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Abstract—Fine-grained data replication over the Internet allows 
duplication of frequently accessed data objects, as opposed to entire 
sites, to certain locations so as to improve the performance of large-
scale content distribution systems. In a distributed system, agents 
representing their sites try to maximize their own benefit since they 
are driven by different goals such as to minimize their 
communication costs, latency, etc. In this paper, we will use game 
theoretical techniques and in particular auctions to identify a 
bidding mechanism that encapsulates the selfishness of the agents,
while having a controlling hand over them. In essence, the proposed 
game theory based mechanism is the study of what happens when 
independent agents act selfishly and how to control them to 
maximize the overall performance. A bidding mechanism asks how 
one can design systems so that agents’ selfish behavior results in the 
desired system-wide goals. Experimental results reveal that this 
mechanism provides excellent solution quality, while maintaining 
fast execution time. The comparisons are recorded against some 
well known techniques such as greedy, branch and bound, game 
theoretical auctions and genetic algorithms. 

Keywords—Internet, data content replication, static allocation, 
mechanism design, equilibrium. 

I. INTRODUCTION

N the Internet a magnitude of heterogeneous entities (e.g. 
providers, servers, commercial services, etc.) offer, use, and 

even compete with each other for resources. The Internet is 
emerging as a new platform for distributed computing and 
brings with it problems never seen before. New solutions 
should take into account the various new concepts derived 
from multi-agent systems in which the agents cannot be
assumed to act in accordance to the deployed algorithm.  In a 
heterogeneous system such as the Internet entitles act
selfishly. This is obvious since they are driven by different 
goals such as to minimize their communication costs, latency, 
etc. Thus, one cannot assume that agents would follow the 
protocol or the algorithm; though they respond to incentives 
(e.g. payments received for compensation).  

In this paper, we will use game theoretical techniques and
in particular auctions to identify a bidding mechanism that 
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encapsulates the selfishness of the agents, while having a 
controlling hand over them. This work is inspired from the 
work reported in [46] and [54]. In essence, game theory is the 
study of what happens when independent agents act selfishly. 
A bidding mechanism asks how one can design systems so 
that agents’ selfish behavior results in the desired system-
wide goals. 

In this paper, we will apply the derived mechanism to the
fine grained data replication problem (DRP) over the Internet. 
This problem strongly conforms to the selfish agents’ notion 
and has a wide range of applications. Replication is widely 
used to improve the performance of large-scale content 
distribution systems such as the CDNs [50]. Replicating the 
data over geographically dispersed locations reduces access 
latency, network traffic, and in turn adds reliability, 
robustness and fault-tolerance to the system. Discussions in 
[14], [17], [39], [40], [47], etc. reveal that client(s) experience 
reduced access latencies provided that data is replicated 
within their close proximity. However, this is applicable in 
cases when only read accesses are considered. If updates of 
the contents are also under focus, then the locations of the 
replicas have to be: 1) in close proximity to the client(s), and 
2) in close proximity to the primary (assuming a broadcast
update model) copy. For fault-tolerant and highly dependable 
systems, replication is essential, as demonstrated in a real 
world example of OceanStore [50]. Therefore, efficient and 
effective replication schemas strongly depend on how many 
replicas to be placed in the system, and more importantly 
where. Needless to say that our work differs form the existing 
techniques in the usage of game theoretical techniques. To
the best of the authors’ knowledge this is the very first work 
that addresses the problem using such techniques. 

The major results of this paper are as follows: 
1. We derive a specialized auction mechanism. This 

mechanism allows selfish agents to compete in a non-
cooperative environment. 

2. We investigate this auction mechanism, provide some 
useful properties and identify the necessary conditions of
optimality.  

3. As an application we employ the derived mechanism to 
the DRP. We perform extensive experimental 
comparisons against some well known techniques, such 
as greedy, branch and bound, genetic and game 
theoretical auctions. 

A Frugal Bidding Procedure  
for Replicating WWW Content 

Samee Ullah Khan and Cemal Ardil 

I



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1791

p1

Agent 1

Mechanism

Agent M......

b1 bM

pMx1 xM

Fig. 1  Frugal bidding mechanism 

TABLE I
NOTATIONS AND THEIR MEANINGS

Symbols Meaning 
M Total number of sites in the network 
N Total number of objects to be replicated 
Ok k-th object 
ok Size of object k
Si i-th site 
si Size of site i
rk

i  Number of reads for object k from site i
Rk

i Aggregate read cost of rk
i

wk
i  Number of writes for object k from site i

Wk
i  Aggregate write cost of wk

i

NNk
i  Nearest neighbor of site i holding object k

c(i,j)  Communication cost between sites i and j
Pk  Primary site of the k-th object 
Rk Replication schema of object k
Coverall  Total overall data transfer cost 
SGRG Self Generate Random Graphs 
GT-ITM PR Georgia Tech Internetwork Topology Models Pure Random 
GT-ITM W Georgia Tech Internetwork Topology Models Waxman 
SGFCGUD Self Generated Fully Connected Graphs Uniform Distribution 
SGFCGRD  Self Generated Fully Connected Graphs Random Distribution 
SGRGLND  Self Generated Random Graphs Lognormal Distribution 
DRP Data replication problem 
OTC Object transfer cost (network communication cost) 

The remainder of this paper is organized as follows. 
Section II describes the resource allocation mechanism. 
Section III formulates the DRP. Section IV concentrates on 
modeling the resource allocation mechanism for the DRP, 
followed by theoretical proofs in Section V. The experimental 
results, related work and concluding remarks are provided in 
Sections VI, VII and VIII, respectively. 

II.THE FRUGAL BIDDING PROCEDURE

We approach the mechanism (Fig. 1) design in a stepwise 
fashion. 

The Basics: The mechanism contains M agents. Each 
agent i has some private data ti

∈R. This data is termed as the 
agent’s true data or true type. Only agent i has knowledge of 
ti. Everything else in the mechanism is public knowledge. Let 
t denote the vector of all the true types t = (t1…tM). 

Communications: Since the agents are selfish in nature, 
they do not communicate to the mechanism the value ti. The 

only information that is relayed to the mechanism is the 
corresponding bid bi. Let b denote the vector of all the bids 
((b = (b1…bM)), and let b-i denote the vector of bids, not 
including agent i, i.e., b-i = (b1…bi-1,bi+1,…bM). It is to be 
understood that we can also write b = (b-i,bi). 

Components: The mechanism has two components 1) the 
algorithmic output x(·), and 2) the payment mapping function 
p(·).  

Algorithmic output: The mechanism allows a set of 
outputs X, based on the output function which takes in as the 
argument, the bidding vector, i.e., x(b) = {x1(b),…, xM(b)}, 
where x(b)∈X. This output function relays a unique output 
given a vector b. That is, when x(·) receives b, it generates an 
output which is of the form of allocations xi(b). Intuitively it 
would mean that the algorithm takes in the vector bid b and 
then relays to each agent its allocation. Many sophisticated 
allocation outputs can be constructed, but in this paper we
choose to have a simple, intuitive and an optimal allocation. 

Monetary cost: Each agent i incurs some monetary cost 
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ci(ti,x), i.e., the cost to accommodate the allocation xi(b). This 
cost is dependent upon the output and the agent’s private 
data.  

Payments: To offset ci, the mechanism makes a payment 
pi(b) to agent i. An agent i always attempts to maximize its 
profit (utility) ui(ti,b) = pi(b) - ci(ti,x). Each agent i cares 
about the other agents’ bid only insofar as they influence the 
outcome and the payment. While ti is only known to agent i, 
the function ci is public. 

Bids: Each agent i is interested in reporting a bid bi such 
that it maximizes its profit, regardless of what the other 
agents bid, i.e., ui(ti,(b-i,ti)) ≥  ui(ti,(b-i,bi)) for all b-i and bi.  

A closer look at the bids reveal that the agents are posting 
bids that are dominant in nature. We state the following 
lemma from literature which says that truth-telling are 
dominant strategies, i.e., if all the agents report the exact 
worth of an object, it conforms to dominating strategies. 

Lemma 1: Truth-telling is a dominant strategy. 
Proof: [46]. 
The Mechanism: We now put all the pieces together. A 

mechanism m consists of a pair m = (x(b),p(b)), where x(·) is 
the output function and p(·) is the payment mapping function. 
The objective of the mechanism is to select an output x, that 
optimizes a given objective function g(b,x). 

Below we identify the desired characteristics of the 
mechanism. 

Truthfulness: We say that an output function admits 
truthful payments if there exists a payment mapping function
p(·) such that the mechanism m is truthful. Using Lemma 1, 
this would transform to: a mechanism m that is implemented 
using dominant strategies (m = (x(t),p(t))). 

Voluntary participation: A mechanism is characterized as 
a voluntary participation mechanism if for every agent i, 
ui(ti,(b-i,ti)) ≥ 0, i.e., no agent incurs a net loss. 

In recent times, such mechanisms have been applied to the 
scheduling problems [2], [13], [46], etc. The only practical 
work that can be found in the literature is reported in [13]. 
However, that work is the exact implementation of the work 
reported in [46]. Moreover, the authors in [13] have failed to 
reason why the implementation works to begin with. It is to 
be noted that a truthful mechanism strongly relies on the 
payment function, i.e., the agents are forced to tell the truth 
because telling a lie gives them no greater profit. Therefore, 
they are better off telling the truth. Our work differs from 
others in that we give a concrete application of the truthful 
mechanism, and concentrate on the payment function. We
prove that our approach results in payments that are the exact 
representations of the monetary costs, i.e., the payments are 
frugal. 

Objective: The mechanism defined above leaves us with 
the following two optimization problems: 
1. Identify a strategy that is dominant to each agent i. 
2. Identify a payment mapping function that is truthful, and 

frugal. 

III. DESCRIPTION OF THE DATA REPLICATION PROBLEM

Consider a distributed system comprising M sites, with 
each site having its own processing power, memory (primary 
storage) and media (secondary storage). Let Si and si be the 
name and the total storage capacity (in simple data units e.g. 
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of 
the system are connected by a communication network. A
link between two sites Si and Sj (if it exists) has a positive 
integer c(i,j) associated with it, giving the communication 
cost for transferring a data unit between sites Si and Sj. If the 
two sites are not directly connected by a communication link 
then the above cost is given by the sum of the costs of all the 
links in a chosen path from site Si to the site Sj. Without the 
loss of generality we assume that c(i,j) = c(j,i). This is a 
common assumption (e.g. see [14], [17], [40], [47], etc.).  Let 
there be N objects, each identifiable by a unique name Ok and 
size in simple data unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i

be the total number of reads and writes, respectively, initiated 
from Si for Ok during a certain time period. Our replication 
policy assumes the existence of one primary copy for each 
object in the network. Let Pk, be the site which holds the 
primary copy of Ok, i.e., the only copy in the network that 
cannot be de-allocated, hence referred to as primary site of 
the k-th object. Each primary site Pk, contains information 
about the whole replication scheme Rk of Ok. This can be done 
by maintaining a list of the sites where the k-th object is 
replicated at, called from now on the replicators of Ok. 
Moreover, every site Si stores a two-field record for each 
object. The first field is its primary site Pk and the second the 
nearest neighborhood site NNk

i of site Si which holds a replica 
of object k. In other words, NNk

i is the site for which the reads 
from Si for Ok, if served there, would incur the minimum 
possible communication cost. It is possible that NNk

i = Si, if Si

is a replicator or the primary site of Ok. Another possibility is 
that NNk

i = Pk, if the primary site is the closest one holding a 
replica of Ok. When a site Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For the 
updates we assume that every site can update every object.
Updates of an object Ok are performed by sending the updated 
version to its primary site Pk, which afterwards broadcasts it 
to every site in its replication scheme Rk.  

For the DRP under consideration, we are interested in 
minimizing the total network transfer cost due to object 
movement, i.e. the Object Transfer Cost (OTC). The 
communication cost of the control messages has minor 
impact to the overall performance of the system, therefore, we 
do not consider it in the transfer cost model, but it is to be 
noted that incorporation of such a cost would be a trivial 
exercise. There are two components affecting OTC. The first 
component of OTC is due to the read requests.  Let Rk

i denote 
the total OTC, due to Sis’ reading requests for object Ok, 
addressed to the nearest site NNk

i. This cost is given by the 
following equation:  
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i = {Site j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. Let 
Wk

i be the total OTC, due to Sis’ writing requests for object 
Ok, addressed to the primary site Pk. This cost is given by the 
following equation:  
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Here, we made the indirect assumption that in order to 
perform a write we need to ship the whole updated version of 
the object. This of course is not always the case, as we can 
move only the updated parts of it (modeling such policies can 
also be done using our framework). The cumulative OTC, 
denoted as Coverall, due to reads and writes is given by:  

∑ ∑ += = =

M
i

N
k

i
k

i
koverall WRC 1 1 )( . (3)

Let Xik=1 if Si holds a replica of object Ok, and 0 otherwise. 
Xiks define an M×N replication matrix, named X, with 
boolean elements. Sites which are not the replicators of object 
Ok create OTC equal to the communication cost of their reads 
from the nearest replicator, plus that of sending their writes 
to the primary site of Ok . Sites belonging to the replication 
scheme of Ok, are associated with the cost of 
sending/receiving all the updated versions of it. Using the
above formulation, the DRP can be defined as:  

Find the assignment of 0, 1 values in the X matrix that 
minimizes Coverall, subject to the storage capacity 

constraint:∑ =
≤≤∀≤

N

k
i

kik MisoX
1

)1( , and subject to the 

primary copies policy: )1(    1 NkX kkP ≤≤∀= . 

The minimization of Coverall will have two impacts on the 
distributed system under consideration: First, it ensures that 
the object replication is done in such a way that it minimizes 
the maximum distance between the replicas and their 
respective primary objects. Second, it ensures that the
maximum distance between an object k and the user(s) 
accessing that object is also minimized. Thus, the solution 
aims for reducing the overall OTC of the system. In the 
generalized case, the DRP has been proven to be NP-complete 
[40]. 

IV. MECHANISM APPLIED TO THE DRP 

We follow the same pattern as discussed in Section II. 
The Basics: The distributed system described in Section III 

is considered, where each site is represented by an agent, i.e., 
the mechanism contains M agents. In the context of the DRP, 
an agent holds two key elements of data a) the available site 
capacity aci, and b) the cost to replicate (RCk

i = Rk
i+Wk

i) an 
object k to the agent’s site i. There are three possible cases: 
1. DRP [π]: where each agent i holds the cost to replicate 

RCk
i = ti associated with each object k, where as the 

available site capacity and everything else is public 
knowledge. 

2. DRP [σ]: where each agent i holds the available site 
capacity aci = ti, where as the cost to replicate and 
everything else is public knowledge. 

3. DRP [π,σ]: where each agent i holds both the cost to 
replicate and the site capacity {RCk

i,aci} = ti, where as 
everything else is public knowledge. 

Intuitively, if agents know the available site capacities of 
other agents, that gives them no advantage whatsoever. 
However, if they come about to know their replication cost 
then they can modify their valuations and alter the 
algorithmic output. It is to be noted that an agent can only 
calculate the replication cost via the frequencies of reads and 
writes. Everything else such as the network topology, latency 
on communication lines, and even the site capacities can be 
public knowledge. Therefore, DRP[π] is the only natural 
choice. 

Communications: The agents in the mechanism are 
assumed to be selfish and therefore, they project a bid bi to 
the mechanism. In reality the amount of communications 
made are immense. This fact was not realized in [13], where 
the authors assume superfluous assumptions on the 
implementation. In the later text we will reveal how to cope 
with this dilemma.  

Components: The mechanism has two components 1) the 
algorithmic output x(·), and 2) the payment mapping function 
p(·).  

Algorithmic output: In the context of the DRP, the 
algorithm accepts bids from all the agents, and outputs the
maximum beneficial bid, i.e., the bid that incurs the 
minimum replication cost overall (Equation 3). We will give 
a detailed description of the algorithm in the later text. 

Monetary cost: When an object is allocated (for 
replication) to an agent i, the agent becomes responsible to 
entertain (read and write) requests to that object. For
example, assume object k is replicated to agent i. Then the 
amount of traffic that the agent has to entertain due to the 
replication of object k is exactly equivalent to the replication 
cost, i.e., ci = RCk

i. This fact is easily deducible from 
Equation 4.  

Payments: To offset ci, the mechanism makes a payment 
pi(b) to agent i. This payment is equivalent to the cost it 
incurs to replicate the object, i.e., pi(b) = ci. The readers 
would immediately note that in such a payment agent i can 
never get a profit greater than 0. This is exactly what we 
want. In a selfish environment, it is possible that the agents 
bid higher than the true value, the mechanism creates an 
illusion to negate that. By compensating the agents with the 
exact amount of what the cost occurs, it leaves no room for 
the agents to overbid or underbid (in the later text we will 
rigorously prove the above argument). Therefore, the 
voluntary characteristic of the mechanism now becomes a 
strongly voluntary and we quote from the literature the 
following definition.  

Definition 1: A mechanism is characterized as a strongly 
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Frugal Auction (FA) Mechanism 
Initialize: 
01 LS, Li, Tk

i, M, MT
02 WHILE LS ≠ NULL DO 
03     OMAX = NULL; MT = NULL; Pi = NULL; 
04            PARFOR each Si

∈LS DO
05                           FOR each Ok∈Li DO
06                                     Tk

i = compute (ti);  /*compute the valuation corresponding to the desired object*/ 
07                           ENDFOR 
08                    ti = argmaxk(Tk

i);  
09                    SEND ti to M; RECEIVE at M ti in MT; 
10             ENDPARFOR 
11   OMAX = argmaxk(MT);    /*Choose the global dominate valuation*/ 
12   Pi = 1/OMAX;               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si;         /*Send payments to the agent who is allocate the object OMAX*/ 
15   Replicate OOMAX;  
16   aci=aci - ok;                           /*Update capacity*/ 
17   Li = Li - Ok;                    /*Update the list*/ 
18   IF Li = NULL THEN SEND info to M to update LS = LS - Si;        /*Update mechanism players*/ 
19           PARFOR each Si

∈LS DO  
20                  Update NNi

OMAX                   /*Update the nearest neighbor list*/ 
21           ENDPARFOR                  /*Get ready for the next round*/ 
22 ENDWHILE
Fig. 2  Frugal Auction (FA) Mechanism 

voluntary participation mechanism if for every agent i, 
ui(ti,(b-i,ti)) = 0 [54]. 

We want to emphasis that each agent’s incentive is to
replicate objects so that queries can be answered locally, for 
the sake of users that access the agent’s site. If the replicas 
are made available elsewhere, the agent may lose the users, as 
they might divert their accesses to other sites. 

Bids: Each agent i reports a bid that is the direct 
representation of the true data that it holds. Therefore, a bid 
bi is equivalent to 1/RCk

i. That is, the lower the replication 
cost the higher is the bid and the higher are the chances for 
the bid bi to win. 

In essence, the mechanism m(x(b),p(b)), takes in the vector 
of bids b from all the agents, and selects the highest bid. The 
highest bidder is allocated the object k which is added to its 
allocation set xi. The mechanism then pays the bidder pi. This 
payment is equivalent to the cost incurred due to entertain 
requests from object k by users. The mechanism is given in 
Fig. 2.  

Description of Algorithm: We maintain a list Li at each 
server. This list contains all the objects that can be replicated 
by agent i onto site Si. We can obtain this list by examining 
the two constraints of the DRP. List Li would contain all the 
objects that have their size less then the total available space 
aci. Moreover, if site Si is the primary host of some object k’, 
then k’ should not be in Li. We also maintain a list LS
containing all sites that can replicate an object, i.e., Si

∈LS if 
Li≠NULL. The algorithm works iteratively. In each step the 
mechanism asks all the agents to send their preferences (first 
PARFOR loop). Each agent i recursively calculates the true 
data of every object in list Li. Each agent then reports the 

dominant true data (line 09) to the mechanism. The 
mechanism receives all the corresponding entries, and then 
chooses the globally dominant true data. This is broadcasted 
to all the agents, so that they can update their nearest 
neighbor table NNk

i, which is shown in Line 20 (NNi
OMAX). 

The object is replicated and the payment is made to the agent. 
The mechanism progresses forward till there are no more 
agents interested in acquiring any data for replication (Line 
18).   

The above discussion allows us to deduce the following two
results about the mechanism. 

Theorem 1: FA requires O(MN2) time.
Proof: The worst case scenario is when each site has 

sufficient capacity to store all objects. In that case, the while 
loop (Line 02) performs MN iterations. The time complexity 
for each iteration is governed by the two PARFOR loops 
(Lines 04 and 19). The first loop uses at most N iterations, 
while the send loop performs the update in constant time.
Hence, we conclude that the worst case running time of the 
mechanism is O(MN2).                                                         ■

Theorem 2: In the worst case FA uses O(M3N) messages.
Proof: First we calculate the number of messages in a 

single iteration. First, each agent sends its true data to the 
mechanism, which constitutes M messages. Second, the 
mechanism broadcasts information about the object being 
allocated, this constitutes M messages. Third, the mechanism 
sends a single message about payment to the agent to whom
the replica was assigned, which we can ignore since it has 
little impact on the total number of messages. The total 
number of messages required in a single iteration as of the 
order of M2. From Theorem 1, we can conclude that in the 
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worst case the mechanism requires O(M3N) messages.          ■
It is evident from Theorem 2 that the mechanism requires 

tremendous amounts of communications. This might be 
reduced by using some sophisticated network protocols. In the 
future generation distributed computing systems, the 
participating agents might actually be mobile, i.e., they can 
travel from node to node in the network. In such a scenario 
the agents can converge to a specific site and execute the 
mechanism. In that case the number of messages will be 
reduced astronomically. In our experimentations we mimic 
this scenario and use IBM Pthreads to implement the 
mechanism. Other possible improvements are left as future 
research issues. 

V. SUPPLEMENTARY RESULTS

Here, we present some results that strengthen our claim on 
the optimality of the derived bidding mechanism. We begin 
by making the following observations.  

Assume that the mechanism m = (x(b),p(b)) is truthful and 
each payment pi(b-i,bi) and allocation xi(b-i,bi) is twice 
differentiable with respect to bi, for all the values of b-i. We 
fix some agent i and derive a formula for pi, allocation xi, and 
profit to be the functions of just agent i’s bid bi. Since agent 
i’s profit is always maximized by bidding truthfully (Lemma 
1), the derivative is zero and the second derivative is non-
positive at ti. Since this holds no matter what the value of ti

is, we can integrate to obtain an expression for pi. We state: 
pi(bi) = pi(0)+bixi(bi)-∫0bixi(u)du. This is now the basis of our 
extended theoretical results. Literature survey revealed the 
following two important characteristics of a frugal payment 
mechanism. We state them below. 

Definition 2: With the other agents’ bid b-i fixed, consider
xi(b-i,bi) as a single variable function of bi. We call this the 
allocation curve or the allocation profile of agent i. We say 
the output function x is decreasing if each of the associated 
allocation curves is decreasing, i.e., xi(b-i,bi) is a decreasing 
function of bi, for all i and b-i.

Based on the above definition, we can state the following 
theorem. 

Theorem 3: A mechanism is truthful if its output function 
x(b) is decreasing.

Proof:  We prove this for the DRP mechanism. For 
simplicity we fix all bids b-i, and focus on xi(b-i,bi) as a single 
variable function of bi, i.e., the allocation xi would only 
change if bi is altered. We now consider two bids bi and bi’
such that bi’ > bi. In terms of the true data ti, this conforms to 
RCk

i’ > RCk
i.  Let xi and xi’ be the allocations made to the 

agent i when it bids bi and bi’, respectively. For a given 
allocation, the total replication cost associated can be 
represented as Ci=∑k∈xiRCk

i. The proof of the theorem reduces 
to proving that xi’ < xi, i.e., the allocation computed by the 
algorithmic output is decreasing in bi. The proof is simple by 
contradiction. Assume that that xi’ ≥ xi. This implies that 
1/(Ci-RCk

i) < 1/(Ci’-RCk
i) ≤ 1/(Ci-RCk

i’). This means that 

there must be an agent -i who has a bid that supersedes bi’. 
But that is not possible as we began with the assumption that 
all other bids are fixed so there can be no other agent -i. If i = 
-i, then that is also not possible since we assumed that bi’ > 
bi.                                                                                         ■

We now extend the result obtained in Theorem 3 and state:
Theorem 4: A decreasing output function admits a truthful 

payment scheme satisfying voluntary participation if and only 

if ∫
∞

−
∞<

0
),( duubx ii for all i, b-i. In this case we can take the 

payments to be: ∫
∞
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Proof: The first term bixi(b-i,bi) compensates the cost 
incurred by agent i to host the allocation xi. The second term 

∫
∞
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),( duubx ii  represents the expected profit of agent i. If agent 

i bids its true value ti, then its profit is  
= ui(ti,(b-i,ti))
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If agent i bids its true value, then the expected profit is 
greater than in the case it bids other values. We explain this 
as follows: If agent i bids higher (bi’>ti), then the expected 
profit is 

= ui(ti,(b-i,bi’))

= ∫
∞ −−−

−+
'

)',(),()',(' ib
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Because ∞<∫
∞

−

'
),(ib

ii dxxbx  and bi’ > ti, we can express 

the profit when agent i bids the true value as 

follows: ∫∫
∞

−−
+

'

'
),(),( ib

ii
ib

it

ii dxxbxdxxbx . This is because xi is 

decreasing in bi and bi’ > ti, we have the following 

equation: ∫ −−
<−

'
),()',()'(

ib

it

iiiiiii dxxbxbbxtb . From this 

relation, it can be seen that the profit with overbidding is 
lower then the profit with bidding the true data. Similar 
arguments can be used for underbidding.                              ■

VI. EXPERIMENTAL SETUP AND DISCUSSION OF RESULTS

A. Setup 

We performed experiments on a 440MHz Ultra 10 machine 
with 512MB memory. The experimental evaluations were 
targeted to benchmark the placement policies. The resource 
allocation mechanism was implemented using IBM Pthreads.  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. In this 
paper, we only present the results that were obtained using a 
maximum of 500 sites (nodes). We used existing topology 
generator toolkits and also self generated networks. In all the 
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TABLE II 
PARAMETER INTERVAL VARIANCE CHARACTERIZATION FOR TOPOLOGIES WITH 100 NODES

Topology Mathematical Representation Parameter Interval Variance 
SGRG  
(12 topologies) 

Randomized layout with node degree (d*) and Euclidian distance (d) 
between nodes as parameters. 

d={5,10,15,20},  
d*={10,15,20}. 

GT-ITM PR [4] 
(5 topologies) 

Randomized layout with edges added between the randomly located 
vertices with a probability (p). 

p={0.4,0.5,0.6,0.7,0.8}. 

GT-ITM W [4] 
(9 topologies) 

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},  β={0.2,0.3,0.4}. 

SGFCGUD  
(5 topologies) 

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50]. 

SGFCGRD  
(5 topologies) 

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50]. 

SGRGLND  
(9 topologies) 

Random layout with link distance having a lognormal distribution [9]. μ={8.455,9.345,9.564}, 
σ={1.278,1.305,1.378}. 

Step 1:
Network is Physically
layerd using GT-ITU
or other methods.

2

3
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Step 2:
Comunication link
costs such as
bandwidth and latency
measures are added.
Latency is assumed to
be 2x108 m/s.

Step 3:
Process access log files to get users'
acess patterns, object size, object
size variance, time of access, etc.

2
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Step 4:
Use information from
step 3 to determine:
a. System capacity.
b. Locations of Pk.
c. Mapping randomly
users onto each server.

(The package denotes Pk)
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Step 5:
Employ agents for the
system.

C
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B

Note that  n ot  a l l  agen ts  ar e
shown due to space restrictions.

Step 6:
Extract from step 3:
a. Read frequencies from the access logs.
b. Write frequencies requests in the range of
the read requests.

Fig. 3 A walk through the necessary steps involved in an experimental setup 

topologies, the distance of the link between nodes was 
equivalent to the communication cost. Table II summarizes 
the various techniques used to gather forty-five various 
topologies for networks with 100 nodes. It is to be noted that 
the parameters vary for networks with lesser/larger number of 
nodes.  

To evaluate the chosen replication placement techniques on 
realistic traffic patterns, we used the access logs collected at 
the Soccer World Cup 1998 website [3]. Each experimental 
setup was evaluated thirteen times, i.e., only the Friday (24 
hours) logs from May 1, 1998 to July 24, 1998. Thus, each 
experimental setup in fact represents an average of the 585 
(13×45) data set points. To process the logs, we wrote a script 

that returned: only those objects which were present in all the 
logs (2000 in our case), the total number of requests from a 
particular client for an object, the average and the variance of 
the object size. From this log we chose the top five hundred 
clients (maximum experimental setup). A random mapping 
was then performed of the clients to the nodes of the 
topologies. Note that this mapping is not 1-1, rather 1-M. 
This gave us enough skewed workload to mimic real world 
scenarios. It is also worthwhile to mention that the total 
amount of requests entertained for each problem instance was 
in the range of 1-2 million. The primary replicas’ original site 
was mimicked by choosing random locations. The capacities 
of the sites C% were generated randomly with range from 
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Total Primary Object Sizes/2 to 1.5×Total Primary Object 
Sizes. The variance in the object size collected from the 
access logs helped to instill enough diversity to benchmark 
object updates. The updates were randomly pushed onto 
different sites, and the total system update load was measured 
in terms of the percentage update requests U% compared that 
to the initial network with no updates. A brief overview on 
how the experimental setups are obtained is depicted in Fig. 
3. 

B. Comparative Algorithms 

For comparison, we selected five various types of replica 
placement techniques. To provide a fair comparison, the 
assumptions and system parameters were kept the same in all 
the approaches. The techniques studied include efficient 
branch-and-bound based technique (Aε-Star [17]). For fine-
grained replication, the algorithms proposed in [39], [40], 
and [47] are the only ones that address the problem domain 
similar to ours. We select from [47] the greedy approach 
(Greedy) for comparison because it is shown to be the best 
compared with 4 other approaches (including the proposed 
technique in [39]); thus, we indirectly compare with 4 
additional approaches as well. Algorithms reported in [21] 
(Dutch (DA) and English auctions (EA)) and [40] (Genetic 
based algorithm (GRA)) are also among the chosen 
techniques for comparisons. Due to space limitations we will 
only give a brief overview of the comparative techniques. 
Details for a specific technique can be obtained from the 
referenced papers. 

Performance metric: The solution quality is measured in 
terms of network communication cost (OTC percentage) that 
is saved under the replication scheme found by the 
algorithms, compared to the initial one, i.e., when only 
primary copies exists.  

1. Aε-Star: In [17] the authors proposed a 1+ε admissible 
A-Star based technique called Aε-Star. This technique uses 
two lists: OPEN and FOCAL. The FOCAL list is the sub-list 
of OPEN, and only contains those nodes that do not deviate 
from the lowest f node by a factor greater than 1+ε. The 
technique works similar to A-Star, with the exception that the 
node selection (lowest h) is done not from the OPEN but from 
the FOCAL list. It is easy to see that this approach will never 
run into the problem of memory overflow, moreover, the 
FOCAL list always ensures that only the candidate solutions 
within a bound of 1+ε of the A-Star are expanded.  

2. Greedy based technique: We modify the greedy 
approach reported in [47], to fit our problem formulation. The 
greedy algorithm works in an iterative fashion. In the first 
iteration, all the M sites are investigated to find the replica 
location(s) of the first among a total of N objects. Consider 
that we choose an object i for replication. The algorithm 
recursively makes calculations based on the assumption that 
all the users in the system request for object i. Thus, we have 
to pick a site that yields the lowest cost of replication for the 

object i. In the second iteration, the location for the second 
site is considered. Based on the choice of object i, the 
algorithm now would identify the second site for replication, 
which, in conjunction with the site already picked, yields the 
lowest replication cost. Observe here that this assignment 
may or may not be for the same object i. The algorithm 
progresses forward till either one of the DRP constraints are 
violated. The readers will immediately realize that the 
bidding mechanism reported in this paper works similar to 
the Greedy algorithm. This is true; however, the Greedy 
approach does not guarantee optimality even if the algorithm 
is run on the very same problem instance. Recall that Greedy 
relies on making combinations of object assignments and 
therefore, suffers from the initial choice of object selection 
(which is done randomly). This is never the case in the 
derived bidding mechanism, which identifies optimal
allocations in every case. 

3. Dutch auction: The auctioneer begins with a high 
asking price which is lowered until some agent is willing to 
accept the auctioneer's price. That agent pays the last 
announced price. This type of auction is convenient when it is 
important to auction objects quickly, since a sale never 
requires more than one bid. In no case does the auctioneer 
reveal any of the bids submitted to him, and no information is 
shared between the agents. It is shown that for an agent to 
have a probabilistically superior bid than n-1 other bids; an 
agent should have the valuation divided by n.

4. English auction: In this type of auction, the agents bid 
openly against one another, with each bid being higher than 
the previous bid. The auction ends when no agent is willing 
to bid further. During the auction when an auctioneer receives 
a bid higher than the currently submitted bids, he announces 
the bid value so that other agents (if needed) can revise their 
currently submitted bids. In [44] the discussion on EA reveals 
that the optimal strategy for a bidder i is to bid a value which 
is directly derived from his valuation.

5. GRA: In [40], the authors proposed a genetic algorithm 
based heuristic called GRA. GRA provides good solution 
quality, but suffers from slow termination time. This 
algorithm was selected since it realistically addressed the 
fine-grained data replication using the same problem 
formulation as undertaken in this article. 

C.Comparative Analysis 

We study the behavior of the placement techniques when 
the number of sites increases (Fig. 3), by setting the number 
of objects to 2000, while in Fig. 4, we study the behavior 
when the number of objects increase, by setting the number of 
sites to 500. We should note here that the space limitations 
restricted us to include various other scenarios with varying 
capacity and update ratio. The plot trends were similar to the 
ones reported in this article. For the first experiment we fixed 
C=20% and U=75%. We intentionally chose a high workload 
so as to see if the techniques studied successfully handled the 
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extreme cases. The first observation is that FA and EA 
outperformed other techniques by considerable amounts. 
Second, DA converged to a better solution quality under 
certain problem instances. Some interesting observations 
were also recorded, such as, all but GRA showed initial loss 
in OTC savings with the initial number of site increase in the 
system, as much as 7% loss was recorded in case of Greedy 
with only a 40 site increase. GRA showed an initial gain 
since with the increase in the number of sites, the population 
permutations increase exponentially, but with the further 
increase in the number of sites this phenomenon is not so 
observable as all the essential objects are already replicated. 
The top performing techniques (DA, EA, Aε-Star and FA) 
showed an almost constant performance increase (after the 
initial loss in OTC savings). This is because by adding a site 
(server) in the network, we introduce additional traffic (local 
requests), together with more storage capacity available for 
replication. All four equally cater for the two diverse effects. 
GRA also showed a similar trend but maintained lower OTC 
savings. This was in line with the claims presented in [17] 
and [40]. 

To observe the effect of increase in the number of objects in 
the system, we chose a softer workload with C=20% and 
U=25%. The intention was to observe the trends for all the 
algorithms under various workloads. The increase in the 

number of objects has diverse effects on the system as new 
read/write patterns (users are offered more choices) emerge, 
and also the increase in the strain on the overall capacity of 
the system (increase in the number of replicas). An effective 
algorithm should incorporate both the opposing trends. From 
the plot, the most surprising result came from GRA. It 
dropped its savings from 58% to 13%. This was contradictory 
to what was reported in [40]. But there the authors had used a 
uniformly distributed link cost topology, and their traffic was 
based on the Zipf distribution [55]. While the traffic access 
logs of the World Cup 1998 are more or less double-Pareto in 
nature. In either case the exploits and limitations of the 
technique under discussion are obvious. The plot also shows a 
near identical performance by Aε-Star, DA and Greedy. The 
relative difference among the three techniques is less than 
2%. However, Aε-Star did maintain its domination. From the 
plots the supremacy of EA and FA is observable. Both the 
techniques showed high performance, with a slight edge in 
favor of FA. 

Next, we observe the effects of system capacity increase. 
An increase in the storage capacity means that a large 
number of objects can be replicated. Replicating an object that 
is already extensively replicated, is unlikely to result in 
significant traffic savings as only a small portion of the 
servers will be affected overall. Moreover, since objects are 
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TABLE III 
RUNNING TIME IN SECONDS [C=20%, U=45%] (SMALL PROBLEM INSTANCES) 

Problem Size Greedy GRA Aε-Star DA EA FA 
M=20, N=50 70.11 92.66 97.18 25.16 39.36 26.14 
M=20, N=100 76.59 96.40 102.97 27.71 41.21 27.01 
M=20, N=150 78.26 101.01 113.85 32.44 54.57 36.26 
M=30, N=50 95.24 126.92 140.78 38.45 59.25 39.11 
M=30, N=100 109.17 125.04 148.83 39.21 63.14 40.10 
M=30, N=150 135.21 148.59 179.74 45.96 68.20 42.09 
M=40, N=50 126.40 154.13 198.77 42.66 76.27 45.41 
M=40, N=100 134.65 168.48 236.67 43.62 77.16 46.97 
M=40, N=150 141.08 204.43 270.63 47.52 82.53 48.83 

TABLE IV 
RUNNING TIME IN SECONDS [C=45%, U=15%] (LARGE PROBLEM INSTANCES) 

Problem Size Greedy GRA Aε-Star DA EA FA 
M=300, N=1350 190.01 242.12 247.66 87.92 164.15 93.26 
M=300, N=1400 206.26 326.82 279.45 95.64 178.90 97.98 
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 124.73
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12
M=400, N=1350 321.60 492.10 353.08 176.51 218.15 176.90
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 214.55
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1350 402.20 660.86 460.44 246.43 284.63 259.56
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 266.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 304.47
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60

not equally read intensive, increase in the storage capacity 
would have a great impact at the beginning (initial increase 
in capacity), but has little effect after a certain point, where 
the most beneficial ones are already replicated. This is 
observable in Fig. 5, which shows the performance of the 
algorithms. GRA once again performed the worst. The gap 
between all other approaches was reduced to within 7% of 

each other. DA and FA showed an immediate initial increase 
(the point after which further replicating objects is inefficient) 
in its OTC savings, but afterward showed a near constant 
performance. GRA although performed the worst, but 
observably gained the most OTC savings (35%) followed by 
Greedy with 29%. Further experiments with various update 
ratios (5%, 10%, and 20%) showed similar plot trends. It is 
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TABLE V 
AVERAGE OTC (%) SAVINGS UNDER SOME PROBLEM INSTANCES

Problem Size Greedy GRA Aε-Star DA EA FA 
N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 70.15 73.15 74.24 
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 72.66 77.41 75.16 
N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 68.23 70.11 69.53 
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 70.22 71.23 73.45 
N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 69.46 70.55 72.81 
N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 70.21 71.12 72.04 
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 69.29 70.61 72.19 
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 70.16 71.29 71.95 
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 72.77 72.61 72.35 
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 68.63 69.24 73.25 

also noteworthy (plots not shown in this paper due to space 
restrictions) that the increase in capacity from 10% to 17%, 
resulted in 4 times (on average) more replicas for all the 
algorithms.   

Next, we observe the effects of increase in the read and 
update (write) frequencies. Since these two parameters are 
complementary to each other, we describe them together. In 
both the setups the number of sites and objects were kept 
constant. Increase in the number of reads in the system would 
mean that there is a need to replicate as many object as 
possible (closer to the users). However, the increase in the 

number of updates in the system requires the replicas be 
placed as close as to the primary site as possible (to reduce the 
update broadcast). This phenomenon is also interrelated with 
the system capacity, as the update ratio sets an upper bound 
on the possible traffic reduction through replication. Thus, if 
we consider a system with unlimited capacity, the “replicate 
everywhere anything” policy is strictly inadequate. The read 
and update parameters indeed help in drawing a line between 
good and marginal algorithms. The plots in Figs. 6 and 7 
show the results of read and update frequencies, respectively. 
A clear classification can be made between the algorithms. 
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Aε-Star, DA, EA, Greedy and FA incorporate the increase in 
the number of reads by replicating more objects and thus 
savings increase up to 88%. GRA gained the least of the OTC 
savings of up to 67%. To understand why there is such a gap 
in the performance between the algorithms, we should recall 
that GRA specifically depend on the initial population (for 
details see [40]). Moreover, GRA maintains a localized 
network perception. Increase in updates result in objects 
having decreased local significance (unless the vicinity is in 
close proximity to the primary location). On the other hand, 
Aε-Star, DA, EA, Greedy and FA never tend to deviate from 
their global view of the problem search space.  

Lastly, we compare the termination time of the algorithms. 
Before we proceed, we would like to clarify our measurement 
of algorithm termination timings. The approach we took was 
to see if these algorithms can be used in dynamic scenarios. 
Thus, we gather and process data as if it was a dynamic 
system. The average breakdown of the execution time of all 
the algorithms combined is depicted in Fig. 8. There 68% of 
all the algorithm termination time was taken by the repeated 
calculations of the shortest paths. Data gathering and 
dispersion, such as reading the access frequencies from the 
processed log, etc. took 7% of the total time. Other 
miscellaneous operations including I/O were recorded to carry 
3% of the total execution time. From the plot it is clear that a 
totally static setup would take no less that 21% of the time 
depicted in Tables III and IV.   

Various problem instances were recorded with C=20%, 
45% and U=15%, 45%. Each problem instance represents the 
average recorded time over all the 45 topologies and 13 
various access logs. The entries in bold represent the fastest 
time recorded over the problem instance.  It is observable that 
FA and DA terminated faster than all the other techniques, 
followed by EA, Greedy, Aε-Star and GRA. If a static 
environment was considered, FA with the maximum problem 
instance would have terminated approximately in 66.69 
seconds (21% of the algorithm termination time).  

In summary, based on the solution quality alone, the 
algorithms can be classified into four categories: 1) The very 
high performance algorithms that include EA and FA, 2) the 
high performance algorithms of Greedy and DA, 3) the 
medium-high performance Aε-Star, and finally 4) the 
mediocre performance algorithm of GRA. While considering 
the termination timings, FA and DA did extremely well, 
followed by EA, Greedy, Aε-Star, and GRA. 

D.Supplementary Analysis 

Here, we present some supplementary results that 
strengthen our comparative analysis provided in Section 
VI.C. We show the relative performance of the techniques 
with load and storage capacity variance. The plots in Figs. 10, 
11, 12 and 13 show the recorded performances. All the plots 
summarize the measured performance with varying 
parameters (most of which could not be included in this paper 

due to space limitations). We are mostly interested in 
measuring the median and mean performances of the 
algorithms. With load variance FA edges over Aε-Star with a 
savings of 87%. The plot also shows that nearly every 
algorithm performed well with grand median on 84.9%. The 
graphs are self explanatory and also capture the outliners and 
extreme points. The basic exercise in plotting these results is 
to see which algorithms perform consistently. GRA for 
example, records the lowest extremes, and hardly any 
outliners. On the other hand the proposed FA’s performance 
is captured in a small interval, with high median and mean 
OTC savings. 

Table V shows the quality of the solution in terms of OTC 
percentage for 10 problem instances (randomly chosen), each 
being a combination of various numbers of sites and objects, 
with varying storage capacity and update ratio. For each row, 
the best result is indicated in bold. The proposed FA 
algorithm steals the show in the context of solution quality, 
but Aε-Star, EA and DA do indeed give a good competition,
with a savings within a range of 5%-10% of FA. 

VII. RELATED WORK

Myriad theoretical approaches are proposed that we classify 
into the following six categories: 

1. Facility Location: In [15], the authors employed several 
techniques to address the Internet data replication problem 
similar to that of the classical facility location problem. The 
techniques reported are very tedious and have superfluous 
assumptions. Thus, the problem definition in [15] does not 
fully capture the concept of replicating a single object/site 
over a fixed number of hosts [41].   

2. File Allocation: File allocation has been a popular line 
of research in: distributed computing, distributed databases, 
multimedia databases, paging algorithms, and video server 
systems [1], [8], [37], [42]. All the above referenced articles 
incorporate data replication onto a set of distributed locations 
(distributed system), which can easily be modified to its 
equivalent problem in the context of Internet. Under the 
assumption of unlimited server memory the authors in [37], 
provided a guaranteed optimal result for Internet data 
replication, but has little practical use [41], since the replica 
placements are based on the belief that the access patterns 
remain unchanged. 

3. Minimum k-Median: The celebrated NP-complete 
minimum k-median problem captures the coarse-grained 
replication well, as it can tackle with the problem of 
distributing a single replica over a fixed number of hosts. In 
[39] the authors studied the problem of placing M proxies at 
N nodes when the topology of the network is a tree and 
proposed an O(N3M2) algorithm. A more generalized solution 
was presented in [47]. There the authors proposed a greedy 
algorithm that outperformed other techniques including the 
work reported in [39].  

4. Capacity-constrained Optimization: In [16], the 
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authors use the capacity-constrained version of the minimum 
k-median problem, and guarantee a stable performance. 
However, such results are possible only with very 
conservative assumptions as addressed in [14] and [38], 
therefore, they can not handle the dynamics of the system 
[41]. 

5. Bin Packing: The bin packing based problem 
formulation is commonly used to model load balancing 
problems. The problem of distributing documents in a cluster 
of web servers in order to perform load balancing was 
reported in [45]. However, the goodness of the results only 
holds when the network under consideration was small. A 
more extensive evaluation using bin packing techniques is 
performed in [17]. 

6. Knapsack: To achieve better load balancing partial 
replication can be employed. The idea of partial replication is 
analogous to the classical 0-1 knapsack problem [41]. Some 
of the significance work in this line of pursuit is reported in 
[5], [40], and [52].  

A number of bibliographies and reading materials for web 
content replication are also available online, e.g., [7]. A brief 
overview of replication and its challenges are provided in [41] 
and [48]. Moreover, we also must make the reader aware of a 
number of research papers on resource and replica allocation 
using game theory [17]-[35].  

VIII.CONCLUSION

This paper proposed a game theoretical resource allocation 
mechanism that effectively addressed the fine-grained data 
replication problem with selfish players. The experimental 
results which were recorded against some well know 
techniques such as branch and bound, greedy, game 
theoretical auctions, and genetic algorithms revealed that the 
proposed mechanism exhibited 5%-10% better solution
quality and incurred fast execution time. 
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