
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

297

 

 

  
Abstract—This paper presents a new methodology to select test 

cases from regression test suites. The selection strategy is based on 
analyzing the dynamic behavior of the applications that written in 
any programming language. Methods based on dynamic analysis are 
more safe and efficient. We design a technique that combine the code 
based technique and model based technique, to allow comparing the 
object oriented of an application that written in any programming 
language. We have developed a prototype tool that detect changes 
and select test cases from test suite. 
 

Keywords—Regression testing, Model based testing, Dynamic 
behavior.  

I. INTRODUCTION 
OFTWARE maintenance is an expensive phase 
accounting for near 60% of overall cost of software life 

cycle expenditure [3]. Regression testing is an important step 
in software development to ensure that modifications do not 
break previously working functionality. However, regression 
testing is often expensive and time consuming. Regression test 
suites can be very large, e.g. including tens of thousands of 
test cases requiring days or weeks to execute [1]. 

Regression test selection is the activity that choosing from 
an existing test set, test cases that can and need to be rerun to 
ensure that changed parts behave as intended and the changes 
did not introduce unexpected faults. Reducing the number of 
regression test cases to execute is an obvious way of reducing 
the cost associated with regression testing. The main objective 
of selecting test cases that need to be rerun is to identify 
regression test cases that exercise modified parts of the 
system. This is referred to as safe regression testing as, it 
identifies all test cases in the original test set that can reveal 
one or more faults in the modified program [12]. 

There are many techniques that handle regression testing, 
some of them based on source code and other based on 
design. 

The techniques that based on source code are more safe and 
easy to make. But, it requires that the changes be already 
implemented. These techniques are very specific to the 
programming language used to develop the software. Where, 
if an application is builted using functional languages such as 
C. Hence, it is not suitable to analyze applications built using 
C# and Java because the tool cannot identify indirect changes 

 
W. S. Abd El-hamid is with the Computer Science Department, Menofyia 

University, Egypt, (e-mail: walid_mufic@yahoo.com.) 
S. S. El-etriby is with Computer Science Department, Egypt, Menofyia 

University, (e-mail: El_Etriby10@yahoo.com). 
M. M. Hadhoud is with Information Technology Department, Egypt, 

Menofyia University, (e-mail: mnhadhoud@yahoo.com). 

due to object oriented features of these languages like 
dynamic binding, exceptions etc. 

Other techniques that based on specification are more 
general where the designs are represented using the Unified 
Modeling Language (UML) that independent on programming 
language. But, some changes to the source code may not be 
detectable from UML documents so cannot detect all test 
cases for the changes. 

In this paper we present a new approach that overcomes 
these shortcomings has been proposed. The approach is based 
on combining the code based technique and model based 
technique together to generate a safe and general regression 
test selection technique. Our approach capture and analyzing 
the dynamic behavior of the software applications from UML 
diagram. Then identify the impact of changes made to 
software, and based on this it selects test cases to be re-
executed. These test cases are fewer in number when 
compared to the complete system test suite. 

The rest of the paper is organized as follows. Section II 
discusses different regression test selection techniques that are 
available in literature. Section III presents in detail the 
proposed approach to regression test selection. The results of 
the case studies are presented in Section IV. Conclusions and 
future works are summarized in Section V.  

II. RELATED WORK 
Typically regression test selection techniques are either 

code-based or model-based. Code-based techniques use the 
information obtained from two different versions of the code 
to analyze the change impact and select the tests. In the case 
of model based techniques, change information is obtained 
through two versions of models constructed during the 
requirements analysis phase or system design phase. 

Code based techniques [2], [5], [6], [7], [11], [12] select 
tests based on changes made to two versions of the code. 
These techniques are very specific to the programming 
language used to develop the code. Chianti [10] and JDiff [5] 
are comprehensive techniques for managing changes in Java 
programs. Chianti selects regression tests after analyzing the 
change impact analysis whereas JDiff performs only change 
impact analysis. As both these tools analyses the changes at 
statement level and are specific to Java programming 
language, hence, they are neither generic nor efficient. 

Model-based techniques [3], [4], [8], [9] are based on UML 
design models used during the design phase of the system. 
Reference [15] use UML activity diagrams to detect changes 
in design and then use a traceability matrix between activity 
diagram and the test suite. It covers activities at an abstract 
level and does not cover the attributes of a class. Also, it does 
not support object-oriented features. Reference [8] proposes a 

A General Regression Test Selection Technique 
Walid S. Abd El-hamid, Sherif S. El-etriby, and Mohiy M. Hadhoud 

S 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

298

 

 

regression testing technique based on UML sequence and 
class diagrams. Their approach does not take into account the 
pre and post conditions of the operations which affect 
behavior of a class. Also, their approach does not handle 
concurrency. 

III. OUR REGRESSION TEST SELECTION TECHNIQUE 
Our proposed approach to regression test selection is based 

on changes made to software specification that represented in 
UML diagram and code that represented in any programming 
language. Our approach is consists of three functions as 
shown in Fig. 1. These three functions are (1) Capture 
dynamic behavior, (2) Identify changes, (3) Select regression 
test suite. Each of these functions has been described in 
details. 

 

 
 

Fig. 1 Block diagram of our approach 
 

A. Capturing Dynamic Behavior of the Application 
Dynamic behavior of software is a set of interactions among 

system components along with their invoked classes/functions 
across all application processes. We captured dynamic 
behavior of the system from UML Class diagram and 
Sequence diagram. The captured behavior is modeled into 
Interclass Relation Graph (IRG) and Functional Interaction 
Graph (FIG). The Interclass Relation Graph (IRG) for a 
program is a triple {N, IE,UE}: 

• N is the set of nodes, one for each class. 
• IE is the set of inheritance edges. An inheritance 

edge between a node for class C1 and a node for 
class C2 indicates that C1 is a direct sub-class of C2. 

• UE is the set of use edges. A use edge between a 
node for class C1 and a node for class C2 indicates 
that C1 contains an explicit reference to C2 

 
 
 
 

Program P 
 

public class SuperA { 
public void F6 ( ) { 
System.out.println("aa") ; 
} 
} 
public class A extends SuperA { 
public void F4( ) { F6(); } 
public void F5( ) {…. } 
} 
public class SubA extends A {} 
public class B { 
A a = new A(); 
public void F1 ( ) {a.F4();} 
public void F2 ( ) {a.F4();} 
public void F3 ( ) {a.F5();} 
} 
public class SubB extends B {} 
public class C { 
public static void main ( ) { 
B b=new B();  
b.F1() ; 
b.F2(); 
b.F3(); 
} 
} 

 
Fig. 2 Example program P 

 
Fig. 3 shows the algorithm for building an IRG, buildIRG. 

For simplicity, in defining the algorithms, we use the 
following syntax: ne indicates the node for a type e (class or 
interface); GN, GIE, and GUE indicate the set of nodes N, 
inheritance edges IE, and use edges UE for a graph G, 
respectively. Algorithm buildIRG first creates a node for each 
type in the program (lines 2–5). Then, for each type e, the 
algorithm connects ne to the node of its direct super-type 
through an inheritance edge (lines 7–8), and (2) creates a use 
edge from each nc to ne, such that c contains a reference to e 
(lines 9–11).  

 
Algorithm buildIRG 
Input: program P 
Output: IRG G for P 
Begin buildIRG 
1: create empty IRG G 
2: for each class and interface in P do 
3: create node ne 
4: GN = GN U {n} 
5: end for 
6: for each class and interface in P do 
7: get direct super-type of e, s 
8: GIE = GIE U {( ne , ns )} 
9: for each class c in P that e references do 
10: GUE = GUE  U {( nc , ne} 
11: end for 
12: end for 
13: return G 
End buildIRG 

 
Fig. 3 Algorithm for building an IRG 

 

 
Capture dynamic 

behavior from 
UML 

Model dynamic 
behavior as a FIG 

 
Compare codes in 

new and old 
versions 

Affected methods 
set 

 
Identify affected 

functions from FIG 
against the altered 

methods set 

Select regression test 
suite



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

299

 

 

Fig. 4 shows the IRG for program P in Fig. 2. The IRG 
represents the six classes in P and their inheritance and use 
relationships. The figure has three inheritance relationships 
and two use relationships. The class A inherits from class 
SuperA, class SubA inherit from class A and class SubB inherit 
from class B. So if class A is changes then we need to test 
class A, class SuperA and class SubA. 

  

 
Fig. 4 IRG for program P of Fig. 2 

 
After we draw the IRG we can draw the sequence diagram 

of the original program to detect the relations between 
functions as shown in Fig. 5. 

 

 
Fig. 5 Sequence diagram for Program P in Fig. 2 

 
Fig. 6 shows the FIG for program P in Fig. 2 where we use 

UML sequence diagram in Fig. 5 to capture the relationship 
between functions. 
 

 
Fig. 6 FIG for Program P of Fig. 1 

 

B. Identify Affected Methods 
Affected methods are identified by comparing the original 

program and modified program. Changes to code occur at the 
syntactic and semantic levels. Code changes due to a change 
in syntax refer to the textual differences between 
corresponding line statements of code versions of a program. 
A syntactic difference may not necessarily cause a change in 

the semantics of the program. For example, consider that int 
sum = a + b + c; statement is replaced with two statements (1) 
int sum = a + b; and (2) sum = sum + c; in the new version of 
the software. There is a change syntactically between 
corresponding lines of code. However, semantically the final 
value assigned to variable sum is the added value of variables 
a, b, and c in both the cases, hence, it is considered as no 
change. To resolve such problems, data flow analysis 
techniques, based on program slicing, have been devised 
[13][14]. Although slicing of program statements is a safe and 
precise method, it is overly complex and necessitates heavy 
usage of memory and processing time. Thus, scaling slicing 
techniques to large programs would be difficult and too costly 
in terms of performance. 

The semantic change involves identifying indirectly 
affected methods which might get invoked due to 
polymorphism, dynamic binding and exceptions features. 

Dynamic binding, Because of dynamic binding, an 
apparently harmless modification of a program may affect call 
statements in a different part of the program with respect to 
the change point. For example, class-hierarchy changes may 
affect calls to methods in any of the classes in the hierarchy, 
and adding a method to a class may affect calls to the methods 
with the same signature in its superclasses and subclasses. As 
shown in Fig. 7, Class B inherits from Class A and a virtual 
method calc() is implemented in both the classes. The method 
calc() in class A has been changed in new version of the code. 
This changed method will affect the execution of method 
func1() of class D as the argument passed to that method can 
also be an object of type A due to inheritance property (parent 
is a sub-type of a child). Therefore, we marks both methods 
A.calc() and D.func1() as changed. 

 

 
Fig. 7 Original program P and its modified P' 

:C :B :A :SuberA

F1( ) 

F2( ) 

F3( ) 

F4( ) 

F4( ) 

F5( ) 

F6( ) 

SuperA

A

SubA

B C

SubB

Inheritance edge 
Use edge 

F6 
F4 

F5 

F1 

F2 

F3 

Main 

Old Program P 
 
Class A : System.Array{ 
int sum; 
virtual int calc() { 
return sum;  
}} 
Class B:A{ 
int calc() { return sum/3;  
}} 
Class D { 
void int func1(B obj) 
{ return obj.calc(); } 
void func2() { 
try{…} 
catch(e1){…} 
catch(e2){…} 
} 
void func3() 
{ 
try{…} 
catch(e1){return;} 
catch(e2){…} 
} 

New Program P' 
 
Class A{ 
int sum; 
virtual int calc() { 
return sum*sum; 
}} 
Class B:A{ 
int calc() { return sum/3; 
}} 
Class D{ 
void int func1(B obj) 
{ return obj.calc(); } 
void func2() { 
try{…} 
catch(e1){…} 
 
} 
void func3() 
{ 
try{…} 
catch(e1){func3();} 
catch(e2){…} 
} 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

300

 

 

Changes to an inheritance tree also affect the execution of 
methods in that tree. For instance, consider the new version of 
Class A shown in Fig. 7. The new version Class A does not 
inherit from System.Array. This change will influence the 
execution of all the methods in Class A. Hence, all methods in 
Class A are marked as changed. This change also influences 
the execution of Class B since it inherits the changed Class A. 
Therefore, all the methods of Class B are also marked as 
changed. The changes to an inheritance tree are identified by 
simple comparison of two inheritance tree objects of both old 
and new versions of a component. The methods (of both 
Classes A and B) are identified from the inheritance tree object 
and are marked as changed. 

Changes to exceptions can occur at two levels. One during 
the handling of the exceptions and another is at the definition 
of exceptions. For instance consider the changes made to 
exceptions handling as shown in Fig. 7. In the new version, 
method func2() doesn’t handle exception e2 whereas method 
func3() handle both exceptions but has changed its 
implementation while handling exception of type e1. In such 
cases both methods func2() and func3() are marked as 
changed methods. 

To make automation of change impact analysis complete, 
both syntactic and semantic changes to a program should be 
considered. Our technique identifies methods affected due to 
both syntactic and semantic changes made to software written 
using any programming language.   

C. Selecting Smaller Regression Test Suite 
On identifying the affected methods, we can find the impact 

of these changed methods by analyzing the FIG and IRG. For 
example, in Fig. 6, if method F4 is marked as changed in the 
new version of the software, then F4, F1 and F2 are marked 
as changed so any test case pass in these functions are 
selected. 

IV. CASE STUDIES 
In this section we apply our approach on two case studies. 

The first one is software that written in Java language called 
AlarmClock, and the second is software that written in C++ 
language called Schedule. 

In the first case study the system test suite consists of 90 
test cases. The case study has been conducted on three 
upgrades released during application regression testing cycle. 
These upgraded consists of mainly bug fixes, like change to 
source code statements, deletion of methods, adding new 
methods. The original program has 6 classes and 20 methods 
and when we apply our approach on this case study we get the 
resulted that are tabulated in Table I. 

 
TABLE I  

RESULTS OF THE FIRST CASE STUDY 
# Version # Test cases selected % of test effort saved 

V1 16 81% 

V2 42 53% 

V3 27 70% 

 
  

In the second case study the system test suite consists of 
150 test cases. The case study has been conducted on four 
upgrades released during application regression testing cycle 
and we get the resulted that are tabulated in Table II.  
 

TABLE II 
 RESULTS OF THE SECOND CASE STUDY 

# Version # Test cases selected % of test effort saved 
V1 76 49% 
V2 84 44% 
V3 65 65% 
V4 72 52% 

 

V. CONCLUSION AND FUTURE WORK 
In this paper we present a new approach that is based on 

combining the code based technique and model based 
technique together to generate a safe and general regression 
test selection technique. Where we capture the dynamic 
behaviors of the software applications from UML diagrams. 
Then identify the impact of changes made to software code 
that written in any programming language, and based on these 
changes we select test cases to be re-executed. These test 
cases are fewer in number when compared to the complete 
system test suite. 

Software maintenance also includes addition and deletion 
of user functionality. These modifications could be classified 
as major changes. Often these changes require new test cases 
to be added/deleted or modify existing test cases. Our future 
research would focus on investigation of techniques that 
automatically identify major changes made to code and 
generate test cases that validate these changes. 

REFERENCES   
[1] G. Wikstrand, R. Feldt, J.K Gorantla, Zhe Wang, C. White, "Dynamic 

regression test selection based on a file cache- an industrial evaluation", 
International Conference on Software Testing Verification and 
Validation, 2009, pp 299-302.  

[2] Anjaneyulu Pasala, Yannick LH, Fady A, Appala Raju G and Ravi P 
Gorthi, “Selection of regression test suite to validate software 
applications upon deployment of upgrades”, 19th Australian Software 
Engineering conference, 25-28 March 2008, pp 130-138. 

[3] Ravi P Gorthi, Anjaneyulu Pasala, Kailash KP and Benny Leong, 
"Specification-based approach to select regression test suite to validate 
change software", 15th Asia-Pacific Software Engineering conference, 
2008, pp 153-160.  

[4] L.C. Briand, Y. Labiche and S. He, "Automating regression test 
selection based on   UML designs" , 2008, pp 16-30 

[5] Apiwattanapong, T., Orso, A., and Harrold, M.J., “JDiff: A Differencing 
Technique and Tool for Object--Oriented Programs”, Journal of 
Automated Software Engineering, Vol 14, No. 1, March 2007, pp 3-36. 

[6] A. Orso, N. Shi and M.J. Harrold, "Scaling regression testing to large 
software systems", Proceeding of the 12th ACMSIGSOFT International 
Symposium on Foundation of Software Engineering, 2004, pp 241-251. 

[7] T. Koju, S. Takada, N. Doi, "Regression test selection based on 
intermediate code for virtual machines", Proceeding of International 
Conference on Software Maintenance (ICSM 03), 2003 , pp 1-10. 

[8] Orest P, Hunay U, and Andrews A, "Regression Testing UML Designs", 
Proceedings of 22nd IEEE International Conference on Software 
Maintenance (ICSM), Philadelphia, Pennsylvania, September 24-27, 
2006, pp254-264. 

[9] A. Ali, A. Nadeem, M.Z. Iqbal, M. Usman, "Regression testing based on 
UML design models", 13th IEEE International Symposium on Pacific 
Rim Dependable Computing, 2007, pp 85-88. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

301

 

 

[10] Xiaoxia R, Barbara G R, Maximilian S and Frank T, “Chianti: A 
prototype change impact analysis tool for Java”, Proceedings of 27th 
international conference on Software engineering (ICSE), St. Louis, 
USA, May 15-21, 2005, pp 664-665. 

[11] M.J. Harrold, J.A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. 
Sinha, S.A. Spoon, "Regression test selection for java software", in: 
Proceedings of ACM Conference on Object-Oriented Programming, 
Systems, Languages, and Applications (OOPSLA’01), 2001, pp 312-
326. 

[12] A. Orso, N. Shi and M.J. Harrold, "Scaling regression testing to large 
software systems", Proceeding of the 12th ACMSIGSOFT International 
Symposium on Foundation of Software Engineering, 2004, pp 241-251. 

[13] Pócza K, Biczó M, and Porkoláb Z, “Cross language Program Slicing in 
the .NET Framework” Proceedings of 3rd International Conference on 
.NET Technologies, Plzen, Czech Republic, May 2005. 

[14] Zhang X and Gupta R, “Cost Effective Dynamic Program Slicing”, 
Proceedings of ACM SIGPLAN Conference on Programming language 
design and implementation, June 2004, pp 94 – 106. 

[15] Y. Chen, R.L. Probert, D.P. Sims, Specification based Regression test 
selection with risk analysis, in: Proceedings of Conference of the Center 
for Advance Studies on Collaborative Research, 2002. 

[16] Anjaneyulu P, Yannick LH Lew, and Ravi Prakash G, “How to Select 
Regression Tests to Validate Applications upon Deployment of 
Upgrades”, Vol. 6, No. 1, 2008, pp 55 – 62. 

[17] G. Rothermel, M.J. Harrold, "Analysing regression test selection 
techniques", IEEE Transactions on Software Engineering , 1996, pp 
529–551. 

[18] E. Martins and V.G. Vieira, "Regression test selection for testable 
classes", ENCS 2005, pp 453-470.  

[19] H. Agrawal, J.R. Horgan, E.W. Krauser and S.A. London, "Incremental 
Regression Testing", Proceedings of IEEE  Conference on software 
Maintenance,1993, pp 348-357. 

[20] T. Apiwattanapong, A. Orso, M.J. Harrold,  "A differencing algorithm 
for object-oriented programs", Proceedings of the 19th IEEE 
International Conference on Automated Software Engineering (ASE 
2004), 2004, pp 2–13. 

[21] G. Rothermel, M.J. Harrold, J. Debhia, Regression test selection for C++ 
software, Journal of Software Testing, Verification, and Reliability, 
2000 pp 77–109. 

 
 

 
  
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

 


