficient encoding

technique and GA operators along with input set

preprocessing. Experimental results were promising. For

input data sets with 100,000 points and larger, our GA

provided better quality solutions faster than the k-means

algorithm.

The results of our tests indicate that, given about the same

amount of time to run, the GA-RAN provides slightly better

quality solutions than the GA-SUM. The input data set

characteristics, such as number of outliner points and tightness

of data grouping determine which preprocessing technique is

better. The summary preprocessing method that we

implemented could be refined to prevent the creation of

representative points for regions that contained less than a

certain minimum threshold of points. This refinement would

remove the negative effect that outlier points have on the

clustering quality. It would also make the GA-SUM run faster

because there would be fewer points in the processed data set.

REFERENCES

[1] P. K. Agarwal and C. M. Procopiuc, “Exact and approximation

algorithms for clustering,” in Proceedings of the ninth annual ACM-

SIAM symposium on Discrete algorithms, 1998, pp. 658-667.

[2] P. J. Angeline, “Adaptive and self-adaptive evolutionary computations,”

Computational Intelligence: A Dynamic System Perspective, Piscataway,

IEEE Press, 1995, pp. 152-163.

[3] A. Demiriz, K. P. Bennett, and M. J. Embrechts, “Semi-supervised

clustering using genetic algorithms,” R.P.I. Math Report No. 9901,

Rensselaer Polytechnic Institute, 1999.

[4] W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon,

“Squashing flat files flatter,” in Proceedings of the ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, 1999, pp. 6-15.

[5] V. Estivill-Castro and A.T. Murray, “Spatial clustering for data mining

with genetic algorithms,” in Proceedings of the International ICSC

Symposium on Engineering of Intelligent Systems, 1998, pp. 317-323.

[6] J. Grabmeier and A. Rudolph, “Techniques of cluster algorithms in data

mining,” Data Mining and Knowledge Discover, 6, 2002, pp. 303-360.

[7] L. O Hall, I. B. Ozyurt, , J. C. Bezdek, “Clustering with a genetically

optimized approach,” IEEE Transactions on Evolutionary Computation,

3(2), 1999, pp. 103-112.

[8] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan

Kaufmann Publishers, 2000.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM Computing Surveys, 31(3), 1999, pp. 264-323.

[10] C.-Y. Lee and E. K.Antonsson, “Dynamic partitional clustering using

evolution strategies,” in Proceedings of the Third Asia Pacific

Conference on Simulated Evolution and Learning, 2000.

[11] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.

[12] M. Painho and F. Bação, “Using genetic algorithms in clustering

problems,” in Proceedings of GeoComputation Conference, 2000.

Qin Ding received her Ph. D. in computer science from North Dakota State

University, Fargo, ND, USA, in 2002, M. S. and B. S., both in computer

science, from Nanjing University, Nanjing, China, in 1991 and 1988

respectively.

 She is currently an Assistant Professor in computer science at Pennsylvania

State University – Harrisburg, Middletown, PA, USA. She was a Research

Assistant in Computer Science Department at North Dakota State University

from 1998 to 2002. Prior to that, she was a lecturer at Computer Science and

Engineering Department at Hohai University, China. Her research interests

include database, data mining, and bioinformatics.

Dr. Ding is a member of Association of Computing Machinery (ACM).

Jim Gasvoda received his B. E. in electrical engineering from Montana State

University, Bozeman, MT, USA, in 1986. He is currently a graduate student in

computer science at Pennsylvania State University – Harrisburg, Middletown,

PA, USA.

