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A Fuzzy Predictive Filter for Sinusoidal Signals 

with Time-Varying Frequencies 
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Abstract Prediction of sinusoidal signals with time-varying 

frequencies has been an important research topic in power elec-

tronics systems. To solve this problem, we propose a new fuzzy 

predictive filtering scheme, which is based on a Finite Impulse 

Response (FIR) filter bank. Fuzzy logic is introduced here to pro-

vide appropriate interpolation of individual filter outputs. There-

fore, instead of regular ‘hard’ switching, our method has the ad-

vantageous ‘soft’ switching among different filters. Simulation 

comparisons between the fuzzy predictive filtering and conven-

tional filter bank-based approach are made to demonstrate that the 

new scheme can achieve an enhanced prediction performance for 

slowly changing sinusoidal input signals.  

Keywords Predictive filtering, fuzzy logic, sinusoidal signals, 

time-varying frequencies. 

I. INTRODUCTION

 During recent years, sinusoidal predictive filters have 

been studied to deal with primary sinusoidal waveforms in 

electric power systems [1]. As we know, the frequencies of 

these signals can somewhat deviate from the nominal val-

ues 50 or 60 Hz. Typically, a %2  frequency variation 

exists in the Western European power networks. For exam-

ple, the frequency of a sinusoidal voltage signal could in-

crease from 49 to 51 Hz, and then decrease to 49 Hz within 
a lengthy time period. Unfortunately, fixed sinusoidal pre-

dictive filters are not robust to these frequency variations 

[2]. In other words, a filter designed for a specific fre-

quency may not give satisfactory performance when facing 

different frequencies. Therefore, it is important but chal-

lenging to develop other filtering strategies that can provide 

efficient prediction of sinusoidal signals with time-varying 

frequencies. In the current paper, based on the fusion of 

fuzzy logic and FIR filters, we propose an alternative fuzzy 

predictive filtering approach, which is demonstrated to out-

perform the conventional methods concerning their prediction 

capabilities.  

 This paper is organized as follows. In Section II, a brief in-

troduction of sinusoidal predictive filters is given. We also dis-

cuss the conventional filter bank-based solution to the aforemen-

tioned time-varying frequency problem. The new predictive 

fuzzy filtering scheme is presented in Section III. In the follow-

ing section, we make performance comparisons between the fil-

ter bank-based method and our new method using computer 

simulations. Finally, some conclusions are drawn in Section V.  

II. PREDICTIVE FILTERS FOR SINUSOIDAL SIGNALS WITH TIME-

VARYING FREQUENCIES

A. Sinusoidal Predictive Filters 

 A discrete sinusoidal signal )(nx , free of noise, can be repre-

sented as follows: 

fnnx 2sin)( ,                                (1) 

where f  is the nominal frequency, and  is an arbitrary phase 

shift. Our goal here is to design an FIR filter that can give a p-

step ahead prediction of )( pnx , based on only the N  cur-

rently available samples: )1(,),1(),( Nnxnxnx , where 

N  is the filter length. Thus, the output of this sinusoidal predic-

tive filter )(ny  is written: 
1

0

1

0

)(2sin)()()()(
N

k
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k

knfkhknxkhny ,    (2) 

in which )(kh  ( 1,,1,0 Nk ) are the filter coefficients. To 

make an exact prediction of )( pnx  for any n , the equation 

below must hold: 
1

0

)(2sin)()(2sin
N

k

knfkhpnf .       (3) 

With (3) and other necessary constraints, such as removal of the 

dc component in practical )(nx , under consideration, the well-

known method of Lagrange multipliers [3] can be used to obtain 

the optimal )1(,),1(),0( Nhhh . Nevertheless, detailed deriva-

tion is beyond the discussion scope of our paper. Readers are 

referred to [2] for further information, where the filter parame-

ters with 2p  and 22N  were drawn. Note that the nominal 

frequency f  plays a crucial role in the optimization of 

)1(,),1(),0( Nhhh . This makes the filter prediction accuracy 
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sensitive to its value. Unfortunately, in practice, f  can 

slowly change with time. Hence, the performance of fixed-
parameter sinusoidal predictive filters may deteriorate un-

der the circumstance of input signals with time-varying 

frequencies.  

B. Sinusoidal Predictive Filter Banks

To cope with the above problem, Vainio and Ovaska 

have proposed an efficient filter bank-based solution [4], 

whose principal structure is shown in Fig. 1. In Fig. 1, 

)(nx  is the sinusoidal signal with a varying frequency 

)(nf :

nnfnx )(2sin)( .                         (4) 

In case )(nf  is unknown beforehand, )(ˆ nf  can be the 

instantaneous estimate from )(nx . There are totally M

sinusoidal predictive filters in this filter bank. 

MFilter,,2Filter,1Filter  are the filters designed at tar-

geted frequencies of 
M

fff ,,,
21

, respectively. Derivation 

of the coefficients for these filters follows the same princi-

ples mentioned earlier. Normally, 
M

fff ,,,
21

 should 

cover the actual variation range of )(nf . )(ny  is a multi-

step ahead prediction of )(nx  from the filter bank output.  

)(nx

Filter 1

Filter 2

Filter M

)(ny

Frequency

Estimation

)(ˆ nf

Filter

Selection
)(1 ny

)(2 ny

)(nyM

Fig. 1. Sinusoidal predictive filter bank.  

 Based on the estimated input frequency )(ˆ nf , )(ny  is 

switched among different predictive filters as follows:  

  IF 
2

)(ˆ
2

11 iiii
ff

nf
ff

THEN )()( nyny
i

,                                                         (5) 

where 1,,3,2 Mi . Particularly, 

  IF 
2

)(ˆ 21
ff

nf

THEN )()(
1

nyny ,                                                         (6) 

and

  IF 
2

)(ˆ 1 MM
ff

nf

THEN )()( nyny
M

.                                                                (7) 

In [3], the authors design such a filter bank that consists of nine 

sinusoidal predictive filters, and the frequency coverage is 

Hz51,Hz49  with a 2% variation of the nominal frequency 50 

Hz. It has been successfully employed in the application of line 

frequency zero-crossing detection.  

Although the idea of this filter bank-oriented approach is 

simple and straightforward, it has some obvious drawbacks. For 

instance, at each sampling point, only one filter in the whole 

filter bank is activated, while the contributions from other filters 

are all neglected. It could be expected that an improved perform-

ance is acquired using an appropriate interpolation among the 

outputs of relevant filters. Moreover, the filter bank size grows 

significantly with the desired prediction accuracy, and can, there-

fore, suffer from the ‘curse of dimensionality’. In the next sec-

tion, we propose a fuzzy predictive filtering scheme to handle 

these difficulties.  

III. PREDICTIVE FUZZY FILTERING

During the past decade, fuzzy logic has found numerous suc-

cessful applications in the area of signal processing [5] [6]. 

Compared with the conventional FIR and IIR filters, fuzzy filters 

indeed have a few unique characteristics, such as adaptation and 

prediction [7]. In this section, we introduce a fuzzy logic-based 

predictive filtering scheme, as illustrated in Fig. 2. 

MFilter,,2Filter,1Filter  are the regular sinusoidal predictive 

filters at frequencies 
M

fff ,,,
21

. However, our method utilizes 

fuzzy inference to produce interpolated prediction from some 

simultaneously activated filters. More precisely, we first define 

M  fuzzy membership functions 
M

,,,
21

 for individual 

frequencies of 
M

fff ,,,
21

, respectively. 
M

,,,
21

 need to 

not only cover the frequency variation range but also overlap 

with each other. Fig. 3 shows an example of the five Gaussian 

membership functions case: 
521

,,,  ( 5M ), and the fre-

quency range is 49-51 Hz, i.e., Hz49
1

f , Hz5.49
2

f ,

Hz50
3

f , Hz5.50
4

f , and Hz51
5

f .
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Fig. 2. Fuzzy logic-based sinusoidal predictive filtering.  
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Fig. 3. Fuzzy membership functions for frequencies of si-

nusoidal input signal. 

 In Fig. 2, similarly with a Sugeno fuzzy model [8], the 

normalized inference output )(nw
i

 for the estimated fre-

quency )(ˆ nf  is calculated separately: 

)(ˆ)( nfnw
ii

,                               (8) 

and

M

j

j

i

i

nw

nw
nw

1

)(

)(
)( ,                            (9) 

where Mi ,,2,1 . Therefore, at sampling point n , the 

output )(ny
i

 of each filter is weighted by corresponding 

)(nw
i

 in the final prediction of our fuzzy filtering )(ny :
M

i

ii
nynwny

1

)()()( .                     (10) 

 From the above descriptions, it is apparent that with the 

deployment of fuzzy membership functions for input fre-

quencies, our scheme has the distinguished feature of ‘soft’ 

instead of ‘hard’ switching among available filters. In other 

words, depending on the grade of membership, each filter 

plays its partial role in the system prediction output, which 

is different from the principles of the aforementioned filter 

bank-based approach. Taking full advantage of all the pre-

dictive filters, this strategy can not only effectively enhance 

the prediction accuracy of an existing filter bank, but also 

reduce the bank size, while still maintaining an acceptable 

performance. Actually, membership functions 

M
,,,

21
 provide greater flexibility for designing our 

predictive filtering system. In addition, parameters of 

M
,,,

21
, such as centers and widths, could be adap-

tively trained, based on some Back-Propagation (BP) learn-

ing algorithm [9]. This would result in the remarkable ca-

pability of tracking even rapidly changing frequencies. 

Simulations are made to demonstrate the efficiency of our 

method in Section IV.  

IV. SIMULATIONS

 In the simulations, we verify the effectiveness of the pro-

posed fuzzy predictive filtering scheme, and further make com-

parisons with the conventional filter banks. The sinusoidal input 

signal with time-varying frequencies )(nx  is sampled at 1.67 

kHz. The nominal frequencies are in the range of %1Hz50 .

More specifically, in our case, )(nf  grows from 49.5 Hz to 50.5 

Hz during a period of 2 seconds, as shown in Fig. 4.  

Fig. 4. Time-varying )(nf  of sinusoidal input signal )(nx .

 We first choose two different filter banks, one with five and 

the other with three two-step ahead sinusoidal predictive filters. 

For the five-filter bank, filters are designed at frequencies of 49.5 

Hz, 49.75 Hz, 50 Hz, 50.25 Hz, and 50.5 Hz, respectively. These 

targeted frequencies can fully cover the above variation range, 

and filter coefficients are quoted from [3]. On the other hand, 

only the three filters associated with the frequencies of 49.75 Hz, 

50 Hz, and 50.25 Hz are selected in our three-filter bank. It 

should be pointed out that in order to simplify the presentation, 

we assume that input frequency )(nf  is exactly known in ad-

vance without any estimation. That is, switching among filters is 

based on )(nf  instead of )(ˆ nf . To put it into more details, the 

switching policy of the five-filter bank is as follows: 

IF Hz625.49)(nf  THEN switch to filter designed at 49.5 Hz, 

IF Hz875.49)(Hz625.49 nf  THEN switch to filter de-

signed at 49.75 Hz, 

IF Hz125.50)(Hz875.49 nf  THEN switch to filter de-

signed at 50 Hz, 

IF Hz375.50)(Hz125.50 nf  THEN switch to filter de-

signed at 50.25 Hz, 

IF Hz375.50)(nf  THEN switch to filter designed at 50.5 Hz. 

Similarly, the three-filter bank behaves like: 

IF Hz875.49)(nf  THEN switch to filter designed at 49.75 

Hz,
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IF Hz125.50)(Hz875.49 nf  THEN switch to filter 

designed at 50 Hz, 

IF Hz125.50)(nf  THEN switch to filter designed at 

50.25 Hz. 

 The Sum Squared Prediction Error (SSPE) is used to 

evaluate the predictive filtering performances: 
L

n

nynx
22

2
)()2(SSPE ,              (11) 

where L  is the number of samples ( 340,32670,1L

here). Figs. 5 and 6 illustrate the prediction errors of the 

five-filter and three-filter banks, respectively. It is clearly 

visible that prediction error of the former is smaller than 

that of the later. Hence, a higher prediction accuracy could 

be reasonably acquired with more such filters involved.  

Fig. 5. Prediction error of five-filter bank. 

Fig. 6. Prediction error of three-filter bank. 

 Next, our fuzzy predictive filtering scheme is examined 

based on the same sinusoidal input signal. Those filters in 

the three-filter bank are used again, and three membership 

functions, 
1
,

2
, and 

3
, are defined at the filter fre-

quencies of 49.75 Hz, 50 Hz, and 50.25 Hz, as depicted in 

Fig. 7. We would like to emphasize that the membership func-
tion parameters are manually chosen and fine-tuned, which result 

in the prediction error in Fig. 8. Comparing Fig. 6 with Fig. 8, 

we can find out the prediction improvement of our fuzzy filtering 

method mainly lies in the ‘mid-frequency’ band, from around 

49.8 Hz to 50.1 Hz. This is exactly the same overlapping area 

among the three frequency membership functions 
1
,

2
, and 

3
, refer to Fig. 7. As a matter of fact, the advantage of the pro-

posed filtering scheme is due to the unique interpolation of fuzzy 

membership functions that provides appropriate weightages for 

individual predictive filter outputs. However, the add-on mem-

bership functions also lead to an increased computation com-
plexity.  

Fig. 7. Fuzzy membership functions for filter frequencies. 

Fig. 8. Prediction error of fuzzy filtering scheme. 

 The SSPEs of the five-filter bank, three-filter bank, and our 

fuzzy filtering scheme are given in Table I. Table I shows intro-

duction of fuzzy logic in the three-filter bank effectively en-

hances its prediction accuracy (about 10%). Thus, it can be con-

cluded that fuzzy filtering is indeed complementing rather than 

competitive with the existing filter banks-based approaches. Ad-
ditionally, adaptation methods for the parameters of those mem-

bership functions, such as the well-known Least Square Estima-
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tion (LSE) [10] and Evolutionary Programming (EP) [11], 
could be promising to further improve the prediction per-

formance as well as on-line tracking of sinusoidal input 

signals with fast time-varying frequencies.  

Table I. SSPEs of five-filter bank, three-filter bank, and 

fuzzy filtering scheme. 

Filtering 
Systems 

Five-Filter 
Bank

Three-Filter 
Bank

Fuzzy 
Filtering 

SSPE 0.6153 0.7723 0.6919 

IV. CONCLUSIONS

 In this paper, we proposed a fuzzy predictive filtering 

scheme for the prediction of sinusoidal signals with time-

varying frequencies. Our approach has the remarkable fea-

tures of intuitive principle and simple structure. Simula-

tions demonstrate that better prediction results can be 

achieved by employing fuzzy logic in the conventional 

filter banks. Adaptive learning algorithms for this method 

[12] to track fast changing input signals are currently under 

development, and results will be reported in the future.  
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