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Abstract—Three novel and significant contributions are made in
this paper Firstly, non-recursive formulation of Haar connection
coefficients, pioneered by the present authors is presented, which
can be computed very efficiently and avoid stack and memory
overflows. Secondly, the generalized approach for state analysis of
singular bilinear time-invariant (TI) and time-varying (TV) systems
is presented; vis-ã-vis diversified and complex works reported by
different authors. Thirdly, a generalized approach for parameter
estimation of bilinear TI and TV systems is also proposed. The unified
framework of the proposed method is very significant in that the
digital hardware once-designed can be used to perform the complex
tasks of state analysis and parameter estimation of different types
of bilinear systems single-handedly. The simplicity, effectiveness and
generalized nature of the proposed method is established by applying
it to different types of bilinear systems for the two tasks.

Keywords—Bilinear Systems, Haar Wavelet, Haar Connection
Coefficients, Parameter Estimation, Singular Bilinear Systems, State
Analysis.

I. INTRODUCTION

ANALYSIS of bilinear systems is useful to study approxi-
mately the behaviour of complicated non-linear systems.

A wide range of physical, chemical, biological, and social
systems, which cannot be effectively modelled under the
assumption of linearity, are modelled by bilinear systems.

In the domain of control systems, these are the systems
whose dynamics are jointly linear in the state and control vari-
ables. Bilinear systems represent a mathematically tractable
structure over Volterra models for a nonlinear system and can
obviously represent the dynamics of a nonlinear system more
accurately than a linear model. Hence, modelling and control
of nonlinear systems in a bilinear framework are fundamental
problems in engineering.

Analytical methods to analyze the bilinear systems often,
are too complicated or fail completely, especially when the
model is singular or time-varying. The task of parameter
estimation is equally complex. Numerical methods can provide
answer to these problems. Several works, regarding piecewise
constant functions, or their approximations, based computa-
tional methods such as Block Pulse Functions (BPF) [1,2],
Walsh Functions [3-7], Orthogonal Function Series [8,9], Haar
Wavelet [10,11], have been reported in the literature for the
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analysis and parameter estimation of singular or non-singular
bilinear TI and TV systems.

Wavelet based numerical methods have attracted much
attention in the recent times for various application in the
disciplines of engineering, physics and mathematical research
due to their nice properties of multiresolution and compact
support [12]. Haar wavelet, the first member of Daubechies
family of wavelets, is most convenient for computer imple-
mentations due to the availability of explicit expression for the
Haar scaling and wavelet functions. Specifically, Haar wavelet
based numerical methods have gained more prominence after
Hsiao et. al pioneered and reported several applications of
operational approach in the analysis, identification and op-
timization of different types of control systems [10,11]. In
this approach, the integro-differential equations are converted
into linear matrix-algebraic equations by replacing the mathe-
matical operations of integration and differentiation etc. by
corresponding operational matrices and hence the analysis
and parameter estimation of bilinear systems have been either
reduced or much simplified.

Hitherto, recursive formulations of various operational ma-
trices derived by Hsiao et. al have been used invariably, for
different applications, in the literature [13-14]. However, these
recursive formulations are computationally costlier as higher
resolution matrices are to be computed using all matrices at
lower resolutions.

Moreover, different algorithms have been reported for the
analysis and parameter estimation or identification of singular
bilinear TI and TV systems [1-11,13-16]. Hsiao et. al studied
the analysis and parameter estimation of bilinear systems [10]
and analysis of singular bilinear systems via Haar wavelet
[11]. They have dealt with time-invariant and time-variant
cases separately. These studies have made the whole domain
complex and diversified.

In this paper, an attempt has been made to overcome the
above problems. Firstly, non-recursive formulation of Haar
connection coefficients, pioneered by the present authors, are
used resulting in the computationally efficient algorithms.
Secondly, a generalized method is proposed which is capable
of analyzing singular or non-singular bilinear systems both
of TI and TV types, making the whole domain simple and
unified. Thirdly, parameter estimation of both bilinear TI and
TV systems is presented through a single unified approach
vis-ã-vis separate approaches reported in the literature so far.
The significance of the proposed unified approach is that the
digital hardware once-designed can be used to perform the
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complex tasks of state analysis and parameter estimation of
different types of bilinear systems single-handedly.

The work presented in this paper is organised as follows; a
brief review of some nice properties of Haar wavelet is pre-
sented in Section II alongwith the non-recursive formulation
of Haar connection coefficients. In Section III, the generalized
approach for the state analysis of singular bilinear systems of
both TI and TV types is presented. Generalized approach for
estimating the parameters of both TI and TV bilinear systems
is presented in Section IV. The operating unified nature of the
Proposed method for state analysis and parameter estimation
is demonstrated by taking several Illustrative examples relating
to different types of bilinear systems in Section V, followed
by conclusions in the end.

II. SOME PROPERTIES OF HAAR WAVELET

Haar wavelet series hn(t) is a group of square waves with
magnitude of ±1 in certain intervals and zeros elsewhere [12]
with first function known as Haar scaling function h0(t) fol-
lowed by Haar wavelet function h1(t) as the second function.
All the other functions are dilations and translations of Haar
wavelet function. In general, Haar wavelet series is defined as

h0(t) = 1, 0 ≤ t < 1, h1(t) =

{
1, 0 ≤ t < 1

2−1, 1
2 ≤ t < 1

(1)

hn(t) = h1(2
jt− l), n = 2j + l, j ≥ 0, 0 ≤ l < 2j

where j & l indicate dilations and translations respectively.
The resolution m is given by m = 2j and n = 0, 1.........m−1

The symbolic form of the Haar wavelet matrix Hm(t) is
defined as

Hm(t) = [h0(t) h1(t)..............hm−1(t)]
T (2)

The numeric form of Haar wavelet matrix Hm is the sampled
values of Haar wavelet series, arranged as rows. For example,

H4 is written as H4 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤

⎥
⎥
⎦

Lemma 1. The non-recursive expression for Haar product
matrix, defined as Hm(t)HT

m(t), is expressed as

Hm(t)HT
m(t) = Hmdiag(Bm(t))HT

m (3)

where Bm(t) are block pulse functions defined to be unity in
an unit interval of time and zero elsewhere and are expressed
collectively as Bm(t) = [b0(t) b1(t)..............bm−1(t)]

T

where bi(t)′s are individual BPF. The product matrix in (3) is
the non-recursive formulation pioneered by us [17].

Lemma 2. When the product of two Haar wavelet matrices
operate on Haar expansion coefficients of any square inte-
grable function f(t), then it can be expressed as simple Haar
expansion via connection coefficients as

Hm(t)HT
m(t)ch = ChHm(t) (4)

where Ch are Haar connection coefficients and
ch = [ch0 ch1................ch(m−1)]

T are Haar expansion

coefficients of f(t). Using the BPF expansion coefficients
cb of f(t), value of Haar connection coefficients Ch can be
evaluated non-recursively as

Ch = Hmdiag(cb)H
−1
m (5)

The Haar connection coefficients in (5) is the non-recursive
formulation pioneered by us [17].

These non-recursive formulations have the advantage of
computing the Haar connection coefficients directly at the re-
quired resolution m, thereby obviating the need of computing
all the matrices at lower resolutions. The reported advantage
of recursive formulations of avoiding inverse of large matrices
[10,11] is of not much relevance today in the era of abundant
cheap computing capability at-hand and the need for avoiding
recursive computer implementations in general.

A generalized approach for the state analysis of bilinear
systems is proposed in the next Section.

III. PROPOSED GENERALIZED APPROACH FOR STATE
ANALYSIS OF BILINEAR SYSTEMS

Consider a generalized bilinear system of the following
form:

E(t)ẋ(t) = A(t)x(t) +
∑q

i=1Ni(t)x(t)ui(t) +B(t)u(t),
x(0) = x0

(6)
where the singular matrix E(t) ∈ Rn×n, the state

x(t) ∈ Rn, the control u(t) ∈ Rq , A(t) ∈ Rn×n and
B(t) ∈ Rn×q , Ni(t) ∈ Rn×n and ui(t), i = 1, 2, ...........q,
are the components of u(t).

The system in (6) represents the generalized bilinear system
because if, any or all, system matrices A(t), B(t), Ni(t)
and singular matrix E(t) contain time-varying terms, it is
singular time-varying bilinear system and it is singular time-
invariant if all the above matrices are constants. Also, if
E(t) = In×n (Identity matrix), then (6) represents bilinear
system without singularity.

The generalized system in (6) can be expressed in alternative
form as

E(t)ẋ(t) = A(t)x(t)+K(t)x(t)+B(t)u(t), x(0) = x0 (7)

where K(t) =
∑q

i=1Ki(t) =
∑q

i=1 u
T
i (t)Ni(t)

In Haar transform domain, the final simulation time tf is
normalized to be unity by substituting t = tfσ in (7) where
0 ≤ σ < 1.

After normalization of time scale, (7) becomes

E(σ)ẋ(σ) = tf (A(σ)x(σ) +K(σ)x(σ) +B(σ)u(σ)) (8)

Next each term in (8) is expanded into the Haar transform
as

ẋ(σ) = dTHmn (9)

where dT = [dT1 dT2 ...............d
T
n ], Hmn(σ) = In×n ⊗

Hm(σ) and In×n is the identity matrix, ⊗ is the kronecker
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product. Each dTi , i = 1, 2....n are the expansion coefficients
of each component of ẋ(σ) arranged in a row. Similarly,

x(σ) = cTHmn (10)

where cT = [cT1 cT2 ...............c
T
n ] and each cTi , i = 1, 2....n

are the expansion coefficients of each component of x(σ)
arranged in a row.

Relation between dT and cT are obtained by integrating (9)
on both sides

x(σ) =

∫ σ

0

cTHmn(σ)dσ + x(0) (11)

Using forward operational matrix of integration Qhm de-
rived by Lin Wu et. al [18] and substituting the expansions
from (9) and (10), (11) becomes

cTHmn(σ) = dTQhmnHmn(σ) + cT0Hmn(σ) (12)

where Qhmn = In×n ⊗ Qhm. And Initial states x(0)
are expanded in Haar domain as x(0) = cT0Hmn(σ),
cT0 = [cT01 c

T
02...............c

T
0n]. The effect of the term tf , arising

out of normalization of time scale, is incorporated in Qhm.
Solving (12) for dT yields

dT =
(
cT − cT0

)
Q−1

hmn (13)

On the similar lines, the expansions of B(σ) and u(σ) are
expressed as

B(σ) = bTHmn (14)

where bT = [bT1 bT2 ...............b
T
n ] and each bTi , i = 1, 2....q

are the expansion coefficients of each component of B(σ)
arranged in a row. And

u(σ) = uTHmn (15)

where uT = [uT1 uT2 ...............u
T
n ] and each uTi , i = 1, 2....q

are the expansion coefficients of each component of u(σ)
arranged in a row.

Next, the functions A(σ),K(σ) and E(σ) are expanded in
Haar domain as

A(σ) = aHmn(σ) (16)

where a =

⎛

⎜
⎝

aT11 . . . aT1n
...

. . .
...

aTn1 · · · aTnn

⎞

⎟
⎠ are Haar expansion

coefficients of elements of matrix A(σ) and each aTij =[
aij0 ............ aij(m−1)

]
& i, j = 1, 2.......n at the resolution

m, resulting in nm× nm coefficients matrix. Similarly

K(σ) = kHmn(σ)
E(σ) = eHmn(σ)

}

(17)

where k and e are the expansion coefficients matrix of
appropriate dimensions as defined in (16).

Expansions from (9)-(17) are substituted in (8) to get

eHmn(σ)d
THmn(σ) = aHmn(σ)c

THmn(σ)
+ kHmn(σ)c

THmn(σ)
+ bTHmn(σ)u

THmn(σ)
(18)

Collecting the terms in (18) results in

dTHmn(σ)H
T
mn(σ)e

T = cTHmn(σ)H
T
mn(σ)a

T

+ cTHmn(σ)H
T
mn(σ)k

T

+ uTHmn(σ)H
T
mn(σ)b

(19)

Each of the term Hmn(σ)H
T
mn(σ) in (19) is simplified using

Haar connection coefficients defined in (4) and evaluated non-
recursively using (5), as

dT êTHmn(σ) = cT âTHmn(σ)+c
T k̂THmn(σ)+u

T b̂Hmn(σ)
(20)

where (̂.) denotes the connection coefficients for the corre-
sponding matrices.

Right multiplying each term in (20) by [Hmn(σ)]
−1, we get

dT êT = cT âT + cT k̂T + uT b̂ (21)

Substituting the value of dT from (13) and collecting the
terms results in

cTQ−1
hmnê

T − cT âT − cT k̂T = cT0Q
−1
hmnê

T + uT b̂ (22)

where orthogonality of Haar transform is used.
cT is obtained from (22) as

cT =
[
cT0Q

−1
hmnê

T + uT b̂
] [
Q−1

hmnê
T − âT − k̂T

]−1

(23)

It is trivial to calculate the inverse of the term[
Q−1

hmnê
T − âT − k̂T

]
due to sparse nature of the matrix –

a key characteristics of Haar wavelet [12]. The desired values
of states x(σ) are evaluated using (10) from the value of cT

obtained from (23).
It is clear that the proposed method is simple, elegant

and generalized. And, non-recursive formulation of the Haar
connection coefficients enables the use of simple rules of
matrix linear algebra to solve the complex analysis problems
of bilinear systems of all types.

A generalized approach for parameter estimation of bilinear
systems is proposed in the next Section.

IV. PROPOSED GENERALIZED APPROACH FOR
PARAMETER ESTIMATION OF BILINEAR SYSTEMS

The parameters A(σ), N(σ) and B(σ) of a bilinear system
are to be estimated from the given states and input. To
accomplish this, Haar expansions of various functions, given
in Section III, are substituted in (6) to obtain

eHmn(σ)d
THmn(σ) = aHmn(σ)c

THmn(σ)
+
∑q

i=1 niHmn(σ)c
THmn(σ)u

T
i Hmn(σ)

+ bTHmn(σ)u
THmn(σ)

(24)
where Ni(σ) = niHmn(σ), ni are the expansion coeffi-

cients matrix of appropriate dimensions as defined in (16).
Rearranging (24) yields
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dHmn(σ)H
T
mn(σ)e

T = aHmn(σ)H
T
mn(σ)c

+
∑q

i=1 niHmn(σ)c
THmn(σ)H

T
mn(σ)ui

+ bTHmn(σ)H
T
mn(σ)u

(25)
Each of the term Hmn(σ)H

T
mn(σ) in (25) is simplified using

Haar connection coefficients defined in (4) and evaluated non-
recursively in (5), as

dT êTHmn(σ) = aĉHmn(σ)
+
∑q

i=1 niHmn(σ)c
T ûiHmn(σ)

+ bT ûHmn(σ)
(26)

where (̂.) denotes the connection coefficients for the corre-
sponding matrices.

Similarly the term under summation is simplified using the
connection coefficients as above to obtain

dT êTHmn(σ) = aĉHmn(σ) +
∑q

i=1 ni
̂

(cT ûi)
T
Hmn(σ)

+ bT ûHmn(σ)
(27)

Right multiplying each term in (27) by [Hmn(σ)]
−1, we get

dT êT = aĉ+

q∑

i=1

ni
̂

(cT ûi)
T
+ bT û (28)

For proper estimation (28) is simulated for a number of
combination of inputs and initial conditions so as to generate
sufficient information.

Let for kth combination of input and initial conditions (28)
is represented as

(
dT êT

)
k
= aĉk +

q∑

i=1

ni

[
̂

(cT ûi)
T

]

k

+ bT ûk (29)

Rearranging (29), for the kth combination of input and
initial conditions, yields

(
dT êT

)
k
=
[
a n1 ..... nq bT

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉ[
̂

(cT û1)
T

]

...

...[
̂

(cT ûq)
T

]

û

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k
(30)

For proper estimation, k should be equal to number of
elements in kth column i.e. n + (n + 1)q in addition to the
conditions imposed on the resolution m of Haar basis by
Hsiao et al. [10]. Hence, the required estimated values of the
unknown parameters are finally obtained, from (30), as

[
a n1 ..... nq bT

]
=
(
dT êT

)
j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉ[
̂

(cT û1)
T

]

...

...[
̂

(cT ûq)
T

]

û

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

j
(31)

It is trivial to evaluate inverse in (31) due to sparse nature
of the Haar wavelet.

V. ILLUSTRATIVE EXAMPLES

The generalized nature of the proposed method is estab-
lished by taking several examples one each for Singular and
non-singular bilinear TI and TV systems for state analysis and
bilinear TI and TV system for parameter estimation.

A. State Analysis

Example 1 (Bilinear TI system):
Consider the bilinear time-invariant (TI) system [10] of the

form (6), where

E(t) =

(
1 0
0 1

)

, A(t) =

( −2 1
1 −2

)

, B(t) = 0,

N(t) =

(
1 0
0 1

)

, tf = 8, u(t) = e−t and x(0) =

(
1
0

)

(32)
The values of various time-varying functions are obtained

by normalizing the final time to unity by substituting t =
tfσ = 8σ.

Analytical solution for states x(t) is reported to be [10]

x(t) =
1

2

[
e−t−e−t+1 + e−3t−e−t+1

e−t−e−t+1 − e−3t−e−t+1

]

(33)

Comparison between the Haar solutions obtained using the
proposed method from (10) - (23) and Analytical solution is
shown in Fig. 1

Example 2 (Bilinear TV system): Consider the bilinear
time-varying (TV) system [1] of the form (6), where

E(t) = 1, A(t) = −t, B(t) = 1, N(t) = e(1−t2)/2

tf = 3, u(t) = e−(t−1)2/2 and x(0) = 0
(34)

The values of various time-varying functions are obtained
by normalizing the final time to unity by substituting t =
tfσ = 3σ.

Analytical solution for state x(t) is reported to be [1]

x(t) = te−(t−1)2/2 (35)
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Fig. 1. Haar and analytic solution of the TI bilinear system in Example 1

Fig. 2. Haar and analytic solution of the TV bilinear system in Example 2

Comparison between the Haar solutions obtained using the
proposed method from (10) - (23) and Analytical solution is
shown in Fig. 2

It is evident from Fig 1. and Fig. 2 that the Haar solution
obtained using the proposed method agrees well with the
analytical solution. More accurate results can be obtained for
higher values of resolution m.

Example 3 (Singular bilinear TV system):
Consider the singular bilinear time-varying (TV) system

[11] of the form (6), where

E(t) =

⎛

⎝
0 −t 0
1 0 t
0 1 0

⎞

⎠ , A(t) =

⎛

⎝
−2 t 1
0 −4 2

−2t 0 1

⎞

⎠ ,

N(t) =

⎛

⎝
1 −t 1
0 3 −2
2t 0 −2

⎞

⎠ , B(t) =
[
2 1 3

]T
,

tf = 1, u(t) = 1 and x(0) =
[
12 2 5

]T

(36)
The values of various time-varying functions are obtained

by normalizing the final time to unity by substituting t =
tfσ = σ.

Analytical solution for state x(t) is reported to be [11]

x(t) =

⎡

⎣
(2− t)(e−t/2 + et) + 8

2e−t/2 − et + 1
e−t/2 + et + 3

⎤

⎦ (37)

Comparison between the Haar solutions obtained using the
proposed method from (10) - (23) and Analytical solution is
shown in Fig. 3

It is evident from Fig. 3 that the Haar solutions obtained
using the proposed method agrees well with the analytical
solution. More accurate results can be obtained for higher
values of resolution m.

B. Parameter Estimation

Example 4 (Bilinear TI system):
Consider the bilinear time-invariant (TI) system [1] of the

form (6) as

ẋ(t) = A(t)x(t)+N(t)x(t)u(t)+B(t)u(t), x(0) = x0 (38)

The simulated response data due to three different
combinations of inputs and initial conditions u(t) =
e−0.5t, cos t and sint are tabulated in Table I.

TABLE I
SIMULATED RESPONSE DATA FOR BILINEAR SYSTEM IN EXAMPLE 4

t 0 1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

u(t) States x(t)

e−0.5t 2 2.1734 2.4896 2.7433 2.9327 3.0591 3.1262 3.1393 3.1053

cos(t) 1 1.1868 1.5545 1.9022 2.2129 2.4678 2.6486 2.7402 2.7337

sin(t) 3 2.6958 2.2025 1.9061 1.7520 1.7057 1.7454 1.8572 2.0316

The unknown parameters A(t), N(t) and B(t) are esti-
mated using (31) as shown in (39), alongwith the true values
in (40). In this example, the average of the samples of the
estimated values is taken due to time-invariant nature of the
system.

[
Ã Ñ B̃

]
=
[

−1.9989
... 1.9984

... 3.0003

]

(39)

[
A N B

]
=
[

−2.0000
... 2.0000

... 3.0000

]

(40)
Comparing the averaged estimated values with true values,

it is evident that the estimated values agrees well with the true
values.

Fig. 3. Haar and analytic solution of the singular bilinear system in
Example 3
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Example 5 (Bilinear TV system):
The 1st order bilinear time-varying (TV) system, taken in

Example 2, is simulated to obtain response data due to three
different combinations of input and initial conditions given in
Table II.

TABLE II
SIMULATED RESPONSE DATA FOR BILINEAR SYSTEM IN EXAMPLE 2

t 0 1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

u(t) States x(t)

e−(t−1)2/2 0 0.1590 0.5321 0.9443 1.2479 1.3300 1.1784 0.8799 0.5566

cos(t) 1 1.4109 1.9523 1.9562 1.5759 1.0662 0.6203 0.3166 0.1457

sin(t) 2 2.0627 2.2356 2.4376 2.5676 2.5839 2.4883 2.2724 1.8045

The unknown parameters A(t), N(t) and B(t) are to be
estimated. True values of these unknowns are given in (34).

The estimated parameters Ã(t), Ñ(t) and B̃(t) alongwith
the true values are shown in Fig. 4.

Fig. 4. Estimated and True values of unknown Parameters of Example 2

It is evident from Fig 4. that the estimated values of
parameters agree well with the true values. Better estimation
is expected for larger values of resolution m.

VI. CONCLUSION

The importance of different types of bilinear systems arising
in various disciplines of Engineering and Sciences cannot
be understated. Rather complex problem of State analysis of
singular bilinear time-invariant and time-varying systems is
achieved by applying the same proposed generalized approach
to different types of bilinear systems. The proposed method,
which is based on the non-recursive formulation of Haar
Connection Coefficients, enables the repeated use of proposed
method very efficient computationally. Also, the parameter
estimation of bilinear TI and TV systems is accomplished
successfully by applying the proposed generalized estimation
algorithm. The future scope lies in formulating the unified
approaches, on the similar lines, for the state analysis and
parameter estimation or identification of different types of
systems especially in the presence of measurement noise.
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