
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1790

Abstract—Fine-grained data replication over the Internet allows
duplication of frequently accessed data objects, as opposed to entire
sites, to certain locations so as to improve the performance of large-
scale content distribution systems. In a distributed system, agents
representing their sites try to maximize their own benefit since they
are driven by different goals such as to minimize their
communication costs, latency, etc. In this paper, we will use game
theoretical techniques and in particular auctions to identify a
bidding mechanism that encapsulates the selfishness of the agents,
while having a controlling hand over them. In essence, the proposed
game theory based mechanism is the study of what happens when
independent agents act selfishly and how to control them to
maximize the overall performance. A bidding mechanism asks how
one can design systems so that agents’ selfish behavior results in the
desired system-wide goals. Experimental results reveal that this
mechanism provides excellent solution quality, while maintaining
fast execution time. The comparisons are recorded against some
well known techniques such as greedy, branch and bound, game
theoretical auctions and genetic algorithms.

Keywords—Internet, data content replication, static allocation,
mechanism design, equilibrium.

I. INTRODUCTION

N the Internet a magnitude of heterogeneous entities (e.g.
providers, servers, commercial services, etc.) offer, use, and

even compete with each other for resources. The Internet is
emerging as a new platform for distributed computing and
brings with it problems never seen before. New solutions
should take into account the various new concepts derived
from multi-agent systems in which the agents cannot be
assumed to act in accordance to the deployed algorithm. In a
heterogeneous system such as the Internet entitles act
selfishly. This is obvious since they are driven by different
goals such as to minimize their communication costs, latency,
etc. Thus, one cannot assume that agents would follow the
protocol or the algorithm; though they respond to incentives
(e.g. payments received for compensation).

In this paper, we will use game theoretical techniques and
in particular auctions to identify a bidding mechanism that

S. U. Khan is with the Department of Electrical and Computer Engineering,
North Dakota State University, Fargo, ND 58102, USA (phone: 701-231-7615;
fax: 701-231-8677; e-mail: samee.khan@ ndsu.edu).

C. Ardil is with the National Academy of Aviation, Baku, Azerbaijan, (e-
mail: cemalardil@gmail.com).

encapsulates the selfishness of the agents, while having a
controlling hand over them. This work is inspired from the
work reported in [46] and [54]. In essence, game theory is the
study of what happens when independent agents act selfishly.
A bidding mechanism asks how one can design systems so
that agents’ selfish behavior results in the desired system-
wide goals.

In this paper, we will apply the derived mechanism to the
fine grained data replication problem (DRP) over the Internet.
This problem strongly conforms to the selfish agents’ notion
and has a wide range of applications. Replication is widely
used to improve the performance of large-scale content
distribution systems such as the CDNs [50]. Replicating the
data over geographically dispersed locations reduces access
latency, network traffic, and in turn adds reliability,
robustness and fault-tolerance to the system. Discussions in
[14], [17], [39], [40], [47], etc. reveal that client(s) experience
reduced access latencies provided that data is replicated
within their close proximity. However, this is applicable in
cases when only read accesses are considered. If updates of
the contents are also under focus, then the locations of the
replicas have to be: 1) in close proximity to the client(s), and
2) in close proximity to the primary (assuming a broadcast
update model) copy. For fault-tolerant and highly dependable
systems, replication is essential, as demonstrated in a real
world example of OceanStore [50]. Therefore, efficient and
effective replication schemas strongly depend on how many
replicas to be placed in the system, and more importantly
where. Needless to say that our work differs form the existing
techniques in the usage of game theoretical techniques. To
the best of the authors’ knowledge this is the very first work
that addresses the problem using such techniques.

The major results of this paper are as follows:
1. We derive a specialized auction mechanism. This

mechanism allows selfish agents to compete in a non-
cooperative environment.

2. We investigate this auction mechanism, provide some
useful properties and identify the necessary conditions of
optimality.

3. As an application we employ the derived mechanism to
the DRP. We perform extensive experimental
comparisons against some well known techniques, such
as greedy, branch and bound, genetic and game
theoretical auctions.

A Frugal Bidding Procedure
for Replicating WWW Content

Samee Ullah Khan and Cemal Ardil

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1791

p1

Agent 1

Mechanism

Agent M......

b1 bM

pMx1 xM

Fig. 1 Frugal bidding mechanism

TABLE I
NOTATIONS AND THEIR MEANINGS

Symbols Meaning
M Total number of sites in the network
N Total number of objects to be replicated
Ok k-th object
ok Size of object k
Si i-th site
si Size of site i
rk

i Number of reads for object k from site i
Rk

i Aggregate read cost of rk
i

wk
i Number of writes for object k from site i

Wk
i Aggregate write cost of wk

i

NNk
i Nearest neighbor of site i holding object k

c(i,j) Communication cost between sites i and j
Pk Primary site of the k-th object
Rk Replication schema of object k
Coverall Total overall data transfer cost
SGRG Self Generate Random Graphs
GT-ITM PR Georgia Tech Internetwork Topology Models Pure Random
GT-ITM W Georgia Tech Internetwork Topology Models Waxman
SGFCGUD Self Generated Fully Connected Graphs Uniform Distribution
SGFCGRD Self Generated Fully Connected Graphs Random Distribution
SGRGLND Self Generated Random Graphs Lognormal Distribution
DRP Data replication problem
OTC Object transfer cost (network communication cost)

The remainder of this paper is organized as follows.
Section II describes the resource allocation mechanism.
Section III formulates the DRP. Section IV concentrates on
modeling the resource allocation mechanism for the DRP,
followed by theoretical proofs in Section V. The experimental
results, related work and concluding remarks are provided in
Sections VI, VII and VIII, respectively.

II.THE FRUGAL BIDDING PROCEDURE

We approach the mechanism (Fig. 1) design in a stepwise
fashion.

The Basics: The mechanism contains M agents. Each
agent i has some private data ti

∈R. This data is termed as the
agent’s true data or true type. Only agent i has knowledge of
ti. Everything else in the mechanism is public knowledge. Let
t denote the vector of all the true types t = (t1…tM).

Communications: Since the agents are selfish in nature,
they do not communicate to the mechanism the value ti. The

only information that is relayed to the mechanism is the
corresponding bid bi. Let b denote the vector of all the bids
((b = (b1…bM)), and let b-i denote the vector of bids, not
including agent i, i.e., b-i = (b1…bi-1,bi+1,…bM). It is to be
understood that we can also write b = (b-i,bi).

Components: The mechanism has two components 1) the
algorithmic output x(·), and 2) the payment mapping function
p(·).

Algorithmic output: The mechanism allows a set of
outputs X, based on the output function which takes in as the
argument, the bidding vector, i.e., x(b) = {x1(b),…, xM(b)},
where x(b)∈X. This output function relays a unique output
given a vector b. That is, when x(·) receives b, it generates an
output which is of the form of allocations xi(b). Intuitively it
would mean that the algorithm takes in the vector bid b and
then relays to each agent its allocation. Many sophisticated
allocation outputs can be constructed, but in this paper we
choose to have a simple, intuitive and an optimal allocation.

Monetary cost: Each agent i incurs some monetary cost

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1792

ci(ti,x), i.e., the cost to accommodate the allocation xi(b). This
cost is dependent upon the output and the agent’s private
data.

Payments: To offset ci, the mechanism makes a payment
pi(b) to agent i. An agent i always attempts to maximize its
profit (utility) ui(ti,b) = pi(b) - ci(ti,x). Each agent i cares
about the other agents’ bid only insofar as they influence the
outcome and the payment. While ti is only known to agent i,
the function ci is public.

Bids: Each agent i is interested in reporting a bid bi such
that it maximizes its profit, regardless of what the other
agents bid, i.e., ui(ti,(b-i,ti)) ≥ ui(ti,(b-i,bi)) for all b-i and bi.

A closer look at the bids reveal that the agents are posting
bids that are dominant in nature. We state the following
lemma from literature which says that truth-telling are
dominant strategies, i.e., if all the agents report the exact
worth of an object, it conforms to dominating strategies.

Lemma 1: Truth-telling is a dominant strategy.
Proof: [46].
The Mechanism: We now put all the pieces together. A

mechanism m consists of a pair m = (x(b),p(b)), where x(·) is
the output function and p(·) is the payment mapping function.
The objective of the mechanism is to select an output x, that
optimizes a given objective function g(b,x).

Below we identify the desired characteristics of the
mechanism.

Truthfulness: We say that an output function admits
truthful payments if there exists a payment mapping function
p(·) such that the mechanism m is truthful. Using Lemma 1,
this would transform to: a mechanism m that is implemented
using dominant strategies (m = (x(t),p(t))).

Voluntary participation: A mechanism is characterized as
a voluntary participation mechanism if for every agent i,
ui(ti,(b-i,ti)) ≥ 0, i.e., no agent incurs a net loss.

In recent times, such mechanisms have been applied to the
scheduling problems [2], [13], [46], etc. The only practical
work that can be found in the literature is reported in [13].
However, that work is the exact implementation of the work
reported in [46]. Moreover, the authors in [13] have failed to
reason why the implementation works to begin with. It is to
be noted that a truthful mechanism strongly relies on the
payment function, i.e., the agents are forced to tell the truth
because telling a lie gives them no greater profit. Therefore,
they are better off telling the truth. Our work differs from
others in that we give a concrete application of the truthful
mechanism, and concentrate on the payment function. We
prove that our approach results in payments that are the exact
representations of the monetary costs, i.e., the payments are
frugal.

Objective: The mechanism defined above leaves us with
the following two optimization problems:
1. Identify a strategy that is dominant to each agent i.
2. Identify a payment mapping function that is truthful, and

frugal.

III. DESCRIPTION OF THE DATA REPLICATION PROBLEM

Consider a distributed system comprising M sites, with
each site having its own processing power, memory (primary
storage) and media (secondary storage). Let Si and si be the
name and the total storage capacity (in simple data units e.g.
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of
the system are connected by a communication network. A
link between two sites Si and Sj (if it exists) has a positive
integer c(i,j) associated with it, giving the communication
cost for transferring a data unit between sites Si and Sj. If the
two sites are not directly connected by a communication link
then the above cost is given by the sum of the costs of all the
links in a chosen path from site Si to the site Sj. Without the
loss of generality we assume that c(i,j) = c(j,i). This is a
common assumption (e.g. see [14], [17], [40], [47], etc.). Let
there be N objects, each identifiable by a unique name Ok and
size in simple data unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i

be the total number of reads and writes, respectively, initiated
from Si for Ok during a certain time period. Our replication
policy assumes the existence of one primary copy for each
object in the network. Let Pk, be the site which holds the
primary copy of Ok, i.e., the only copy in the network that
cannot be de-allocated, hence referred to as primary site of
the k-th object. Each primary site Pk, contains information
about the whole replication scheme Rk of Ok. This can be done
by maintaining a list of the sites where the k-th object is
replicated at, called from now on the replicators of Ok.
Moreover, every site Si stores a two-field record for each
object. The first field is its primary site Pk and the second the
nearest neighborhood site NNk

i of site Si which holds a replica
of object k. In other words, NNk

i is the site for which the reads
from Si for Ok, if served there, would incur the minimum
possible communication cost. It is possible that NNk

i = Si, if Si

is a replicator or the primary site of Ok. Another possibility is
that NNk

i = Pk, if the primary site is the closest one holding a
replica of Ok. When a site Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For the
updates we assume that every site can update every object.
Updates of an object Ok are performed by sending the updated
version to its primary site Pk, which afterwards broadcasts it
to every site in its replication scheme Rk.

For the DRP under consideration, we are interested in
minimizing the total network transfer cost due to object
movement, i.e. the Object Transfer Cost (OTC). The
communication cost of the control messages has minor
impact to the overall performance of the system, therefore, we
do not consider it in the transfer cost model, but it is to be
noted that incorporation of such a cost would be a trivial
exercise. There are two components affecting OTC. The first
component of OTC is due to the read requests. Let Rk

i denote
the total OTC, due to Sis’ reading requests for object Ok,
addressed to the nearest site NNk

i. This cost is given by the
following equation:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1793

),(i
kk

i
k

i
k NNicorR = ,

(1)

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes. Let
Wk

i be the total OTC, due to Sis’ writing requests for object
Ok, addressed to the primary site Pk. This cost is given by the
following equation:

)),(),((
),(

∑+=
≠∈∀ ijRj

i
kkk

i
k

i
k

k

jNNcPicowW . (2)

Here, we made the indirect assumption that in order to
perform a write we need to ship the whole updated version of
the object. This of course is not always the case, as we can
move only the updated parts of it (modeling such policies can
also be done using our framework). The cumulative OTC,
denoted as Coverall, due to reads and writes is given by:

∑ ∑ += = =

M
i

N
k

i
k

i
koverall WRC 1 1)(. (3)

Let Xik=1 if Si holds a replica of object Ok, and 0 otherwise.
Xiks define an M×N replication matrix, named X, with
boolean elements. Sites which are not the replicators of object
Ok create OTC equal to the communication cost of their reads
from the nearest replicator, plus that of sending their writes
to the primary site of Ok . Sites belonging to the replication
scheme of Ok, are associated with the cost of
sending/receiving all the updated versions of it. Using the
above formulation, the DRP can be defined as:

Find the assignment of 0, 1 values in the X matrix that
minimizes Coverall, subject to the storage capacity

constraint:∑ =
≤≤∀≤

N

k
i

kik MisoX
1

)1(, and subject to the

primary copies policy:)1(1 NkX kkP ≤≤∀= .

The minimization of Coverall will have two impacts on the
distributed system under consideration: First, it ensures that
the object replication is done in such a way that it minimizes
the maximum distance between the replicas and their
respective primary objects. Second, it ensures that the
maximum distance between an object k and the user(s)
accessing that object is also minimized. Thus, the solution
aims for reducing the overall OTC of the system. In the
generalized case, the DRP has been proven to be NP-complete
[40].

IV. MECHANISM APPLIED TO THE DRP

We follow the same pattern as discussed in Section II.
The Basics: The distributed system described in Section III

is considered, where each site is represented by an agent, i.e.,
the mechanism contains M agents. In the context of the DRP,
an agent holds two key elements of data a) the available site
capacity aci, and b) the cost to replicate (RCk

i = Rk
i+Wk

i) an
object k to the agent’s site i. There are three possible cases:
1. DRP [π]: where each agent i holds the cost to replicate

RCk
i = ti associated with each object k, where as the

available site capacity and everything else is public
knowledge.

2. DRP [σ]: where each agent i holds the available site
capacity aci = ti, where as the cost to replicate and
everything else is public knowledge.

3. DRP [π,σ]: where each agent i holds both the cost to
replicate and the site capacity {RCk

i,aci} = ti, where as
everything else is public knowledge.

Intuitively, if agents know the available site capacities of
other agents, that gives them no advantage whatsoever.
However, if they come about to know their replication cost
then they can modify their valuations and alter the
algorithmic output. It is to be noted that an agent can only
calculate the replication cost via the frequencies of reads and
writes. Everything else such as the network topology, latency
on communication lines, and even the site capacities can be
public knowledge. Therefore, DRP[π] is the only natural
choice.

Communications: The agents in the mechanism are
assumed to be selfish and therefore, they project a bid bi to
the mechanism. In reality the amount of communications
made are immense. This fact was not realized in [13], where
the authors assume superfluous assumptions on the
implementation. In the later text we will reveal how to cope
with this dilemma.

Components: The mechanism has two components 1) the
algorithmic output x(·), and 2) the payment mapping function
p(·).

Algorithmic output: In the context of the DRP, the
algorithm accepts bids from all the agents, and outputs the
maximum beneficial bid, i.e., the bid that incurs the
minimum replication cost overall (Equation 3). We will give
a detailed description of the algorithm in the later text.

Monetary cost: When an object is allocated (for
replication) to an agent i, the agent becomes responsible to
entertain (read and write) requests to that object. For
example, assume object k is replicated to agent i. Then the
amount of traffic that the agent has to entertain due to the
replication of object k is exactly equivalent to the replication
cost, i.e., ci = RCk

i. This fact is easily deducible from
Equation 4.

Payments: To offset ci, the mechanism makes a payment
pi(b) to agent i. This payment is equivalent to the cost it
incurs to replicate the object, i.e., pi(b) = ci. The readers
would immediately note that in such a payment agent i can
never get a profit greater than 0. This is exactly what we
want. In a selfish environment, it is possible that the agents
bid higher than the true value, the mechanism creates an
illusion to negate that. By compensating the agents with the
exact amount of what the cost occurs, it leaves no room for
the agents to overbid or underbid (in the later text we will
rigorously prove the above argument). Therefore, the
voluntary characteristic of the mechanism now becomes a
strongly voluntary and we quote from the literature the
following definition.

Definition 1: A mechanism is characterized as a strongly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1794

Frugal Auction (FA) Mechanism
Initialize:
01 LS, Li, Tk

i, M, MT
02 WHILE LS ≠ NULL DO
03 OMAX = NULL; MT = NULL; Pi = NULL;
04 PARFOR each Si

∈LS DO
05 FOR each Ok∈Li DO
06 Tk

i = compute (ti); /*compute the valuation corresponding to the desired object*/
07 ENDFOR
08 ti = argmaxk(Tk

i);
09 SEND ti to M; RECEIVE at M ti in MT;
10 ENDPARFOR
11 OMAX = argmaxk(MT); /*Choose the global dominate valuation*/
12 Pi = 1/OMAX; /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; /*Send payments to the agent who is allocate the object OMAX*/
15 Replicate OOMAX;
16 aci=aci - ok; /*Update capacity*/
17 Li = Li - Ok; /*Update the list*/
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si; /*Update mechanism players*/
19 PARFOR each Si

∈LS DO
20 Update NNi

OMAX /*Update the nearest neighbor list*/
21 ENDPARFOR /*Get ready for the next round*/
22 ENDWHILE
Fig. 2 Frugal Auction (FA) Mechanism

voluntary participation mechanism if for every agent i,
ui(ti,(b-i,ti)) = 0 [54].

We want to emphasis that each agent’s incentive is to
replicate objects so that queries can be answered locally, for
the sake of users that access the agent’s site. If the replicas
are made available elsewhere, the agent may lose the users, as
they might divert their accesses to other sites.

Bids: Each agent i reports a bid that is the direct
representation of the true data that it holds. Therefore, a bid
bi is equivalent to 1/RCk

i. That is, the lower the replication
cost the higher is the bid and the higher are the chances for
the bid bi to win.

In essence, the mechanism m(x(b),p(b)), takes in the vector
of bids b from all the agents, and selects the highest bid. The
highest bidder is allocated the object k which is added to its
allocation set xi. The mechanism then pays the bidder pi. This
payment is equivalent to the cost incurred due to entertain
requests from object k by users. The mechanism is given in
Fig. 2.

Description of Algorithm: We maintain a list Li at each
server. This list contains all the objects that can be replicated
by agent i onto site Si. We can obtain this list by examining
the two constraints of the DRP. List Li would contain all the
objects that have their size less then the total available space
aci. Moreover, if site Si is the primary host of some object k’,
then k’ should not be in Li. We also maintain a list LS
containing all sites that can replicate an object, i.e., Si

∈LS if
Li≠NULL. The algorithm works iteratively. In each step the
mechanism asks all the agents to send their preferences (first
PARFOR loop). Each agent i recursively calculates the true
data of every object in list Li. Each agent then reports the

dominant true data (line 09) to the mechanism. The
mechanism receives all the corresponding entries, and then
chooses the globally dominant true data. This is broadcasted
to all the agents, so that they can update their nearest
neighbor table NNk

i, which is shown in Line 20 (NNi
OMAX).

The object is replicated and the payment is made to the agent.
The mechanism progresses forward till there are no more
agents interested in acquiring any data for replication (Line
18).

The above discussion allows us to deduce the following two
results about the mechanism.

Theorem 1: FA requires O(MN2) time.
Proof: The worst case scenario is when each site has

sufficient capacity to store all objects. In that case, the while
loop (Line 02) performs MN iterations. The time complexity
for each iteration is governed by the two PARFOR loops
(Lines 04 and 19). The first loop uses at most N iterations,
while the send loop performs the update in constant time.
Hence, we conclude that the worst case running time of the
mechanism is O(MN2). ■

Theorem 2: In the worst case FA uses O(M3N) messages.
Proof: First we calculate the number of messages in a

single iteration. First, each agent sends its true data to the
mechanism, which constitutes M messages. Second, the
mechanism broadcasts information about the object being
allocated, this constitutes M messages. Third, the mechanism
sends a single message about payment to the agent to whom
the replica was assigned, which we can ignore since it has
little impact on the total number of messages. The total
number of messages required in a single iteration as of the
order of M2. From Theorem 1, we can conclude that in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1795

worst case the mechanism requires O(M3N) messages. ■
It is evident from Theorem 2 that the mechanism requires

tremendous amounts of communications. This might be
reduced by using some sophisticated network protocols. In the
future generation distributed computing systems, the
participating agents might actually be mobile, i.e., they can
travel from node to node in the network. In such a scenario
the agents can converge to a specific site and execute the
mechanism. In that case the number of messages will be
reduced astronomically. In our experimentations we mimic
this scenario and use IBM Pthreads to implement the
mechanism. Other possible improvements are left as future
research issues.

V. SUPPLEMENTARY RESULTS

Here, we present some results that strengthen our claim on
the optimality of the derived bidding mechanism. We begin
by making the following observations.

Assume that the mechanism m = (x(b),p(b)) is truthful and
each payment pi(b-i,bi) and allocation xi(b-i,bi) is twice
differentiable with respect to bi, for all the values of b-i. We
fix some agent i and derive a formula for pi, allocation xi, and
profit to be the functions of just agent i’s bid bi. Since agent
i’s profit is always maximized by bidding truthfully (Lemma
1), the derivative is zero and the second derivative is non-
positive at ti. Since this holds no matter what the value of ti

is, we can integrate to obtain an expression for pi. We state:
pi(bi) = pi(0)+bixi(bi)-∫0bixi(u)du. This is now the basis of our
extended theoretical results. Literature survey revealed the
following two important characteristics of a frugal payment
mechanism. We state them below.

Definition 2: With the other agents’ bid b-i fixed, consider
xi(b-i,bi) as a single variable function of bi. We call this the
allocation curve or the allocation profile of agent i. We say
the output function x is decreasing if each of the associated
allocation curves is decreasing, i.e., xi(b-i,bi) is a decreasing
function of bi, for all i and b-i.

Based on the above definition, we can state the following
theorem.

Theorem 3: A mechanism is truthful if its output function
x(b) is decreasing.

Proof: We prove this for the DRP mechanism. For
simplicity we fix all bids b-i, and focus on xi(b-i,bi) as a single
variable function of bi, i.e., the allocation xi would only
change if bi is altered. We now consider two bids bi and bi’
such that bi’ > bi. In terms of the true data ti, this conforms to
RCk

i’ > RCk
i. Let xi and xi’ be the allocations made to the

agent i when it bids bi and bi’, respectively. For a given
allocation, the total replication cost associated can be
represented as Ci=∑k∈xiRCk

i. The proof of the theorem reduces
to proving that xi’ < xi, i.e., the allocation computed by the
algorithmic output is decreasing in bi. The proof is simple by
contradiction. Assume that that xi’ ≥ xi. This implies that
1/(Ci-RCk

i) < 1/(Ci’-RCk
i) ≤ 1/(Ci-RCk

i’). This means that

there must be an agent -i who has a bid that supersedes bi’.
But that is not possible as we began with the assumption that
all other bids are fixed so there can be no other agent -i. If i =
-i, then that is also not possible since we assumed that bi’ >
bi. ■

We now extend the result obtained in Theorem 3 and state:
Theorem 4: A decreasing output function admits a truthful

payment scheme satisfying voluntary participation if and only

if ∫
∞

−
∞<

0
),(duubx ii for all i, b-i. In this case we can take the

payments to be: ∫
∞

−−−
+=

0
),(),(),(duubxbbxbbbp iiiiiiiii .

Proof: The first term bixi(b-i,bi) compensates the cost
incurred by agent i to host the allocation xi. The second term

∫
∞

−

0
),(duubx ii represents the expected profit of agent i. If agent

i bids its true value ti, then its profit is
= ui(ti,(b-i,ti))

= ∫
∞

−−−
−+ it

iiiiiiiiii tbxtdxxbxtbxt),(),(),(

= ∫
∞

−

it

ii dxxbx),(

If agent i bids its true value, then the expected profit is
greater than in the case it bids other values. We explain this
as follows: If agent i bids higher (bi’>ti), then the expected
profit is

= ui(ti,(b-i,bi’))

= ∫
∞ −−−

−+
'

)',(),()',(' ib

iiiiiiiiii bbxtdxxbxbbxb

= ∫
∞

−−
+−

'
),()',()'(ib

iiiiiii dxxbxbbxtb .

Because ∞<∫
∞

−

'
),(ib

ii dxxbx and bi’ > ti, we can express

the profit when agent i bids the true value as

follows: ∫∫
∞

−−
+

'

'
),(),(ib

ii
ib

it

ii dxxbxdxxbx . This is because xi is

decreasing in bi and bi’ > ti, we have the following

equation: ∫ −−
<−

'
),()',()'(

ib

it

iiiiiii dxxbxbbxtb . From this

relation, it can be seen that the profit with overbidding is
lower then the profit with bidding the true data. Similar
arguments can be used for underbidding. ■

VI. EXPERIMENTAL SETUP AND DISCUSSION OF RESULTS

A. Setup

We performed experiments on a 440MHz Ultra 10 machine
with 512MB memory. The experimental evaluations were
targeted to benchmark the placement policies. The resource
allocation mechanism was implemented using IBM Pthreads.

To establish diversity in our experimental setups, the
network connectively was changed considerably. In this
paper, we only present the results that were obtained using a
maximum of 500 sites (nodes). We used existing topology
generator toolkits and also self generated networks. In all the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1796

TABLE II
PARAMETER INTERVAL VARIANCE CHARACTERIZATION FOR TOPOLOGIES WITH 100 NODES

Topology Mathematical Representation Parameter Interval Variance
SGRG
(12 topologies)

Randomized layout with node degree (d*) and Euclidian distance (d)
between nodes as parameters.

d={5,10,15,20},
d*={10,15,20}.

GT-ITM PR [4]
(5 topologies)

Randomized layout with edges added between the randomly located
vertices with a probability (p).

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [4]
(9 topologies)

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25}, β={0.2,0.3,0.4}.

SGFCGUD
(5 topologies)

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50].

SGFCGRD
(5 topologies)

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50].

SGRGLND
(9 topologies)

Random layout with link distance having a lognormal distribution [9]. μ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

Step 1:
Network is Physically
layerd using GT-ITU
or other methods.

2

3

10 km

5

1000 km

6 7

8

10 km
1000 km

100 km

10 km
4

1
10 km 1000 km

100 km

2

3

10 km
100 Mbps

5

1000 km
10 Mbps

6 7

8

10 km
1 Mbps

1000 km
10 Mbps

100 km
100 Mbps

 10 km
 100 Mbps4

1
10 km
1Mbps

1000 km
1 Mbps

100 km
10 Mbps

Step 2:
Comunication link
costs such as
bandwidth and latency
measures are added.
Latency is assumed to
be 2x108 m/s.

Step 3:
Process access log files to get users'
acess patterns, object size, object
size variance, time of access, etc.

2

3

(0.12)

5

(4.38)

6 7

8

(8.04)
(4.38)

(0.44)

 (0.12)
4

1
(8.04) (11.57)

(1.16)

Step 4:
Use information from
step 3 to determine:
a. System capacity.
b. Locations of Pk.
c. Mapping randomly
users onto each server.

(The package denotes Pk)

2

3

(0.12)

5

(4.38)

6 7

8

(8.04)
(4.38)

(0.44)

 (0.12)
4

1
(8.04) (11.57)

(1.16)

Step 5:
Employ agents for the
system.

C

A

B

Note that n ot a l l agen ts ar e
shown due to space restrictions.

Step 6:
Extract from step 3:
a. Read frequencies from the access logs.
b. Write frequencies requests in the range of
the read requests.

Fig. 3 A walk through the necessary steps involved in an experimental setup

topologies, the distance of the link between nodes was
equivalent to the communication cost. Table II summarizes
the various techniques used to gather forty-five various
topologies for networks with 100 nodes. It is to be noted that
the parameters vary for networks with lesser/larger number of
nodes.

To evaluate the chosen replication placement techniques on
realistic traffic patterns, we used the access logs collected at
the Soccer World Cup 1998 website [3]. Each experimental
setup was evaluated thirteen times, i.e., only the Friday (24
hours) logs from May 1, 1998 to July 24, 1998. Thus, each
experimental setup in fact represents an average of the 585
(13×45) data set points. To process the logs, we wrote a script

that returned: only those objects which were present in all the
logs (2000 in our case), the total number of requests from a
particular client for an object, the average and the variance of
the object size. From this log we chose the top five hundred
clients (maximum experimental setup). A random mapping
was then performed of the clients to the nodes of the
topologies. Note that this mapping is not 1-1, rather 1-M.
This gave us enough skewed workload to mimic real world
scenarios. It is also worthwhile to mention that the total
amount of requests entertained for each problem instance was
in the range of 1-2 million. The primary replicas’ original site
was mimicked by choosing random locations. The capacities
of the sites C% were generated randomly with range from

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1797

Total Primary Object Sizes/2 to 1.5×Total Primary Object
Sizes. The variance in the object size collected from the
access logs helped to instill enough diversity to benchmark
object updates. The updates were randomly pushed onto
different sites, and the total system update load was measured
in terms of the percentage update requests U% compared that
to the initial network with no updates. A brief overview on
how the experimental setups are obtained is depicted in Fig.
3.

B. Comparative Algorithms

For comparison, we selected five various types of replica
placement techniques. To provide a fair comparison, the
assumptions and system parameters were kept the same in all
the approaches. The techniques studied include efficient
branch-and-bound based technique (Aε-Star [17]). For fine-
grained replication, the algorithms proposed in [39], [40],
and [47] are the only ones that address the problem domain
similar to ours. We select from [47] the greedy approach
(Greedy) for comparison because it is shown to be the best
compared with 4 other approaches (including the proposed
technique in [39]); thus, we indirectly compare with 4
additional approaches as well. Algorithms reported in [21]
(Dutch (DA) and English auctions (EA)) and [40] (Genetic
based algorithm (GRA)) are also among the chosen
techniques for comparisons. Due to space limitations we will
only give a brief overview of the comparative techniques.
Details for a specific technique can be obtained from the
referenced papers.

Performance metric: The solution quality is measured in
terms of network communication cost (OTC percentage) that
is saved under the replication scheme found by the
algorithms, compared to the initial one, i.e., when only
primary copies exists.

1. Aε-Star: In [17] the authors proposed a 1+ε admissible
A-Star based technique called Aε-Star. This technique uses
two lists: OPEN and FOCAL. The FOCAL list is the sub-list
of OPEN, and only contains those nodes that do not deviate
from the lowest f node by a factor greater than 1+ε. The
technique works similar to A-Star, with the exception that the
node selection (lowest h) is done not from the OPEN but from
the FOCAL list. It is easy to see that this approach will never
run into the problem of memory overflow, moreover, the
FOCAL list always ensures that only the candidate solutions
within a bound of 1+ε of the A-Star are expanded.

2. Greedy based technique: We modify the greedy
approach reported in [47], to fit our problem formulation. The
greedy algorithm works in an iterative fashion. In the first
iteration, all the M sites are investigated to find the replica
location(s) of the first among a total of N objects. Consider
that we choose an object i for replication. The algorithm
recursively makes calculations based on the assumption that
all the users in the system request for object i. Thus, we have
to pick a site that yields the lowest cost of replication for the

object i. In the second iteration, the location for the second
site is considered. Based on the choice of object i, the
algorithm now would identify the second site for replication,
which, in conjunction with the site already picked, yields the
lowest replication cost. Observe here that this assignment
may or may not be for the same object i. The algorithm
progresses forward till either one of the DRP constraints are
violated. The readers will immediately realize that the
bidding mechanism reported in this paper works similar to
the Greedy algorithm. This is true; however, the Greedy
approach does not guarantee optimality even if the algorithm
is run on the very same problem instance. Recall that Greedy
relies on making combinations of object assignments and
therefore, suffers from the initial choice of object selection
(which is done randomly). This is never the case in the
derived bidding mechanism, which identifies optimal
allocations in every case.

3. Dutch auction: The auctioneer begins with a high
asking price which is lowered until some agent is willing to
accept the auctioneer's price. That agent pays the last
announced price. This type of auction is convenient when it is
important to auction objects quickly, since a sale never
requires more than one bid. In no case does the auctioneer
reveal any of the bids submitted to him, and no information is
shared between the agents. It is shown that for an agent to
have a probabilistically superior bid than n-1 other bids; an
agent should have the valuation divided by n.

4. English auction: In this type of auction, the agents bid
openly against one another, with each bid being higher than
the previous bid. The auction ends when no agent is willing
to bid further. During the auction when an auctioneer receives
a bid higher than the currently submitted bids, he announces
the bid value so that other agents (if needed) can revise their
currently submitted bids. In [44] the discussion on EA reveals
that the optimal strategy for a bidder i is to bid a value which
is directly derived from his valuation.

5. GRA: In [40], the authors proposed a genetic algorithm
based heuristic called GRA. GRA provides good solution
quality, but suffers from slow termination time. This
algorithm was selected since it realistically addressed the
fine-grained data replication using the same problem
formulation as undertaken in this article.

C.Comparative Analysis

We study the behavior of the placement techniques when
the number of sites increases (Fig. 3), by setting the number
of objects to 2000, while in Fig. 4, we study the behavior
when the number of objects increase, by setting the number of
sites to 500. We should note here that the space limitations
restricted us to include various other scenarios with varying
capacity and update ratio. The plot trends were similar to the
ones reported in this article. For the first experiment we fixed
C=20% and U=75%. We intentionally chose a high workload
so as to see if the techniques studied successfully handled the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1798

No. of Sites

O
T

C
 S

a
v

es

Performance
N=2000, C=20%, U=75%

0 50 100 150 200 250 300 350 400 450 500
66%

68%

70%

72%

74%

76%

78%

80%

82%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

OTC Saves

N
o

. o
f

O
b

je
ct

s

Performance
M=500, C=20%, U=25%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Fig. 4 OTC savings versus number of sites Fig. 5 OTC savings versus number of objects

Capacity of Sites

O
T

C
 S

a
v

es

Performance
N=2000, M=500, U=5%

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42%
45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Reads

O
T

C
 S

a
v

es

Performance
N=2000, M=500, C=45%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
36%

42%

48%

54%

60%

66%

72%

78%

84%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Fig. 6 OTC savings versus capacity Fig. 7 OTC savings versus reads

extreme cases. The first observation is that FA and EA
outperformed other techniques by considerable amounts.
Second, DA converged to a better solution quality under
certain problem instances. Some interesting observations
were also recorded, such as, all but GRA showed initial loss
in OTC savings with the initial number of site increase in the
system, as much as 7% loss was recorded in case of Greedy
with only a 40 site increase. GRA showed an initial gain
since with the increase in the number of sites, the population
permutations increase exponentially, but with the further
increase in the number of sites this phenomenon is not so
observable as all the essential objects are already replicated.
The top performing techniques (DA, EA, Aε-Star and FA)
showed an almost constant performance increase (after the
initial loss in OTC savings). This is because by adding a site
(server) in the network, we introduce additional traffic (local
requests), together with more storage capacity available for
replication. All four equally cater for the two diverse effects.
GRA also showed a similar trend but maintained lower OTC
savings. This was in line with the claims presented in [17]
and [40].

To observe the effect of increase in the number of objects in
the system, we chose a softer workload with C=20% and
U=25%. The intention was to observe the trends for all the
algorithms under various workloads. The increase in the

number of objects has diverse effects on the system as new
read/write patterns (users are offered more choices) emerge,
and also the increase in the strain on the overall capacity of
the system (increase in the number of replicas). An effective
algorithm should incorporate both the opposing trends. From
the plot, the most surprising result came from GRA. It
dropped its savings from 58% to 13%. This was contradictory
to what was reported in [40]. But there the authors had used a
uniformly distributed link cost topology, and their traffic was
based on the Zipf distribution [55]. While the traffic access
logs of the World Cup 1998 are more or less double-Pareto in
nature. In either case the exploits and limitations of the
technique under discussion are obvious. The plot also shows a
near identical performance by Aε-Star, DA and Greedy. The
relative difference among the three techniques is less than
2%. However, Aε-Star did maintain its domination. From the
plots the supremacy of EA and FA is observable. Both the
techniques showed high performance, with a slight edge in
favor of FA.

Next, we observe the effects of system capacity increase.
An increase in the storage capacity means that a large
number of objects can be replicated. Replicating an object that
is already extensively replicated, is unlikely to result in
significant traffic savings as only a small portion of the
servers will be affected overall. Moreover, since objects are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1799

Updates

O
T

C
 S

a
v

es

Performance
N=2000, M=500, C=60%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Execution Time Analysis
7%

68%

21%

3%

Replica
Placement

Shortest Paths

Miscellaneous

Data Gathering

Fig. 8 OTC savings versus updates Fig. 9 Execution time components

TABLE III
RUNNING TIME IN SECONDS [C=20%, U=45%] (SMALL PROBLEM INSTANCES)

Problem Size Greedy GRA Aε-Star DA EA FA
M=20, N=50 70.11 92.66 97.18 25.16 39.36 26.14
M=20, N=100 76.59 96.40 102.97 27.71 41.21 27.01
M=20, N=150 78.26 101.01 113.85 32.44 54.57 36.26
M=30, N=50 95.24 126.92 140.78 38.45 59.25 39.11
M=30, N=100 109.17 125.04 148.83 39.21 63.14 40.10
M=30, N=150 135.21 148.59 179.74 45.96 68.20 42.09
M=40, N=50 126.40 154.13 198.77 42.66 76.27 45.41
M=40, N=100 134.65 168.48 236.67 43.62 77.16 46.97
M=40, N=150 141.08 204.43 270.63 47.52 82.53 48.83

TABLE IV
RUNNING TIME IN SECONDS [C=45%, U=15%] (LARGE PROBLEM INSTANCES)

Problem Size Greedy GRA Aε-Star DA EA FA
M=300, N=1350 190.01 242.12 247.66 87.92 164.15 93.26
M=300, N=1400 206.26 326.82 279.45 95.64 178.90 97.98
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 124.73
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12
M=400, N=1350 321.60 492.10 353.08 176.51 218.15 176.90
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 214.55
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1350 402.20 660.86 460.44 246.43 284.63 259.56
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 266.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 304.47
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60

not equally read intensive, increase in the storage capacity
would have a great impact at the beginning (initial increase
in capacity), but has little effect after a certain point, where
the most beneficial ones are already replicated. This is
observable in Fig. 5, which shows the performance of the
algorithms. GRA once again performed the worst. The gap
between all other approaches was reduced to within 7% of

each other. DA and FA showed an immediate initial increase
(the point after which further replicating objects is inefficient)
in its OTC savings, but afterward showed a near constant
performance. GRA although performed the worst, but
observably gained the most OTC savings (35%) followed by
Greedy with 29%. Further experiments with various update
ratios (5%, 10%, and 20%) showed similar plot trends. It is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1800

Algorithms (L. to R.) [Greedy, GRA, Aεεεε-Star, DA, EA, FA]

O
T

C
 S

a
v

es

Load Variance (Median)
N=2000, M=500, C=25%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median (0.849)

Algorithms (L. to R.) [Greedy, GRA, Aεεεε-Star, DA, EA, FA]

O
T

C
 S

a
v

es

Load Variance (Mean)
N=2000, M=500, C=25%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

Mean+Std Dev
Mean-Std Dev
Mean+0.5*Std Dev
Mean-0.5*Std Dev
Mean
Outliers
Extremes
Grand mean (0.8088)

Fig. 10 Comparative load variance (Median) Fig.11 Comparative load variance (Mean)

Algorithms (L. to R.) [Greedy, GRA, Aεεεε-Star, DA, EA, FA]

O
T

C
 S

a
v

es

Capacity Variance (Median)
N=2000, M=500, U=25%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median (0.8847)

Algorithms (L. to R.) [Greedy, GRA, Aεεεε-Star, DA, EA, FA]

O
T

C
 S

a
v

es

Capacity Variance (Mean)
N=2000, M=500, U=25%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

104%

Mean+Std Dev
Mean-Std Dev
Mean+0.5*Std Dev
Mean-0.5*Std Dev
Mean
Outliers
Extremes
Grand mean (0.8549)

Fig. 12 Comparative capacity variance (Median) Fig. 13 Comparative capacity variance (Mean)

TABLE V
AVERAGE OTC (%) SAVINGS UNDER SOME PROBLEM INSTANCES

Problem Size Greedy GRA Aε-Star DA EA FA
N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 70.15 73.15 74.24
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 72.66 77.41 75.16
N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 68.23 70.11 69.53
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 70.22 71.23 73.45
N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 69.46 70.55 72.81
N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 70.21 71.12 72.04
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 69.29 70.61 72.19
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 70.16 71.29 71.95
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 72.77 72.61 72.35
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 68.63 69.24 73.25

also noteworthy (plots not shown in this paper due to space
restrictions) that the increase in capacity from 10% to 17%,
resulted in 4 times (on average) more replicas for all the
algorithms.

Next, we observe the effects of increase in the read and
update (write) frequencies. Since these two parameters are
complementary to each other, we describe them together. In
both the setups the number of sites and objects were kept
constant. Increase in the number of reads in the system would
mean that there is a need to replicate as many object as
possible (closer to the users). However, the increase in the

number of updates in the system requires the replicas be
placed as close as to the primary site as possible (to reduce the
update broadcast). This phenomenon is also interrelated with
the system capacity, as the update ratio sets an upper bound
on the possible traffic reduction through replication. Thus, if
we consider a system with unlimited capacity, the “replicate
everywhere anything” policy is strictly inadequate. The read
and update parameters indeed help in drawing a line between
good and marginal algorithms. The plots in Figs. 6 and 7
show the results of read and update frequencies, respectively.
A clear classification can be made between the algorithms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1801

Aε-Star, DA, EA, Greedy and FA incorporate the increase in
the number of reads by replicating more objects and thus
savings increase up to 88%. GRA gained the least of the OTC
savings of up to 67%. To understand why there is such a gap
in the performance between the algorithms, we should recall
that GRA specifically depend on the initial population (for
details see [40]). Moreover, GRA maintains a localized
network perception. Increase in updates result in objects
having decreased local significance (unless the vicinity is in
close proximity to the primary location). On the other hand,
Aε-Star, DA, EA, Greedy and FA never tend to deviate from
their global view of the problem search space.

Lastly, we compare the termination time of the algorithms.
Before we proceed, we would like to clarify our measurement
of algorithm termination timings. The approach we took was
to see if these algorithms can be used in dynamic scenarios.
Thus, we gather and process data as if it was a dynamic
system. The average breakdown of the execution time of all
the algorithms combined is depicted in Fig. 8. There 68% of
all the algorithm termination time was taken by the repeated
calculations of the shortest paths. Data gathering and
dispersion, such as reading the access frequencies from the
processed log, etc. took 7% of the total time. Other
miscellaneous operations including I/O were recorded to carry
3% of the total execution time. From the plot it is clear that a
totally static setup would take no less that 21% of the time
depicted in Tables III and IV.

Various problem instances were recorded with C=20%,
45% and U=15%, 45%. Each problem instance represents the
average recorded time over all the 45 topologies and 13
various access logs. The entries in bold represent the fastest
time recorded over the problem instance. It is observable that
FA and DA terminated faster than all the other techniques,
followed by EA, Greedy, Aε-Star and GRA. If a static
environment was considered, FA with the maximum problem
instance would have terminated approximately in 66.69
seconds (21% of the algorithm termination time).

In summary, based on the solution quality alone, the
algorithms can be classified into four categories: 1) The very
high performance algorithms that include EA and FA, 2) the
high performance algorithms of Greedy and DA, 3) the
medium-high performance Aε-Star, and finally 4) the
mediocre performance algorithm of GRA. While considering
the termination timings, FA and DA did extremely well,
followed by EA, Greedy, Aε-Star, and GRA.

D.Supplementary Analysis

Here, we present some supplementary results that
strengthen our comparative analysis provided in Section
VI.C. We show the relative performance of the techniques
with load and storage capacity variance. The plots in Figs. 10,
11, 12 and 13 show the recorded performances. All the plots
summarize the measured performance with varying
parameters (most of which could not be included in this paper

due to space limitations). We are mostly interested in
measuring the median and mean performances of the
algorithms. With load variance FA edges over Aε-Star with a
savings of 87%. The plot also shows that nearly every
algorithm performed well with grand median on 84.9%. The
graphs are self explanatory and also capture the outliners and
extreme points. The basic exercise in plotting these results is
to see which algorithms perform consistently. GRA for
example, records the lowest extremes, and hardly any
outliners. On the other hand the proposed FA’s performance
is captured in a small interval, with high median and mean
OTC savings.

Table V shows the quality of the solution in terms of OTC
percentage for 10 problem instances (randomly chosen), each
being a combination of various numbers of sites and objects,
with varying storage capacity and update ratio. For each row,
the best result is indicated in bold. The proposed FA
algorithm steals the show in the context of solution quality,
but Aε-Star, EA and DA do indeed give a good competition,
with a savings within a range of 5%-10% of FA.

VII. RELATED WORK

Myriad theoretical approaches are proposed that we classify
into the following six categories:

1. Facility Location: In [15], the authors employed several
techniques to address the Internet data replication problem
similar to that of the classical facility location problem. The
techniques reported are very tedious and have superfluous
assumptions. Thus, the problem definition in [15] does not
fully capture the concept of replicating a single object/site
over a fixed number of hosts [41].

2. File Allocation: File allocation has been a popular line
of research in: distributed computing, distributed databases,
multimedia databases, paging algorithms, and video server
systems [1], [8], [37], [42]. All the above referenced articles
incorporate data replication onto a set of distributed locations
(distributed system), which can easily be modified to its
equivalent problem in the context of Internet. Under the
assumption of unlimited server memory the authors in [37],
provided a guaranteed optimal result for Internet data
replication, but has little practical use [41], since the replica
placements are based on the belief that the access patterns
remain unchanged.

3. Minimum k-Median: The celebrated NP-complete
minimum k-median problem captures the coarse-grained
replication well, as it can tackle with the problem of
distributing a single replica over a fixed number of hosts. In
[39] the authors studied the problem of placing M proxies at
N nodes when the topology of the network is a tree and
proposed an O(N3M2) algorithm. A more generalized solution
was presented in [47]. There the authors proposed a greedy
algorithm that outperformed other techniques including the
work reported in [39].

4. Capacity-constrained Optimization: In [16], the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1802

authors use the capacity-constrained version of the minimum
k-median problem, and guarantee a stable performance.
However, such results are possible only with very
conservative assumptions as addressed in [14] and [38],
therefore, they can not handle the dynamics of the system
[41].

5. Bin Packing: The bin packing based problem
formulation is commonly used to model load balancing
problems. The problem of distributing documents in a cluster
of web servers in order to perform load balancing was
reported in [45]. However, the goodness of the results only
holds when the network under consideration was small. A
more extensive evaluation using bin packing techniques is
performed in [17].

6. Knapsack: To achieve better load balancing partial
replication can be employed. The idea of partial replication is
analogous to the classical 0-1 knapsack problem [41]. Some
of the significance work in this line of pursuit is reported in
[5], [40], and [52].

A number of bibliographies and reading materials for web
content replication are also available online, e.g., [7]. A brief
overview of replication and its challenges are provided in [41]
and [48]. Moreover, we also must make the reader aware of a
number of research papers on resource and replica allocation
using game theory [17]-[35].

VIII.CONCLUSION

This paper proposed a game theoretical resource allocation
mechanism that effectively addressed the fine-grained data
replication problem with selfish players. The experimental
results which were recorded against some well know
techniques such as branch and bound, greedy, game
theoretical auctions, and genetic algorithms revealed that the
proposed mechanism exhibited 5%-10% better solution
quality and incurred fast execution time.

REFERENCES

[1] P. Apers, “Data Allocation in Distributed Database Systems,” ACM
Transactions on Database Systems, 13(3), pp. 263-304, 1988.

[2] A. Archer and E. Tardos, “Truthful Mechanism for One-parameter
Agents,” in Proc. Of 42nd IEEE FOCS, pp. 482-491, 2001.

[3] M. Arlitt and T. Jin, “Workload characterization of the 1998 World Cup
Web Site,” Tech. report, Hewlett Packard Lab, Palo Alto, HPL-1999-
35(R.1), 1999.

[4] K. Calvert, M. Doar, E. Zegura, “Modeling Internet Topology,” IEEE
Communications, 35(6), pp. 160-163, 1997.

[5] C. Ceri, G. Pelagatti, and G. Martella, “Optimal File Allocation in a
Computer Network: A Solution based on Knapsack Problem,” Computer
Networks, vol. 6, pp. 345-357, 1982.

[6] M. Charikar, S. Guha, E. Tardos and D. Shmoys, “A Constant-Factor
Approximation Algorithm for the K-Median Problem,” in ACM STOC, pp.
1-10, 1999.

[7] B. Davison, “A Survey of Proxy Cache Evaluation Techniques,” in Proc.
of the 4th International Web Caching Workshop, 1999.

[8] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator and N. Young,
“Competitive Paging Algorithms,” Journal of Algorithms, 12(4), pp. 685-
699, 1991.

[9] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,”
IEEE/ACM Trans. Networking, 9(4), pp. 253-285, 2001.

[10] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman
and Co., 1979.

[11] J. Green and J. Laffont, “Characterization of Satisfactory Mechnisms for
the revelation of Preferences for Public Goods,” Econometrica, pp. 427-
438, 1977.

[12] T. Groves, “Incentives in Teams,” Econometrica, pp. 617-631, 1973.
[13] D. Grosu and A. Chronopoulos, “Algorithmic Mechnism Design for Load

Balancing in Distributed Systems,” IEEE Trans. Systems, Man and
Cybernatics B, 34(1), pp. 77-84, 2004.

[14] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang, “On the
Placement of Internet Instrumentation,” in Proc. of the IEEE INFOCOM,
2000.

[15] S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Constrained Mirror
Placement on the Internet,” in Proc. of the IEEE INFOCOM, 2001.

[16] J. Kangasharju, J. Roberts and K. Ross, “Object Replication Strategies in
Content Distribution Networks,” in Proc. of Web Caching and Content
Distribution Workshop, pp. 455-456, 2001.

[17] S. U. Khan and I. Ahmad, “Heuristics-based Replication Schemas for Fast
Information Retrieval over the Internet,” in 17th International Conference
on Parallel and Distributed Computing Systems (PDCS), San Francisco,
CA, USA, September 2004, pp. 278-283.

[18] S. U. Khan and I. Ahmad, “A Powerful Direct Mechanism for Optimal
WWW Content Replication,” in 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Denver, CO, USA, April
2005.

[19] S. U. Khan and I. Ahmad, “A Game Theoretical Extended Vickery
Auction Mechanism for Replicating Data in Large-scale Distributed
Computing Systems,” in International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), Las Vegas,
NV, USA, June 2005, pp. 904-910.

[20] S. U. Khan and I. Ahmad, “RAMM: A Game Theoretical Replica
Allocation and Management Mechanism,” in 8th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN), Las Vegas,
NV, USA, December 2005, pp. 160-165.

[21] S. U. Khan and I. Ahmad, “A Powerful Direct Mechanism for Optimal
WWW Content Replication,” in 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Denver, CO, USA, April
2005.

[22] S. U. Khan and I. Ahmad, “A Game Theoretical Extended Vickery
Auction Mechanism for Replicating Data in Large-scale Distributed
Computing Systems,” in International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), Las Vegas,
NV, USA, June 2005, pp. 904-910.

[23] S. U. Khan and I. Ahmad, “RAMM: A Game Theoretical Replica
Allocation and Management Mechanism,” in 8th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN), Las Vegas,
NV, USA, December 2005, pp. 160-165.

[24] S. U. Khan and I. Ahmad, “Discriminatory Algorithmic Mechanism
Design Based WWW Content Replication,” Informatica, vol. 31, no. 1, pp.
105-119, 2007.

[25] S. U. Khan and I. Ahmad, “Game Theoretical Solutions for Data
Replication in Distributed Computing Systems,” in Handbook of Parallel
Computing: Models, Algorithms, and Applications, S. Rajasekaran and J.
Reif, Eds., Chapman & Hall/CRC Press, Boca Raton, FL, USA, 2007,
ISBN 1-584-88623-4, Chapter 45.

[26] S. U. Khan and I. Ahmad, “A Semi-Distributed Axiomatic Game
Theoretical Mechanism for Replicating Data Objects in Large Distributed
Computing Systems,” in 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Long Beach, CA, USA, March 2007.

[27] B. Khargharia, S. Hariri, F. Szidarovszky, M. Houri, H. El-Rewini, S. U.
Khan, I. Ahmad, and M. S. Yousif, “Autonomic Power and Performance
Management for Large-Scale Data Centers,” in 21st IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Long Beach,
CA, USA, March 2007.

[28] S. U. Khan, “Game Theoretical Techniques for Designing Counter-
Terrorism Systems,” in 5th International Symposium on Defense and
Security, vol. 6560 of SPIE (Society of Photo-Optical Instrumentation
Engineers), Orlando, FL, USA, April 2007, pp. 74-82.

[29] S. U. Khan and I. Ahmad, “A Cooperative Game Theoretical Replica
Placement Technique,” in 13th International Conference on Parallel and
Distributed Systems (ICPADS), Hsinchu, Taiwan, December 2007.

[30] S. U. Khan and I. Ahmad, “Comparison and Analysis of Ten Static
Heuristics-based Internet Data Replication Techniques,” Journal of
Parallel and Distributed Computing, vol. 68, no. 2, pp. 113-136, 2008.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1803

[31] S. U. Khan, A. A. Maciejewski, H. J. Siegel, and I. Ahmad, “A Game
Theoretical Data Replication Technique for Mobile Ad Hoc Networks,” in
22nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Miami, FL, USA, April 2008.

[32] I. Ahmad, S. Ranka, and S. U. Khan, “Using Game Theory for Scheduling
Tasks on Multi-core Processors for Simultaneous Optimization of
Performance and Energy,” in 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Miami, FL, USA, April
2008.

[33] S. U. Khan and I. Ahmad, “A Pure Nash Equilibrium based Game
Theoretical Method for Data Replication across Multiple Servers,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20, no. 3, pp. 346-
360, 2009.

[34] S. U. Khan and I. Ahmad, “ Cooperative Game Theoretical Technique for
Joint Optimization of Energy Consumption and Response Time in
Computational Grids,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, no. 4, pp. 537-553, 2009.

[35] S. U. Khan and C. Ardil, “A Weighted Sum Technique for the Joint
Optimization of Performance and Power Consumption in Data Centers,”
International Journal of Electrical, Computer, and Systems Engineering,
vol. 3, no. 1, pp. 35-40, 2009.

[36] V. Krishna, Auction Theory, Academic Press, 2002.
[37] Y. Kwok, K. Karlapalem, I. Ahmad and N. Pun, “Design and Evaluation

of Data Allocation Algorithms for Distributed Database Systems,” IEEE
Journal on Selected areas in Communication, 14(7), pp. 1332-1348, 1996.

[38] B. Lee and J. Weissman, “Dynamic Replica Management in the Service
Grid,” in Proc. of IEEE International Symposium on High Performance
Distributed Computing, 2001.

[39] B. Li, M. Golin, G. Italiano and X. Deng, “On the Optimal Placement of
Web Proxies in the Internet,” in Proc. of the IEEE INFOCOM, 2000.

[40] T. Loukopoulos, and I. Ahmad, “Static and Adaptive Distributed Data
Replication using Genetic Algorithms,” Accepted to appear in Journal of
Parallel and Distributed Computing.

[41] T. Loukopoulos, I. Ahmad, and D. Papadias, “An Overview of Data
Replication on the Internet,” in Proc. of ISPAN, pp. 31-36, 2002.

[42] S. March and S. Rho, “Allocating Data and Operations to Nodes in
Distributed Database Design,” IEEE Trans. Knowledge and Data
Engineering, 7(2), pp.305-317, 1995.

[43] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons, 1990.

[44] A. Mas-Collel, W. Whinston and J. Green, Microeconomic Theory, Oxford
University Press, 1995.

[45] B. Narebdran, S. Rangarajan and S. Yajnik, “Data Distribution
Algorithms for Load Balancing Fault-Tolerant Web Access,” in Proc. of
the 16th Symposium on Reliable Distributed Systems, 1997.

[46] N. Nisan and A. Ronen, “Algorithimic Mechanism Design,” in Proc. of
31st ACM STOC, pp. 129-140, 1999.

[47] L. Qiu, V. Padmanabhan and G. Voelker, “On the Placement of Web
Server Replicas,” in Proc. of the IEEE INFOCOM, 2001.

[48] M. Rabinovich, “Issues in Web Content Replication,” Data Engineering
Bulletin, 21(4), 1998.

[49] M. Rabanovich and O. Spatscheck, Web Caching and Replication,
Addison-Wesley, 2002.

[50] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, J.
Kubiatowicz, “Maintenance-free Global Storage,” IEEE Internet
Computing, 5(5), pp. 40-49, 2001.

[51] S. Saurabh and D. Parkes, “Hard-to-Manupilate VCG-Based Auctions,”
Avaialable at:
http://www.eecs.harvard.edu/econcs/pubs/hard_to_manipulate.pdf

[52] M. Sayal, Y. Breitbart, P. Scheuermann and R. Vingralek, “Selection
Algorithms for Replicated Web Servers,” in Proc. of the Workshop on
Internet Server Performance, 1998.

[53] S. So, I. Ahmad and K. Karlapalem, “Response Time Driven Multimedia
Data Objects Allocation for Browsing Documents in Distributed
Environments,” IEEE Transactions on Knowledge and Data Engineering,
11(3), pp. 386-405, 1999.

[54] W. Vickrey, “Counterspeculation, Auctions and Competitive Sealed
Tenders,” Journal of Finance, pp. 8-37, 1961.

[55] A. Vigneron, L. Gao, M. Golin, G. Italiano and B. Li, “An Algorithm for
Finding a K-Median in a Directed Tree,” Information Processing Letters,
vol. 74, pp. 81-88, 2000.

[56] G. Zipf, Human Behavior and the Principle of Least-Effort, Addison-
Wesley, 1949.

