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A Further Study on the 4-Ordered Property of Some
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Abstract—Given a graph G. A cycle of GG is a sequence of
vertices of GG such that the first and the last vertices are the same.
A hamiltonian cycle of G is a cycle containing all vertices of G.
The graph G is k-ordered (resp. k-ordered hamiltonian) if for any
sequence of k distinct vertices of G, there exists a cycle (resp.
hamiltonian cycle) in G containing these k vertices in the specified
order. Obviously, any cycle in a graph is 1-ordered, 2-ordered and 3-
ordered. Thus the study of any graph being k-ordered (resp. k-ordered
hamiltonian) always starts with k = 4. Most studies about this topic
work on graphs with no real applications. To our knowledge, the
chordal ring families were the first one utilized as the underlying
topology in interconnection networks and shown to be 4-ordered.
Furthermore, based on our computer experimental results, it was
conjectured that some of them are 4-ordered hamiltonian. In this
paper, we intend to give some possible directions in proving the
conjecture.
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I. INTRODUCTION

E consider finite, undirected and simple graphs only.
WLet G = (V,E) be a graph, where V is the set of
vertices of G and E = {(u,v) | u,v € V} is the set of
edges of G, respectively. Let u,v be two vertices of G. If
e = (u,v) € E, then we say that the vertices u and v are
adjacent in G. The degree of any vertex u is the number of
distinct vertices adjacent to u. N (u) denotes the set of vertices
which are adjacent to u. If |[N(u)| = 3 for any vertex u of
G, then we call G a 3-regular graph. A path P between two
vertices vy and vy, is represented by P = (vg,v1,..., k),
where each pair of consecutive vertices are connected by
an edge. We also write the path P = (vg,vy,...,vx) as
(vo, 1,5+ .., 03, Q, V5,011, ..., Ux), where @ denotes the path
between v; and v;. A hamiltonian path between u and v, where
u and v are two distinct vertices of G, is a path joining u to
v that visits every vertex of G exactly once. A cycle is a path
of at least three vertices such that the first vertex is the same
as the last vertex. A hamiltonian cycle of G is a cycle that
traverses every vertex of GG exactly once. A hamiltonian graph
is a graph with a hamiltonian cycle. A graph G is k-ordered
(or k-ordered hamiltonian, resp.) if for any sequence of k
distinct vertices of G, there exists a cycle (or a hamiltonian
cycle, resp.) in G containing these k vertices in the specified
order. Obviously, any cycle in a graph is 1-ordered, 2-ordered
and 3-ordered. Thus the study of k-orderedness (or k-ordered
hamiltonicity) of any graph always starts with k£ = 4.
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A graph G = (V, E) is a k-ordered hamiltonian-connected
graph if for any sequence of k vertices of G, there exists a
hamiltonian path P between u and v such that P passes these
vertices in the specified order. It can be seen that k-ordered
hamiltonicity and k-ordered hamiltonian-connectedness do not
imply each other.

The concept of k-orderedness and k-ordered hamiltonicity
was first introduced by Ng and Schultz [2] in 1997. See
[2], [3], [4], [5], [6] for example. In [2], the authors posed
the question of the existence of 4-ordered 3-regular graphs
other than the complete graph K4 and the complete bipartite
graph K33. In [5], Meszaros answered the question by
proving that the Petersen graph and the Heawood graph are
non-bipartite, 4-ordered 3-regular graphs. Hsu et al. in [6]
provided examples of bipartite non-vertex-transitive 4-ordered
3-regular graphs of order n for any sufficiently large even
integer n. In 2013, Hung et al. further gave a complete
classification of generalized Petersen graphs, GP(n,4), and
showed the following theorems|[7]:

Theorem 1. [7] Let n > 9. GP(n,4) is 4-ordered hamiltonian
if and only if n € {18,19} or n > 21.

Theorem 2. [7] Let n > 9. GP(n,4) is 4-ordered
hamiltonian-connected if and only if n > 18.

Since Petersen graphs have been well-known and often
provide examples or counterexamples for interesting graphic
properties, the results of [7] and Theorems 1-2 might leave
readers an impression that most 4-ordered graphs are 4-
ordered hamiltonian, and most 4-ordered hamiltonian graphs
are 4-ordered hamiltonian-connected. It could be misleading.
Therefore, the authors intend to study this topic on graphs
with real applications, and the chordal ring networks turn
out to be a good subject. The chordal ring family has been
adopted as the underlying topology of certain interconnection
networks [8] and is studied for the real architecture for parallel
and distributed systems due to the advantage of a built-in
hamiltonian cycle, symmetry, easy routing and robustness. See
[9] and its references.

This paper is organized as follows. In Section II, the formal
definition of the chordal ring networks is given. We introduce
some known results and techniques, which are related to
the study of the 4-ordered properties. Then we propose two
possible methods of proving the following conjecture in
[1], and the difficulties it may encounter. Finally, a brief
conclusion is given in Section III.
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Fig. 1. CR(12;1,5)

Conjecture 1. [1] CR(n;1,5) is a 4-ordered hamiltonian
graph if n =14, n = 12k + 2 or n = 12k + 10 with k > 2.

II. ABOUT CR(n;1,q) AND ITS 4-ORDERED PROPERTY

The chordal rings CR(n;1,q), where n is an
even integer with » > 6 and ¢ an odd integer
with 3 < ¢ < 5, is defined as follows. Let
G(V,E) = CR(n;1,q), where V. = {a1,as9,...,a,} and
E= {(aiaa(i-&-l)modn) 1< < n} U {(aiva(H—q)modn) !
is odd and 1 < i < n}. An illustration of CR(12;1,5)
is given in Fig. 1. Obviously, it is a 3-regular graph,
has a built-in hamiltonian cycle (ai,as,...,an,a1), and is
vertex symmetric. The following theorems were proved in [1].

Theorem 3. [1] C'R(n;1,5) is 4-ordered for any even integer
n with n > 14.

Theorem 4. [1] CR(n;1,7) is 4-ordered for any even integer
n with n > 18.

The first method we propose to prove Conjecture 1 is
applying the similar technique for the above two theorems.
Thus, before we present our possible methods of proving
Conjecture 1, a short review of [1] about how the above
two theorems are derived is necessary. In particular, the
techniques required for Theorem 3 is recalled below. It can
be observed that Theorem 3 is a combination of the following
three theorems.

Theorem 5. [1] CR(20 + 6k;1,5) is 4-ordered for any
integer k£ with k£ > 0.

Theorem 6. [1] CR(22 + 6k;1,5) is 4-ordered for any
integer k£ with k£ > 0.

Theorem 7. [1] CR(24 + 6k; 1,) is 4-ordered for any integer
k with k > 0.

Since Theorems 5-7 are proved with the similar method,
here we only recall that of Theorem 5. Based on the computer
experimental results, it was shown that C'R(20;1,5) is 4-
ordered. Now, we define a function f, which maps R from
CR(20 + 6k;1,5) into CR(26 + 6k;1,5) in the following

b,.b
flaz) = bznb21 i 23b24bzs
f(a9) = byy

f(aig) = byg f(ay) = by
fla;7) = by fla,)=b
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f(ay;) = byy ffﬂ):bs
f(ay0) = byp (a9 ik

(b)

Fig. 2. From CR(20;1,5) into CR(26;1,5)

way:
(1) If a; € RNV(CR(20+6k; 1,5)), where 1 < i < 20+ 6k,
then f(al) = bz

2 ¥ (a;,a;) € R N E(CR(20 + 6k;1,5)), where
1 <1,5 <20+ 6k, then

(bisbir1) 1<i<19+6kj—=i+1;
f((ai,aj)) = (biybigs) 1= odd, 1 <i<15+6k,j=1i+05;
0 otherwise.
It is easy to see that f((asorer,a1)) = 0,

fl(ar7s6r,a2)) = 0 and f((arorer,as)) = 0. Therefore,
CR(26+6k;1,5)— f(CR(2046k; 1, 5)) consists of the vertex
set {b2146ks b22+6ks D23+6ks D24+6k, D2516k, D266k} and the
edge set {(b2046k» b21+6k); (D214+6ks b22+6k)s (D2246k D236k,
(b2346k> D2a+6k), (b2atek, D2st6k), (b25+6k: b26+6k), (D26+6k b1),
(b1746k> b2zs6k)s (D1o46k, b2aver)s (D21+6k, D26+6k)s (D23 16k, D2),
(boster,ba)}. Fig. 2 gives an illustration, in which f maps
R from CR(20;1,5) into C'R(26;1,5). We can see the
following things happen.

(1) f(a;) =b; for 1 <4 < 20, denoted by black vertices on
both graphs.

(2) f((ai7ai+1)) = (bi,biJrl) for 1 < 7 < ].9, denoted
by green edges on both graphs.

(3) f((ai,aH_g))) = (bi,bi+5) for 7 is odd with 1 < ¢ < 15,
denoted by blue edges on both graphs.

(4) f((az0,a1)) = 0.f((a17,a2)) = 0 and f((ai9,a4)) = 0,
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Fig. 3. CR(20;1,5)

Fig. 4. CR(26;1,5)

denoted by dashed edges on C'R(20;1,5).

(5) CR(26;1,5) — f(CR(20;1,5)) consists of the vertex set
{5217 ba2, ba3, bayg, bas, b26} and edge set {(b207 ba1), (ba1, b22),
(b2, bas), (bag, b2a), (baa, bas), (bas, bag), (bag, b1), (bi7,b22),
(b19, b24), (b21,b26), (b3, b2), (b2s,b4)}.

As an example, we show the construction of the required
cycle in CR(26; 1, 5) using the known cycle of CR(20;1,5).
There are 20 vertices aq,az, ..., asp in CR(20;1,5), and 26
vertices by, ba, ..., bag in C'R(26;1,5). To prove the theorem,
we do case studies by considering different situations. Take
G = CR(26;1,5). Let x1,22,23 and x4 be four arbitrary
vertices of G. We want to construct a cycle C' in G that
visits ;' s in the given order. Note that we can always
find at least one set of six consecutive vertices, denoted by
S = {b“ bi+1, bH_Q, cary bi+5}, such that SN {1‘1, To, T3, .’E4} =
¢. Without loss of generality, let 7y = b; and S =
{ba1, baa, ..., bag }. Removing the vertices of S and all edges
adjacent to S in G, we obtain a subgraph of C'R(20;1,5).
Obviously, SN f(CR(20;1,5)) = ¢. Note that CR(20;1,5)
is 4-ordered and hence contains a cycle that visits z; s in the
given order, denoted by C’. We will obtain C' by embedding
CR(20;1,5) into C'R(26;1,5) and rerouting the cycle C".
One of the possible rerouting cases are illustrated in Fig. 3 and
4, where we reroute a path in C'R(20;1,5) to obtain a path
in CR(26;1,5) without changing the corresponding location
of any other vertex in CR(26;1,5).

Once such an embedding and rerouting method is realized,

1
1
9
Fig. 5. Simulation Results

we can talk about the general construction method as follows.
Given any four vertices in G = CR(n;1,5), denoted by
ay,a;,a;5,a, with 1 < 4 < j < k, we want to construct a
hamiltonian cycle which passes through these four vertices in
any specified order. The computer experimental results show
that the conjecture holds for k = 2, 3,4 by giving the required
hamiltonian cycles concretely. Note that when k& = 4, the
total number of vertices of G is 50 or 58, and we want to
verify the conjecture for £ > 5. It is easy to see that there
exists a set S of at least 12 consecutive vertices on GG such
that S N {a1,a;,a;,a,} = 0. Therefore, we can embed the
graph G = CR(n;1,5) into G = CR(n + 12;1,5) by a
proper function f, which will map the known hamiltonian
cycle C in G into G as well. Since there are additional 12
vertices in G not included in the cycle C, we must develop a
routing algorithm that relies on C' to keep the original order of
{a1,a;,a;j,ar} and extends C to go through the 12 vertices
of (. Compared with the work in [1], it becomes rather
complicated for the 4-ordered hamiltonicity. Since some of the
paths on C has to be broken in order for rerouting in G, the
requirement that all of these extra 12 vertices must be covered
makes the routing scheme very difficult. In many cases, one
must give up the known hamiltonian cycle C' provided by the
computer and reconstruct another hamiltonian cycle C’ in G
for the purpose of “extension”. The working load of case-study
analysis as in [1] could be doubled or even tripled.

The second method we propose requires some combinatorial
knowledge. Since C'R(n;1,q) is vertex symmetric, without
loss of generality, we can always let a; be one of the four
given vertices which need to be visited in order and let the
other three vertices be * = a;,y = a; and z = ay, where
1 <4 < j < k. It is natural to ask the question regarding
the number of hamiltonian cycles required to show the 4-
ordered hamiltonicity. Given any four vertices, since they lie
on a circle, if we can find three hamiltonian cycles on which
these four vertices appear as a; — = — y — 2z — ai,
ap —y—x—2z—a,and ag - xr — 2z — y — ai, then it
is done. In fact, theoretically, three hamiltonian cycles which
are “independent” of each other should be enough. However,
the following example tells us that the construction for such
three hamiltonian cycles could be very difficult.

In Fig. 5, any vertex of G = CR(26;1,5) is labeled
by an integer ¢ with 0 < ¢ < 25 for simplicity. Any (3, j)
is an edge of G if and only if j = (¢ £ 1) mod 26 or
j = (i +5) mod 26. Suppose that the given four vertices
are 0,1,2,3, it is observed that the three hamiltonian cycles
presented in Fig. 2 provide the required cycles with 0,1,2,3
in any specified order. However, if the given four vertices
in G are 0,12,17,23, the three hamiltonian cycles in Fig. 5
gives no help other than the natural built-in hamiltonian cycle
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of the chordal ring graphs. Thus the following two questions
arise.

Q.1. Is it possible to construct three and only three hamiltonian
cycles in CR(n;1,5), denoted by C7,C5 and C3, which are
“totally independent” so that for any given four vertices with
a specific order, one could find the required one among them?
Does the structure of C'R(n;1,5) and its algebraic pattern,
after excluding the repetitions due to symmetry, hinder the
optimum to occur?

Q.2. If the answer to the first question is yes, then how can
we find these three hamiltonian cycles? If the answer is no,
then what’s the least number of hamiltonian cycles we need
to include all possible 4-ordered cases? Once again, if we
only need % hamiltonian cycles for CR(n;1,5) for 4-ordered
hamiltonicity, where are these k ones? A concrete construction
scheme must be developed.

III. CONCLUSION

In this paper, we continue the study of 4-ordered properties
of the chordal ring networks. A rigorous proof of the 4-ordered
hamiltonicity of any graph family has been shown a difficult
work (see [6], [7] for example). For CR(n;1,5), Conjecture
1 has been proposed based on computer experimental results.
We not only propose two possible techniques for verifying the
conjecture, but also present the corresponding complexities.
Finally, two interesting topics following this discussion are
raised for future studies.
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