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Abstract—In this study, a fuzzy integrated logical forecasting 
method (FILF) is extended for multi-variate systems by using a 
vector autoregressive model. Fuzzy time series forecasting (FTSF) 
method was recently introduced by Song and Chissom [1]-[2] after 
that Chen improved the FTSF method. Rather than the existing 
literature, the proposed model is not only compared with the previous 
FTS models, but also with the conventional time series methods such 
as the classical vector autoregressive model. The cluster optimization 
is based on the C-means clustering method. An empirical study is 
performed for the prediction of the chartering rates of a group of dry 
bulk cargo ships. The root mean squared error (RMSE) metric is used 
for the comparing of results of methods and the proposed method has 
superiority than both traditional FTS methods and also the classical 
time series methods.  
 

Keywords—C-means clustering, Fuzzy time series, Multi-variate 
design 

I. INTRODUCTION 

ORECASTING science reached to a maturing period by 
contributions of many scholars and its long history in 

economic and econometric literature. Although, the 
conventional forecasting science has superior particulars on 
many examples, it still has limitations and gaps exist in the 
literature. Among these limitations, uncertainty is the most 
cited problem in the forecasting research. In the engineering 
field, uncertainty exists in many automated systems and fuzzy 
set theory is proposed to deal with such problems. Since it is 
first introduced by Zadeh, the pioneering impact of fuzzy logic 
is unavoidable. In the last three decades, fuzzy logic is applied 
to many problems and fuzzy time series is one of the unique 
contributions of the literature.  

[1]-[2] first presented the fuzzy time series (FTS) by 
introducing time-invariant FTSF model. Chen [3] improved 
the existing approach and the accuracy of Chen’s method is 
found superior than Song and Chissom’s approach. Huarng [4] 
presented a method for FTSF by using heuristic modelling. 
Duru [5] developed fuzzy integrated logical forecasting (FILF) 
model which is improved the classical FTS by an integrated 
approach in univariate time series and it is applied for dry bulk 
freight index (BDI). In addition, there are many studies have 
developed and implemented the fuzzy time series forecasting 
on different study fields [6]-[13]. 
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This paper investigates the FILF method and improves it for 
multi-variate modeling. For that purpose, an empirical study is 
designed for forecasting of the time-based shipping freight 
rates and the proposed model is compared with Chen’s 
algorithm and its bivariate version. Also a number of 
traditional methods such as autoregressive integrated moving 
average (ARIMA) is compared with results. 

The clustering procedure is one of the major contributions 
of the FTS method. By applying clustering algorithm, the 
unusual fluctuations and outliers are eliminated and dataset is 
bundled in representative interval sets. Song and Chissom 
choose 1000 as the length of intervals and many studies have 
applied this length of intervals for the FTSF without 
specifying any reason [9]. However, the way of the choosing 
effective length of intervals affects the forecasting result and 
the accuracy of forecasting.  Therefore, this study proposes the 
fuzzy C-means clustering method which is widely used as a 
clustering method and applies it for the length of intervals of 
the FTSF. Additionally, the numbers of fuzzy clusters are 
defined by using half of standard deviation. 

In the literature, [14] first analyzed the relationship between 
tonnage and freight rate. [15] reported that ship prices adjust 
to freight and activity rates, and proposed equations to forecast 
it. [16] described a theoretical model in which freight markets 
and ship markets are interdependent because a ship is a capital 
asset of considerable longevity and [17]-[18] applied this 
model to the dry bulk cargo market and the tanker market. 
[19] proposed the supply and demand analysis for modeling 
ship prices by using the theoretical Error Correction model. 
System dynamics is also applied as a forecasting method in 
maritime economics [20]-[21]. To overcome forecasting 
problems and fluctuating of freight rates in the shipping 
market, time series models have recently been developed in 
the shipping literature [22]-[25]. In the study of [5], the FTS is 
used for forecasting the levels of Baltic Dry Index (BDI) and 
its superiority over the previous FTS method is noted. 

In this paper, first order fuzzy logical relationships are used 
for pattern recognition and crisp predictions are generated by 
using time charter series of two ship sizes. Data is collected 
from several periodicals for monthly averages. Fuzzy clusters 
are based on the C-means algorithm which optimizes the 
shape and mid-point of the cluster. Each tonnage is assumed to 
be linked with the pricing of other tonnages. 
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II.  METHODOLOGY 

A. Fuzzy C-Means Clustering 

Cluster analysis is an unsupervised learning method for 
statistical data analysis and is applied in many fields. It is the 
process of dividing all data elements into classes or clusters so 
that objects in the same class are as similar as possible. There 
are many clustering methods used such as K-means clustering, 
fuzzy C-means clustering, hierarchical clustering and so on 
[26]-[27]. One of the most widely used clustering methods is 
the fuzzy C-Means (FCM) algorithm [27]-[29] in which one 
item of data can belong to more than one cluster and related to 
each element in a set of membership levels. 

FCM that is based on minimization of the objective 
function is defined as follows: 
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Where any real number is greater than 1, uij  is the degree of 
membership of xi  in the cluster j, xi is the ith of d-dimensional 
measured data, cj  is the d-dimensional center of cluster, and 

*  is any norm expressing the similarity between any 

measured data and the center. 
In the second step, the membership function U is appointed 

randomly and the center of cluster (cj) is computed by: 
U = [uij] matrix, U0 
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According to the center of clusters, Uk is calculated again by 
using Eq. 3  and this iteration will stop maxij
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ij iju u ε+ − < , where ε is a termination criterion between 

0 and 1, whereas k are the iteration steps.  
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In this study, the fuzzy C-means clustering method is used 
to determine the lengths of intervals for the VAR-FILF 
method and the termination criterion, ε, is defined as 0.001. 
However, the determination of the initial center of the cluster 
is still uncertain in the fuzzy C-means clustering method and 
the number of clusters has an important impact on the 
performance of the FTSF. Song and Chissom applied 1000 as 
the length of the intervals and this scale is used in almost all 
FTS forecasting (FTSF) studies [3]-[4]. Huarng [9]  proposed 
two different methods which are the average of the first 
differences of data and the distribution-based length method 
for choosing the first length of intervals for FTSF. Yolcu [30] 
improved Huarng’s method with a proposed method based on 
a single variable constrained optimization.  

The definition of the number of clusters is an important 
question in FTS clustering since the results may change due to 
the number of clusters. In this study, the clusters are structured 
in the half of standard deviation. An increment can be applied 
to the value of the half of standard deviation for smoothing by 
either a reduction or an increase. 

B. Fuzzy Time Series 

[1]-[2] first introduced the FTSF method. In this method, all 
historical data transformed to fuzzy numbers. FTSF has 
superiority than the traditional forecasting method such as not 
involving non-stationary, limited number of observations and 
non-linearity. Chen [3] improved the FTSF method by 
performing simple calculations and his study gave superior 
result than the one [2] suggested. 

The definitions of Chen’s FTSF method are as follows: 
Definition 1 Y (t) (t=…, 1, 2, 3,…) is a subset of real 

numbers (R). Let Y(t) be the universe of discourse defined by 
the fuzzy set µi(t). If F(t) includes of µi(t)(i=1,2,…), F(t) is 
called a fuzzy time series on Y(t). 

Definition 2 If there exists a fuzzy relationship R (t-1, t) 
such that F (t) = F(t-1)°R(t-1, t), where ° is an operator, then 
F(t) is said to be caused by F(t-1). The relationship between 
F(t) and F(t-1) can be denoted by F(t-1)→ F(t). 

Definition 3 Suppose F(t) is computed by F(t-1) only, and 
F(t) = F(t-1)°R(t-1, t). For any t, if R(t-1, t) is dependent of t, 
then F(t) is considered a time–invariant fuzzy time series. 
Otherwise, F(t) is time variant. 

Definition 4 Suppose F(t-1) = Ãi  and F(t) = Ãj, a fuzzy 
logical relationship can be defined as Ãi→ Ãj, where Ãi and 
Ãj are called the left-hand side (LHS) and right-hand side 
(RHS) of the fuzzy logical relationship (FLR), respectively.  

C. Vector Autoregressive Fuzzy Integrated Logical 
Forecasting (Filf) 

The classical FILF model is characterized with a 
differencing operation and the last value contribution. For that 
purpose, additional definitions are given as follows: 

Definition 5 The lag, or a backward linear function for raw 
data that defines the first order differences of the original 
series, is as follows: 

∆ Y(t) = Y(t)− Y(t-1)             (5) 
Definition 6 β is an adjustment coefficient that defines the 

combination function of the last actual value of the fuzzified 
data set and the forecasted value for t +1. The fuzzified data 
can be the raw time series data, the first differenced data or the 
second differenced set as well. 

FR(t+1) = Y(t) * β+ F(t+1)(1- β)         (6) 
      β → [0, 1] 
Property The adjustment coefficient β can be defined by 

experimental studies, and can also be calculated by a 
simulation of the function to minimize errors in the estimation 
period of the data.  

Definition 7 A FILF algorithm is described by its order: 
FILF (i, d, β) 
i: number of fuzzy sets. 
d: order of differencing operator (∆d Y(t)). 
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β: value of adjustment coefficient. 
Example 1 If the FILF algorithm is specified with 6 fuzzy 

numbers (Ãi, i =1, 2,... 6), the first order differenced series 
(d=1), and the adjustment coefficient is 0.5 (β=0.5), then the 
specification is FILF (6,1,0.5).  

Program1. The FILF procedure 
Step 1 Define the universe of discourse U. If the original 

data is differenced, the differenced data will be defined by the 
universe of discourse U. 

Step 2 Divide U into intervals according to linguistic terms. 
Step 3 Define the fuzzy sets on U, and fuzzify the historical 

data. 
Step 4 Derive the FLRs based on the historical data. 
Step 5 Classify the derived FLRs into groups. 
Step 6 Utilize three defuzzification rules to calculate the 

forecasted values. 
Step 7 Regulate the forecasted values by the combination 

function of the latest actual value of fuzzified data set and 
forecasted value.  

A vector autoregressive FILF model is a particular case of 
bivariate FTS modeling. Rather than a single model, the VAR-
FILF is based on two models of two variables. The bivariate 
FTS is explained in the following definitions. 

Definition 8 Let Panamax, P, and Handymax, H, be two 
fuzzy time series. Suppose that   P(t-1)=Ai, H(t-1)=Nk, and 
P(t)=Aj. A bivariate FLR is defined as Ai, Nk → Aj , where Ai, 
Nk are referred to as the LHS and Aj as the RHS of the 
bivariate FLR.  

The current fuzzy time series models utilize discrete fuzzy 
sets to define their fuzzy time series. Their discrete fuzzy sets 
are defined as follows: 

Assume there are m intervals, which are u1 = [d1,d2], u2 = 
[d2,d3], u3 = [d3,d4], u4 = [d4,d5],..., um-3 = [dm-3,dm-2], um-2 = [dm-

2,dm-1], um-1 = [dm-1,dm], and um = [dm,dm+1].  

Let 
1 2
, , ...,

k
A A Aɶ ɶ ɶ be fuzzy sets which are linguistic values of 

the data set. Define fuzzy sets 
1 2
, , ...,

k
A A Aɶ ɶ ɶ  on the universe of 

discourse U as follows: 

1Aɶ = a11/u1+a12/u2+a13/u3+...+a1m/um, 

2Aɶ = a21/u1+a22/u2+a23/u3+...+a2m/um, 

...   ... 

kAɶ = ak1/u1+ak2/u2+ak3/u3+...+akm/um, 

Where aij∈ [0,1], 1 ≤ i ≤ k, and 1 ≤ i ≤ m. The value of aij 

indicates the grade of membership of uj in the fuzzy set
i

Aɶ . 

The degree of each data is found out according to their 
membership grade to fuzzy sets. When the maximum 

membership grade is existed in
k

Aɶ , the fuzzified data is treated 

as
k

Aɶ . The fuzzy sets 
1 2
, , ...,

k
A A Aɶ ɶ ɶ  are defined by 

1Aɶ = 1/u1+0.5/u2+0/u3+0/u4+...+0/um, 

2Aɶ = 0.5/u1+1/u2+0.5/u3+0/u4+...+0/um, 

3Aɶ = 0/u1+0.5/u2+1/u3+0.5/u4+...+0/um, 

...   ... 

1kA −
ɶ = 0/u1+0/u2+...+0/um-3+0.5/um-2+1/um-1+0.5/um, 

kAɶ = 0/u1+0/u2+...+0/um-3+0/um-2+0.5/um-1+1/um, 

 The detailed application steps can be described as 
follows: 

Step 1 Collect and arrange the historical data. Define the 
universe of discourse U. Find the mean Dmean and the standard 
deviation σ.  

Step 2 Calculate fuzzy sets which are in the half of the 
standard deviations. Mean of data is located in the middle of 
fuzzy set and upper bound and lower bound is in distance of 
σ/4.  

Step 3 The transformation of data from crisp to fuzzy sets 
by the C-means clustering simulation. 

Step 4 Define the bivariate FLRs. For all fuzzified data, 
derive the FLRs according to Definition 5 such as 

..., A3, N1 → A2; A3, N1 → A3, .... 
Step 5 Organize the bivariate FLRs into groups of same 

LHS fuzzy sets named the FLR Group (FLRG). LHSs of 
groups indicate input value of one period previous data. RHS 
is variety of outputs that experienced in estimation period.  

Step 6 Calculate the prediction outputs. The forecasted 
value at time t, Fvt, is determined by the following three IF-
THEN rules. Assume the bivariate inputs at time t-1 is Ai, Nk. 

Rule 1 IF the FLRG of Ai, Nk does not exist; Ai, Nk →φ , 

THEN the value of Fvt is Ai (Naïve result), and calculate 
centroid of the fuzzy set Ai, which is located on midpoint, for 
inference point forecast.  

Rule 2 IF the FLRG of Ai, Nk is Ai, Nk → Ãk, THEN the 
value of Fvt is Ãk, and calculates centroid of the fuzzy set Ãk, 
which is located on midpoint, for inference point forecast.  

Rule 3 IF the FLRG of Ai, Nk is Ai, Nk → Ãk1, Ai, Nk → Ãk2, 
Ai, Nk → Ãk2,..., Ai, Nk → Ãkp, and THEN the value of Fvt is 
calculated as follows: 

1 2
...

k k kp

t

A A A
Fv

p

+ + +
=
ɶ ɶ ɶ

            (7)

 

and calculate centroid of the resulting fuzzy set, which is the 
arithmetic average of mk1, mk2,...,mkp, the midpoints of uk1, 
uk2,...,ukp, respectively.  

Step 7 The adjustment of the forecasted value is performed 
by minimizing the error metrics (See the next section). The 
adjustment coefficient, β, is calculated. 

D.  Error Metrics 

The performance verification of the proposed method is 
evaluated by using the root mean squared error (RMSE) which 
frequently used in forecasting science. The RMSE metric 
gives an average deviation interval, and increases effects of 
larger errors by squares of them. Eq. (8) indicates the RMSE 
function. 
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1
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Y t Fv
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n
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  (i=1, 2… n)     (8) 
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III.  EMPIRICAL STUDY AND APPLICATION 

The VAR-FILF model is used to forecast the time charter 
rates of Panamax and Handymax bulk carriers. The proposed 
method is applied to the first order differencing of raw data 
because it ensures stationary of data [5] .The application of the 
VAR-FILF model is applied step by step as follows. 

Step 1 Data of time charter rates between January-2004 and 
December-2010 is collected and the first differences (d=1) of 
the sample period are computed (Table I). State the universe 
of discourse of U. Let Dmin and Dmax be the minimum time-
charter rate and maximum time-charter rate of known first 
differences of data. The universe of discourse U is defined by 
U= [Dmin-D1, Dmax+D2], where D1 and D2 are two appropriate 
small numbers. The D1 and D2 are based on the round-down 
and round-up process respectively in three decimal on left. 

UPANAMAX= [-20813-187, 8895+105] = [-21000, 9000] 
UHANDYMAX = [-14363-637, 13250+750] = [-15000, 15000] 

 
TABLE I 

RAW DATA OF TIME CHARTER RATES AND THEIR FIRST DIFFERENCES 

Date     PANAMAX Time charter   HANDYMAX Time charter 
    Raw data   d=1     Raw data    d=1 
Jan-04  45719          29828     
Feb-04  46875    1156     32094    2266 
Mar-04  43219    -3656     31391    -703 
  .        .           .           .       .  
  .       .             .          .        . 
   .       .           .           .        .  
Oct-10  22313    -1688     19500    -1188 
Nov-10  21063    -1250     18688    -813 
Dec-10  19000    -2063     17875    -813 

 
Step 2 In Table II, the descriptive statistics of time-charter 

data of the first order differenced PANAMAX and 
HANDYMAX series are indicated. Standard deviation is 
calculated and the half of the standard deviation which is 
approximately 2000 is used for finding the first length of the 
interval of the Panamax and the Handymax (Table II). 

 
TABLE II 

RAW DATA OF TIME CHARTER RATES AND THEIR FIRST DIFFERENCES 

      1st diff. of PANAMAX   1st diff. of HANDYMAX 
Minimum value   -20813        -14363   
Maximum value    8895         13250  
No of data     84          84    
Standard dev.    4751        4228  
 

Step 3 Determine the first length of interval for the fuzzy C-
means clustering. In this case, there are fifteen intervals for the 
time charter rates for Panamax and Handymax bulk carriers. 
The initial intervals of the Panamax are defined as u1=[-
21000,-19000], u2=[-19000,-17000], u3=[-17000, -15000], 
u4=[-15000, -13000], u5=[-13000,-11000], u6=[-11000, -9000], 
u7=[-9000, -7000], …, u13=[3000,5000], u14=[5000,7000], 
u15=[7000,9000].  The initial intervals of the Handymax are 
calculated as u1=[-15000,-13000], u2=[-13000,-11000], u3=[-
11000, -9000], u4=[-9000, -7000], u5=[-7000,-5000], u6=[-
5000, -3000], u7=[-3000, -1000], …, u13=[9000,11000], 
u14=[11000,13000], u15=[13000,15000]. 

The termination criterion is defined as the ε ≤ 0.001 in the 
C-means optimization; the midpoints of each cluster for the 
Panamax and Handymax are as follows: 

For the Panamax; m1=-19131, m2=-13225, m3=-8493, m4=-
5074, m5=-3413, m6=-2006, m7=-964, m8=-195, m9=244, 
m10=884, m11=1420, m12=2013, m13=3997, m14=7870 and 
m15=3000. 

For the Handymax; m1=-12879, m2=-11309, m3=-6786, 
m4=-4509, m5=-2969, m6=-1205, m7=-660, m8=67, m9=1126, 
m10=1766, m11=1766, m12=2531, m13=3975, m14=7631 and 
m15=12748. 

Step 4 & 5 Classify the FLRs into groups. The LHSs of the 
groups indicate the input value, which is the first order 
differencing of one period of previous data. The RHSs is the 
variety of the outputs that were exposed in the forecasting 
period. Table III shows FLRGs for Panamax and Handymax 
respectively. 

Step 6 Calculate the forecasting outputs of the first 
difference series based on the rules in the Step 6 of the Section 
2.3. The forecasted raw data is calculated by using the 
forecasted value of the first difference dataset as follows: 

 
Fvt (raw) = Y(t)+ Fvt (differenced data)            (9) 

 
TABLE III 

FUZZY LOGICAL RELATIONSHIP GROUPS BASED ON THE FIRST ORDER 

DIFFERENCING 

Panamax, Ã 
Ã1, Ñ1 → Ã2 
Ã1, Ñ2 → Ã1 
...  
Ã5, Ñ5 → Ã3, Ã6 

Ã5, Ñ6 →  φ  

...  
Ã15, Ñ13 → Ã15 
Ã15, Ñ14→ Ã9 

Ã15, Ñ15→ φ  

Handymax, Ñ 
Ñ1,  Ã1→ Ã2 

Ñ1, Ã2→ φ
 

...  
Ñ5,  Ã5 → Ñ3, Ñ5  
Ñ5,  Ã6→ Ñ6, Ñ8 

...  

Ñ15,  Ã13 → φ  

Ñ15,  Ã14→ φ
 

Ñ15,  Ã15→ φ
 

 
Step 7 Estimate the adjustment process. The β coefficient is 

calculated by minimizing the error metrics. For both Panamax 
and Handymax series, the β coefficient is estimated as 0.05 
(in-sample) which indicates the series are broadly independent 
from the current fluctuations.  

A. The Application of Benchmark Methods 

For the comparative analysis, a group of benchmark 
methods are selected from the conventional time series 
analysis. The Box-Jenkins type autoregressive integrated 
moving average (ARIMA) and vector autoregressive models 
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(VAR) are performed to the intended data and the accuracy of 
these approaches is also presented. As a base method, Naïve I 
results are also introduced.  

Table IV indicates descriptive statistics for the Panamax 
and Handymax time charter rates. The standard deviation, 
kurtosis and the coefficient of variation indicates that datasets 
are relatively stabilized and a volatility model is not required. 

 
TABLE IV 

DESCRIOTIVE STATISTIC OF HANDYMAX AND PANAMAX TIME CHARTER 

SERIES (2004M01-2010M12) 

          Handymax TC   Panamax TC 
Mean       28722.69      33928.13 
Median     23940.63      26618.75 
St. Dev.     14652.50      18936.20 
Maximum    66687.50      79625.00 
Minimum    10887.50      11687.50 
Skewness    1.280       1.213 
Kurtosis     3.552       3.310 
C.V.*      0.510       0.558 
*Coefficient of variation  
 

For the stationarity testing, the conventional Augmented 
Dickey-Fuller [31] process is applied and Both series are I(1) 
and further analysis is performed with the first order 
differenced series. 

For the lag order selection in VAR model, cumulative test 
statistics are calculated by E Views 6.0 software. Table V 
introduces the results of VAR lag order test and a group of 
statistics is indicated. Akaike information criterion (AIC) [32], 
Schwarz Bayesian information criterion (SBIC) [33] and 
Hannan-Quinn (HQ) [34] test statistics strongly indicate that 
the second order lag is the most significant structure. 
 

TABLE V 
UNIT ROOT TEST OF THE HANDYMAX AND PANAMAX TIME CHARTER SERIES 

(2004M01-2010M12) 

Lag  Log likelihood  AIC   SBIC   HQ 
1   -1416.95    37.39   37.51   37.44 
2   -1396.89    36.97*  37.21*  37.06* 
3   -1396.53    37.06   37.43   37.21 
4   -1395.94    37.15   37.65   37.35 
*Minimum of the column. 

 
Table VI presents the model estimations for ARIMA (2,1,0) 

and VAR(2) functions. The order of AR and MA terms are 
based on the partial autocorrelations and autocorrelations. 
Most of the explanatory variables are significant at 5% except 
dHTC(-1) in VAR model of dPTC, dPTC(-2) in VAR model 
of dHTC and dHTC(-2) is significant at 10% in VAR model of 
dPTC. Panamax models are relatively more accurate than 
Handymax models according to higher levels of R-squared 
statistics. Standard errors are around 1-1.5 times of standard 
deviation which exposes the weakness of the models. White 
[35] test for heteroscedasticity and Breusch-Godfrey [36]-[37] 
serial correlation tests confirm the randomness of residuals. 
Since the models are in autoregressive form, the Durbin-
Watson (DW) [38]-[39] statistics are just for information 
(Durbin-Watson statistics also confirms the white-noise 
principle in residuals). Breusch-Godfrey test results are more 
robust and preferable for the intended model.  

Granger causality-Block exogeneity Wald test is performed 
for the VAR models. Panamax series is found a strong 
Granger-cause of Handymax series while Handymax series is 
a weak Granger-cause of Panamax series. From these 
indications, causality is found stronger from upper tonnage to 
lower tonnages (Table VII). 

 
TABLE VI 

DESCRIOTIVE STATISTIC OF HANDYMAX AND PANAMAX TIME CHARTER 

SERIES (2004M01-2010M12) 

OLS 2004M01-2010M12 
      ARIMA (2,1,0)     VAR (2)    

Regressor  dHTC   dPTC    dHTC    dPTC   
dHTC (-1)  0.79* (7.61)  -     0.330* (2.68) -0.18 (-1.60) 
dPTC (-1)  -     1.14*(11.89) 0.61* (4.93)  1.28* (10.85) 
dHTC (-2)  -0.35*(-3.42) -     -0.33*(-2.74) 0.21** (1.866) 
dPTC (-2)  -     -0.49*(-5.11) -0.10 (-0.76) -0.63*(-4.766) 
 
S.E.     3248.11  2669.67    2778.20   2624.58 
R-squared   0.42    0.69    0.59    0.71 
Log-Likelihood  -768.87  -752.98    -755.17   -750.56 
AICa     19.03    18.64    18.74    18.63 
SBICb     19.09    19.70    18.86    18.74 
DWc     1.93    1.96    2.01    2.00 
Whited (p)   17.40 [0.00]  3.36 [0.02]  12.65 [0.00]  9.19 [0.00] 
Breusch-Godfrey test(p)  0.40 [0.66] 0.17 [0.83]  0.08 [0.92]  0.33 [0.72] 
 
Figures in parenthesis under estimated coefficients are t-statistics.  * and ** 
refer to the significance at the 5% and 10% levels respectively. Figures in 
brackets are p-values.  
a Akaike Information Criterion.  
b Schwarz Bayesian Information Criterion. 
c Durbin-Watson statistics. 
d Test of residual heteroschedasticity. 

 
TABLE VII 

VAR GRANGER CAUSALITY -BLOCK EXOGENEITY WALD TEST  (2004M01-
2010M12) 

Excluded   Chi-sq  df p 
dPTC     30.98   2 0.000  (Depended variable dHTC) 
dHTC     4.74   2 0.093  (Depended variable dPTC) 

 
The traditional FTS methods are applied according to the 

related literature and the results are presented for the 
univariate FTS (cFTS) and bivariate FTS (Bi-cFTS) structure. 

IV.  RESULTS 

Table VIII shows the RMSE results of the final models. The 
results explicitly indicate that the VAR-FILF model is 
superior in both series. The classical VAR (2) model is 
relatively better than other benchmark methods for in-sample 
accuracy. The classical FTS method of Chen does not perform 
better than the classical time series methods. Most of the FTS 
studies do not compare its accuracy among the classical 
econometrical methods and just focus on accuracy in the FTS 
literature. However, the presented results strongly indicate that 
the FTS method must be checked with the classical time series 
approach; otherwise FTS methods are unnecessary processes. 
The VAR-FILF model can be used in automatic clustering, 
reasoning and extrapolation mode. The number of VAR lags 
can also be defined by optimization of the sum of squared 
errors or RMSE metric itself. Pre-condition tests such as the 
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automated lag order selection by AIC and SBIC are also time-
saving and robust alternatives. 
 

TABLE
COMPARISION OF THE RMSE ACCURACY FOR HANDYMAX AND PANAMAX  

TIME CHARTER RATES (2004M01:2010M12). 

       Handymax TC     Panamax TC     
VAR-FILF    1458.58*1      1167.85*1  
Bi-cFTS     3805.29       7880.39   
cFTS      4577.67       4732.06   
ARIMA (2,1,0)   3207.76       2636.51   
NAÏVE I    4205.86       4733.57   
VAR (2)     2708.74*2      2558.96*2  
*1 Minimum of the column. *2 The second minimum of the column. 

 
The possible reason of this outcome is depending on the 

consistency of causality which is discussed in the previous 
section. While the Panamax series is a strong cause of the 
Handymax series, the opposite direction is weakly consistent. 
Therefore, the Bi-cFTS model obtains an additional accuracy 
by reducing the squared errors. 

V.  CONCLUSION 

In this study, the classical fuzzy time series forecasting 
method is extended by used VAR-FILF methods to improve 
the accuracy of forecasting. In addition, the C-means 
clustering method is proposed to optimize the distributions of 
the cluster sets and the half of the standard deviation is 
implemented for the initial intervals of the C-means clustering. 
The forecasting results of the VAR-FILF approach are 
compared with mostly used FTS methods and traditional time 
series analysis and the VAR-FILF method has found superior 
than benchmark methods.  

The empirical study is related to Handymax and Panamax 
time charter rates as they play significant roles in the shipping 
economy [40].  
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