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Abstract—In this paper, we present a new segmentation approach 

for liver lesions in regions of interest within MRI (Magnetic 

Resonance Imaging). This approach, based on a two-cluster Fuzzy C-

Means methodology, considers the parameter variable compactness 

to handle uncertainty. Fine boundaries are detected by a local 

recursive merging of ambiguous pixels with a sequential forward 

floating selection with Zernike moments. The method has been tested 

on both synthetic and real images. When applied on synthetic images, 

the proposed approach provides good performance, segmentations 

obtained are accurate, their shape is consistent with the ground truth, 

and the extracted information is reliable. The results obtained on MR 

images confirm such observations. Our approach allows, even for 

difficult cases of MR images, to extract a segmentation with good 

performance in terms of accuracy and shape, which implies that the 

geometry of the tumor is preserved for further clinical activities (such 

as automatic extraction of pharmaco-kinetics properties, lesion 

characterization, etc.). 

 

Keywords—Defuzzification, floating search, fuzzy clustering, 

Zernike moments.  

I. INTRODUCTION 

IVER tumor segmentation is an important prerequisite for 

surgical interventions planning. However, the major 

difficulty in liver tumor segmentation is low contrasted 

boundaries and large variability of shape, size, and location 

presented by the tumor in the liver. Thus, high performance 

segmentation methods should be capable to deal with the high 

variation in shape and gray value of the liver [11]. Among 

image segmentation methodologies, fuzzy set theory has 

become increasingly attractive due to its ability to alleviate 

image ambiguity. Fuzzy C-Means (FCM) is one of the most 

well-known algorithms to partition medical images into non-

overlapping and consistent regions that are homogeneous with 

respect to some characteristics such as texture, intensity, etc. 

However, in spite of its computational efficiency and wide 

spread prevalence, it does not take the spatial information into 

consideration, and thus may result in low robustness to noise 

and less accurate segmentation. 

In this paper, we propose a new liver tumor segmentation 

approach that considers two clusters: the lesion and the 

surrounding tissue. FCM clustering is used due to its ability to 
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deal with different types of uncertainty and treat overlapping 

clusters. This method considers both local and global 

information. In the FCM variational formulation, we introduce 

the Variable Compactness parameter per cluster that considers 

the geometry of the objects, or in other words, the fuzziness in 

the spatial domain. This parameter captures different variances 

of the clusters in a non-linear way, and thus improves the 

robustness of the clustering process. The cluster affection is 

done by an adaptive sequential forward floating selection 

(SFFS) approach that considers Zernike moments to maximize 

the intra-cluster similarity, which we consider as an originality 

and a main contribution in the proposed approach, illustrated 

in Fig. 1. 

 

 

Fig. 1 Proposed approach 
 

The paper is organized as follows: Section II depicts how 

image enhancement was conducted in the proposed approach; 

Section III talks about FCM and its variant with Variable 

Compactness; Section IV describes how defuzzification is 

performed by sequential forward floating selection with 

Zernike moments; results are shown in Section V; and the 

paper is concluded in Section VI. 

II. IMAGE ENHANCEMENT 

The purpose of this process is to improve the 

interpretability of the information contained in the image for 

human viewers, or to provide a better input for some image 

processing process [6]-[8]. In this paper, two image 

enhancement techniques have been utilized: Top-hat filtering 

and contrast stretching. 

The top-hat filter is defined as the residue of the original 

image and its opened version [2]. It is used to select objects 

that are darker (or brighter) than the local background for 

retention or removal. The top hat compares the darkest pixel in 

the inner region to the darkest pixel in the surrounding 
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neighborhood. If the difference between those two pixels is 

greater than some threshold value, the pixel is kept, otherwise, 

it is not. This allows the selection of features based on size 

(defined by the inner region), contrast (the required difference 

in pixel values), and separation (width of the brim) [4]. 

Contrast stretching is a technique that enlarges the image’s 

contrast, stretching the histogram to fill the full dynamic range 

of the image. With this technique, the histogram of an image 

would be expanded to cover all ranges of pixels [3], [5]. This 

technique improves the contrast of the image, such that it 

extends the intensity range of an image with a fixed ratio 

(highest pixel value / lowest pixel value) [5]. 

III. FCM WITH VARIABLE COMPACTNESS 

A. Fuzzy C-Means 

Let { }1
,..., ,...,

i n
X x x x= be the set of n objects (i.e. set of 

pixels ����, ���, … , ���	 , �	�: � ∈ 
1, … ,��	���	� ∈ �1,… , ��, and 

{ }1,..., ,...,i nV v v v=  be the set of c  centroids in a p-dimensional 

feature space. Fuzzy C-Means partitions � into � clusters by 

minimizing the following objective function [1]: 
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FCM starts by randomly choosing � objects as centroids 

(means) of the � clusters. Memberships are calculated based 

on the relative distance (e.g. Euclidean distance) of the object 

x j to the centroids using (3). After the memberships of all 

objects have been found, the centroids of the clusters are 

calculated using (2). The process stops when the centroids 

from the previous iteration are identical to those generated in 

the current iteration [1]. 

B. FCM with Variable Compactness (FCMVC) 

FCMVC [6] is an enhancement to FCM, where a new 

geometric shape descriptor, the compactness , 1, ...,
i

p i c= , is 

introduced, which captures different variances of the clusters 

(i.e. captures additional information of the underlying 

clusters), and thus, provides better clustering quality. The 

minimization (energy) function thus becomes as [6]: 

 

( )22
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The membership function now becomes: 
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As pi decreases, memberships increase for a fixed
j i
−x v . 

This implies that pi is a measure of compactness of cluster i . 

The variable compactness parameter is chosen to be large for 

small classes and small for large classes [6]. 

IV. DEFUZZIFICATION BY SFFS AND ZERNIKE MOMENTS 

In fuzzy clustering, the minimization of the functional J, 

given in (1), leads to partitions characterized by the 

membership degree matrix. A defuzzification is thus needed to 

obtain the final segmentation. Usually, the data is attributed to 

the class having the highest membership degree. In medical 

imaging, this method does not give appropriate results because 

lesion borders are often not clearly defined. 

The key point of this step is the calculation of the optimum 

threshold of the membership degree to obtain a consistent 

segmentation. For this purpose, we have introduced in [10] a 

novel defuzzification approach that considers two sets: the 

support (a crisp set of pixels having positive memberships) 

and the core (a crisp set with pixels having a membership 

equals to 1 which are certainly inside the object). A Sequential 

Forward Floating Selection (SFFS) procedure was then 

performed. This procedure is an iterative region growing 

approach. It is a bottom-up search procedure, where new 

pixels from the support set are added through applying 

Sequential Forward Selection (SFS), by starting from the core 

set, followed by a series of successive conditional exclusions 

of the worst feature in the newly updated set [7]. For 

conditional exclusions, Zernike moments [8] were employed 

as we will see below. 

A. Zernike Moments 

Moment descriptors have been studied for image 

recognition and computer vision since the 1960s [13]. The use 

of Zernike moments to overcome the shortcomings of 

information redundancy present in geometric moments was 

first introduced by Teague [14] [16]. 

Zernike moments are orthogonal moments (i.e. no 

redundancy or overlapping of information exist between the 

moments) based on Zernike polynomials. They are the 

mappings of an image onto a set of Zernike polynomials [17]. 

What distinguishes Zernike moments is the invariance of their 

magnitude with respect to rotation (i.e. independent of the 

rotation angle of the object), and can thus be utilized in 

describing the shape characteristics of objects [9], [17]-[18]. 
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Given the ordered pair ( ),m n that represent the Zernike 

polynomial order and the multiplicity (i.e. repetition) of its 

phase angle, the Zernike moment can be defined as follows 

[9]: 
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are the image pixel radial vector and angle between that vector 

and the X-axis, respectively. 

The term 
nm

R  shown in the following equation is the 

Zernike polynomial. 
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The Zernike moment 
nm

Z for an image ����	 , �	�: 1 ≤ � ≤

�, 1 ≤ � ≤ �� can be calculated as [9]: 
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where 0,1, 2,3,...,m = ∞  is the order of the Zernike 

polynomial; n  is the multiplicity of the phase angles in the 

Zernike moment; and 
2 2

1x y+ ≤ . 

B. SFFS and Zernike Moments 

The major contribution of this paper lies in embedding 

Zernike moments in SFFS for the conditional exclusion 

process, used as the defuzzification (i.e. decision) stage. As 

described in the previous section, since Zernike moments are 

independent of the rotation angle of the object, they are useful 

in describing the shape characteristics of the object (i.e. 

tumor). The pseudo-code for this proposed approach can be 

depicted as shown in Algorithm.1. 

Notice that in order for a pixel p to be added to the crisp set, 

it has to meet the following criteria: (i) be a 4-neighbourhood 

of the crisp set (i.e. core); (ii) belongs to the support of the 

fuzzy set, but not to the crisp set; and (iii) minimizes the 

Zernike moment difference between the fuzzy set and the crisp 

set. This defuzzification approach overcomes the drawback 

inherent in defuzzification by α-cut (i.e. a crisp closed interval 

that contains only those points having a membership degree 

� ≥∝;∝∈ 
0,1�, where information is tend to be lost, and thus, 

unable to grasp the sense of uncertainty. It also takes into 

account the spatial relationships (i.e. 4-neighbors of a pixel $). 

 

 

 

Algorithm 1: Defuzzification with Zernike moments 
 
Input grayscale image I 

apply top-hat filter and contrast stretch the image; 

call FCMVC on I /* parameters passed in this step are: input image, 

centroids, exponent (variable compactness), spatial smoothness, 

intensity threshold, and maximum number of iterations*/; 

fuzzySet � I; 

membershipMatrix �  µ; /* µ is the degree of membership */ 

core � h(FuzzySet); /* highest non-empty α-cut  */ 

n �  area(support(FuzzySet)) – area(core (FuzzySet)); 

C0 = core(FuzzySet); /* starting configuration */ 

for i� 1…n do 

Ci � [ ];  /* empty set */ 

end for 
k � 0; 

minimum � initial value; /* temporary initial value, set as 

minimum */ 

while k < n do 

among the pixels p being 4-neighbor of Ck and not in Ck,, and in 

support(FuzzySet): 

/* select the pixel p that minimizes the Zernike moment difference 

between the FuzzySet and the CrispSet */ 

find the Zernike moment of both the fuzzy set and the crisp set; 

diff = |ZernikeMoment(FuzzySet) – ZernikeMoment(CrispSet)|; 

if diff < minimum 

minimum = diff; P=�p�;	
else 

P=�(�; 
end if 

Cnew ← Ck ∪	P; Ck+1 ← Cnew; k ← k+1; 

end while 

V. RESULTS AND DISCUSSION 

The performance of the proposed approach was tested on 

both synthetic images and medical images. We have studied 

five observation criteria [19], thereby highlighting the 

improvements in the segmentation, in terms of precision, 

shape, and information extracted. We relied on precision, 

recall, and the Dice index, all three defining statistically the 

quality of segmentation. We also analyzed the Hamming 

measure, which characterizes the number of disparities. 

Finally, the shape analysis was based on the determination of 

the mean absolute distance (denoted by MAD). 

Precision and recall are defined as: 

 

				Precision =
12

12342
           (10) 

 

				Recall =
12

12348
           (11) 

 

The Dice index is defined as: 
 

		Dice	index = 2 ×
2>?@	A	BC×D?@EFF

2>?@	A	BC3D?@EFF
					       (12) 

     

Hamming measure is defined as: 
 

		�G�H�⟹ HJ� = n − ∑ ���DM∈NM|PJ ∩ P�|DR∈NR
	      (13) 

 

where P� and PJ are segmentation areas in the images H� and 

HJ, respectively. And, � is the number of pixels of one image. 
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The mean absolute distance (MAD), which analyzes the 

contour points, and thus, the shape of the segmentation, is 

defined as: 

 

				MAD�P�, PJ� =
�

U
∑ ‖�W − �W‖
U
WX�       (14) 

 

where �W  and �W are contour points of P� and PJ, 

respectively. 

The parameters used with FCMVC were as follows: two 

clusters (i.e. object or tumor and background), which is the 

number of initial centroids (i.e. two centroids), set to 0 and 

255, respectively, that is, 
0,255�; exponent (variable 

compactness), a � × 1 vector, where � is the number of 

clusters, was set to 
1	1�; spatial (membership) smoothness 

[12] set to 0; intensity threshold (i.e. any intensity value in the 

image equal or below this value is considered a background) 

set to 0; and maximum number of iterations set to 20. The 

Zernike moment used was of degree (i.e. order) “4”, and 

repetition “2”. 

A. Results with Synthetic Images 

Four synthetic images were extracted from the database 

(D1)
1
, which is composed of synthetic images with textured 

and uniform regions. The database includes 8400 images. 

Images used in the study were specifically extracted from the 

Z0[ group, which consists of 100% textured regions. Images 

with 2-textures have been used in this study. Table I shows the 

numerical results obtained for our approach, and Fig. 2 

illustrates them visually. 

In view of the results presented in Table I, we can conclude 

that on such types of images, our approach provides good 

performance. Segmentations obtained are accurate, as shown 

by the index of Dice (close to 100%), their shape is consistent 

with the ground truth and the extracted information is reliable 

(just few disparities). It is important to note here that the 

image enhancement step of the proposed approach was not 

required for the synthetic images. 

B. Results with Medical Images 

Fig. 5 demonstrates how we construct our dataset from the 

original MR images: They are first annotated by a medical 

doctor (Figs. 3 and 4 show the original MR image and the 

medical doctor’s annotations, respectively) so that we keep a 

ROI around the selected tumor. In this figure, a comparison 

between the proposed method with both the graph-cut and 

watershed approaches is also demonstrated. As can be noticed, 

the proposed approach provides a fine segmentation, as 

opposed to the other two approaches, where larger segments 

are obtained. 

In order to apply our method on a concrete case, we studied 

its performance to segment liver tumors within MR images. 

The approach was applied on 8 cropped portions (ROIs) of 

MR liver tumor images. We show the results of four of these 

images, through Table II and Fig. 6. 
 
 

 
 

TABLE I 

NUMERICAL RESULTS FOR SYNTHETIC IMAGES 

 
B0U2R

_2 

B0U2R_7      B0U2R_54   

B0U2R_56 

Precision 99.97% 
99.99%          99.85%         

99.99% 

Recall 

Dice index 

Hamming measure 
MAD 

99.19% 

99.58% 
444 

1.18 

pix. 

99.28%          99.21%         

98.31% 
99.64%          99.53%         

99.15% 

388                 502               
901 

0.97 pix.        2.01 pix.       

3.65 pix. 

 

Initial image Ground truth Result 

B0U2R_2   

B0U2R_7   

B0U2R_54   

B0U2R_56   

Fig. 2 Visual results for synthetic images 

 

 

Fig. 3 Original MR image of Figs. 4, 5 
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Fig. 4 Two tumor annotations of Figs. 3, 5 

 

 

Fig. 5 (a) Original MR image with tumor of interest; (b) Cropped 

tumor (ROI); (c) Graph-cut approach result; (d)Proposed approach 

result; and (e) Watershed approach result 

 

The results obtained on MR images confirm the 

observations of those in the previous subsection. �_� . Our 

approach allows, even for difficult cases such as MRI_2 or 

MRI_3, to extract a segmentation with good performance in 

terms of accuracy and shape, which implies that the geometry 

of the tumor is preserved for further clinical activities (such as 

automatic extraction of pharmaco-kinetics properties, lesion 

characterization, etc.). 
 

TABLE II 

NUMERICAL RESULTS FOR MEDICAL IMAGES 

 MRI_1 
MRI_2           MRI_3          

MRI_4 

Precision 97.63% 
97.77%          93.23%         

95.86% 

Recall 

Dice index 

Hamming measure 
MAD 

99.75% 

98.68% 
379 

2.19 

pix. 

96.50%          99.60%         

99.96% 
97.13%          96.31%         

97.87% 

783                1064              
606 

4.18 pix.        5.17 pix.       

3.47 pix. 

VI. CONCLUSION 

The originality of the proposed approach lies in embedding 

Zernike moments within sequential forward floating selection 

for conditional exclusion, which aids in the decision 

(defuzzification) step in a fuzzy methodology. The approach 

provided an interesting performance. Results of the synthetic 

images were accurate (i.e. index of Dice close to 100%), their 

shape was consistent with the ground truth, and the extracted 

information was reliable (just few disparities). Results 

obtained on MRI images confirm such observations. Our 

approach allows, even for difficult cases of MRI images, to 

extract a segmentation with good performance in terms of 

accuracy and shape. In future studies, we aim at expanding 

this approach to work with synthetic images having more 

complex textures and to improve it for very difficult cases of 

liver tumor extraction. 
 

Fig. 6 Visual results for medical images 
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