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Abstract—A challenging problem in radar signal processing is to 

achieve reliable target detection in the presence of interferences. In 
this paper, we propose a novel algorithm for automatic censoring of 
radar interfering targets in log-normal clutter. The proposed 
algorithm, termed the forward automatic censored cell averaging 
detector (F-ACCAD), consists of two steps: removing the corrupted 
reference cells (censoring) and the actual detection.  Both steps are 
performed dynamically by using a suitable set of ranked cells to 
estimate the unknown background level and set the adaptive 
thresholds accordingly. The F-ACCAD algorithm does not require 
any prior information about the clutter parameters nor does it require 
the number of interfering targets. The effectiveness of the F-ACCAD 
algorithm is assessed by computing, using Monte Carlo simulations, 
the probability of censoring and the probability of detection in 
different background environments. 
 

Keywords—CFAR, Log-normal clutter, Censoring, Probability 
of detection, Probability of false alarm, Probability of false 
censoring. 

I. INTRODUCTION 
HE signal returns from radar targets are usually buried in 
thermal noise and clutter. Target detection is commonly 

performed by comparing radar returns to an adaptive threshold 
such that a constant false alarm rate (CFAR) is maintained. 
The threshold in a CFAR detector is set on a cell by cell basis 
according to the estimated noise/clutter power, which is 
determined by processing a group of reference cells 
surrounding the cell under investigation. For example, the 
cell-averaging (CA)-CFAR processor adaptively sets the 
threshold by estimating the mean level in a window of N range 
cells. The detection performance of the CA-CFAR processor 
is optimum in a homogeneous background when the reference 
cells contain independent and identically distributed (IID) 
observations governed by an exponential distribution [1]. In 
practice, the environment is usually nonhomogeneous due to 
the presence of multiple targets and/or clutter edges in the 
reference window. In such situations, order statistics (OS)-
detectors have been known to yield a good performance as 
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long as the nonhomogeneous background and outlying returns 
are properly discarded [2]. However, most of the work in the 
literature considers some type of censoring based on a priori 
knowledge or a judicial guess.  

Some approaches [3-6] based on automatic censoring of 
unwanted cells have been proposed in the literature for 
Rayleigh clutter. In this work, we consider the problem of 
automatic censoring of unknown number of interfering targets 
in log-normal clutter. The main motivation behind the 
development of such an automatic censoring algorithm are 
due to the following: (i) as the resolution of radar increases, 
the amplitude statistics of clutter returns deviates from 
Rayleigh distribution and shows long-tail characteristics 
which, in many practical situations, can be modelled by log-
normal distribution [7-8]; (ii) the automatic censoring 
algorithms developed for Rayleigh clutter may not 
straightforwardly be extended to the case where clutter 
samples are drawn from log-normal distribution. For example, 
the ordered data variability index based on which the detector 
of [6] has been developed may be difficult to use for 
automatic censoring in log-normal clutter because this index is 
highly dependent on the shape parameter of clutter 
distribution; a parameter difficult to estimate reliably in 
practice; (iii) the adaptive threshold of OS-CFAR processors 
is formally defined in terms of ranked samples of reference 
cells. To reduce the CFAR loss and improve the detection 
probability of log-normal OS-CFAR processors, the largest 
sample of ranked cells, involved in the computation of 
detection threshold, can be properly selected when the exact 
number of interfering targets is accurately determined. 
Therefore, the results of this research work have an attractive 
feature in that they add to the available log-normal CFAR 
detectors [9-13] the potential to determine and censor 
(efficiently) the unwanted targets samples in the reference 
window, which may cause an excessive number of false alarm 
or a poor probability of detection. 

II. PRELIMINARIES 
The general structure of the proposed CFAR processor is 

depicted in Fig. 1. The envelope-detected matched filer 
outputs iY  are passed through a logarithmic processor and 
then sent serially into a tapped delay line of length N+1. The 
N+1 samples correspond to the even number N of reference 
cells },...,2,1:{ N iX i =  surrounding the test cell 0X . 
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Fig. 1 Block diagram of the proposed CFAR processor 

 
We assume that, if clutter alone is present ( 0H  hypothesis), 

then iY  are IID random variables drawn from log-normal 
probability density function (PDF) with scale parameter μ and 
shape parameter σ. Hence, the transformed variats iX  are of 
location-scale type, and precisely have the Gaussian 
distribution PDF; that is, 
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With an exact knowledge of the clutter parameters, the 
threshold ensuring a given probability of false alarm ( faP ) is 
given by  

σγμ  T +=                                      (2) 

where γ is the (1- faP )-quantile of the standard clutter 
distribution. However, lacking prior knowledge of the 
distributional clutter parameters, the adaptive threshold can be 
adjusted to take the form [10]  

σγμ ˆ ˆˆT̂ +=                                    (3) 

where μ̂  and σ̂  represent equivalent estimators of location 
and scale parameters, and γ̂  is a suitable coefficient to be set 
according to  the designed faP . 

III. ESTIMATION OF LOCATION AND SCALE PARAMETERS 
There are several ways [1,14] to obtain equivalent 

estimators of μ and σ, including maximum likelihood 
estimators (MLEs) and linear estimators such as best linear 
unbiased (BLU) and best linear invariant (BLI) estimators. 
Here, we focus on a simple linear approach which avoids 
solving nonlinear equations as in MLEs or the need for 
covariance matrix computations as in BLU and BLI 
estimators. Let  

X(1) ≤  X(2) ≤  … ≤ X(N)                       (4)                                   
be ordered samples of all reference window range cells. 
Linear estimators of μ and σ based on (possibly) N-j censored 
samples from the upper end are defined as 

)(ˆ
1

iXa
j

i
ij ∑

=

=μ                                  (5) 

)(ˆ
1

iXb
j

i
ij ∑

=

=σ                                  (6) 

where ia  and ib  are suitable coefficients chosen to satisfy 
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which are necessary constraints for jμ̂  and jσ̂  to be 
equivalent estimators. Define 

S(1) ≤  S(2) ≤  … ≤  S(j)                     (9) 
to be ordered variates  from a Gaussian PDF which has zero 
mean and unit variance. Following the approach of [15], the 
coefficients ia  and ib  are determined as follows. 
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where α  is the average value of { j  ,... 2, 1,i :i =α } and  

                        { })(iSEi =α  
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= xxfx d )( i                               (12)     

where E{·} is the expectation operation and )(xf i   is the PDF 
of the variates )(iS . Denoting by F(x) the cumulative 
distribution function (CDF) of the standard Gaussian PDF  
f(x,0,1) of  (1), the values of iα  can be computed as follows: 
[1] 
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The expectations iα  are the only estimates needed in the 
linear estimation method outlined above, and must be 
computed once and for all according to (13). Also, the 
resulting coefficients ia  and ib   given by (10) and (11) satisfy 
the conditions imposed by (7) and (8), respectively. Hence, 

jμ̂  and jσ̂  are equivalent estimators. 
For detection in homogeneous environments, it is 

appropriate to set j=N. However, when there are k interfering 
targets in the reference window, the value of j is best selected 
such that j=N-k. Therefore, our objective in this work is to 
develop a new censoring algorithm that has the task of 
determining the best value of k. Once the number of 
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interfering targets is determined automatically, the output of 
the cell under test 0X  is then compared with the adaptive 

threshold T̂  according to 

T̂X

H

H

1

0

0 <
>

                                    (14) 

where the adaptive threshold T̂  (or equivalently the parameter 
γ̂ ) is selected so that the design faP  is achieved. 1H  denotes 
the presence of a target in the test cell, while hypothesis 0H  is 
the null hypothesis, i.e., no target is present 

IV. THE PROPOSED CENSORING ALGORITHM 
In this section, we propose a novel detector for automatic 

censoring of possible interfering targets that may lie in the 
reference window of the cell under test. The censoring 
procedure first ranks the outputs of all reference range cells in 
ascending order according to their magnitudes to yield  

X(1)≤X(2) ≤ ... ≤X(p)≤ ... ≤ X(N)                   (15) 
The proposed algorithm is termed, according to the sequence 
through which the censoring is performed, the forward 
automatic censored cell averaging detector (F-ACCAD). The 
basic idea of the F-ACCAD algorithm is to consider that the p 
lowest cells represent the initial estimation of the background 
level. The parameter p has to be carefully selected to yield a 
robust performance in both homogeneous background and 
non-ideal environment. Values of p>N/2, as in [6], have been 
found to yield a reasonable performance. 

A. The F-ACCAD Algorithm  
This algorithm proceeds as follows. Sample X(p+1) is 

compared with the adaptive threshold 0T̂  defined as  

pp dT σμ ˆˆˆ
00 +=                                 (16) 

where 0d  is a threshold coefficient chosen to achieve the 

desired probability of false censing, fcP . If X(p+1)> 0̂T , the 
algorithm decides that X(p+1) is a return echo from an 
interfering targets and it terminates. If, on the other hand, 
X(p+1)< 0̂T , the algorithm decides that X(p+1) corresponds to 
a clutter sample without  interference. In this case, the 
algorithm proceeds to compare the sample X(p+2) with the 
threshold 

1111 ˆˆˆ
++ += pp dT σμ                               (17) 

to determine whether  it corresponds to an interfering target  
or a clutter sample with interference. At the th)k( 1+  step, the 

sample X(p+k+1) is compared with the threshold kT̂  and a 
decision is made according to the test 

k

H

H

TkpX ˆ)1(
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0

<
>

++                                (18) 

where kpkkpk ˆdˆT̂ ++ += σμ , kd  is a constant chosen to 
achieve the desired fcP , and kpˆ +μ  and kpˆ +σ  are computed 
according to (5) and (6). Hypothesis 1H  represents the case 
where X(p+k+1) and thus, the subsequent samples X(p+k+2), 
X(p+k+3), …, X(N) correspond to clutter samples with 
interference, while 0H  denotes the case where X(p+k+1) is a 
clutter sample without interference. The successive tests are 
repeated while the hypothesis 0H  is true. The algorithm stops 
when the cell under investigation is declared 
nonhomogeneous (i.e. clutter plus interference sample) or, in 
the extreme case, when all the N-p highest cells are tested; that 
is, k=N-p. Fig. 2 shows the block diagram of the F-ACCAD 
algorithm. 

  
Fig. 2 Block diagram of the F-ACCAD algorithm 

 

B. Selection of Detection Thresholds 
The F-ACCAD algorithm requires knowledge of the 

threshold coefficients kγ̂  (or equivalently jN −γ̂ , where j=p, 
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p+1, …, N). Table I gives the values of jN −γ̂  for different 
values of N and p. These coefficients are selected such that 

faP  is maintained constant in a homogeneous environments. 
That is,  

    design faP
 
= Prob{ 00 /̂HTX > }                 (19)                        

Because an analytical expression for the PDF of T̂  is not 
available, the results of Table I have been obtained using 
Monte Carlo simulations with 500,000 independent runs. Note 
that as the value of p increases, the threshold coefficients 

jN −γ̂  decreases. This is intuitively not surprising because 
increasing the value of p increases the accuracy of estimating 
the clutter parameters μ and σ. 
 

TABLE I 
THRESHOLD COEFFICIENTS jN −γ̂  FOR DIFFERENT VALUES OF N  

jN −γ̂   
(N,p) 

7γ̂  6γ̂  5γ̂  4γ̂  3γ̂  2γ̂  1γ̂  0γ̂
(16,12) -- -- -- 4.5 4.25 4.1 3.9 3.8 
(32,24) 3.7 3.66 3.56 3.55 3.46 3.45 3.43 3.4 

 
The F-ACCAD algorithm also requires the values of the 

thresholds kd . These thresholds are determined such that a 
low probability of hypothesis test error ke  is achieved.  
Specifically, ke  is defined, at each value of k, as follows 

ke = Prob ( ){ }0
ˆ1 /HTkpX k>++                        (20)                        

Monte Carlo simulations have been used to determine the 
values of threshold coefficient kd  by setting 

0e = 1e =…= ke = design fcP                          (21) 

and the result are displayed in Table II. It is of interest to note 
that the thresholds kd  form an ordered sequence with respect 
to k. 
 

TABLE II 
THRESHOLD PARAMETERS kd  IN A HOMOGENEOUS BACKGROUND WITH 

LOG-NORMAL PDF 

 

V. PERFORMANCE EVALUATION 
In this section, we evaluate the performance of the proposed 

F-ACCAD algorithm using different values of N and p and at 
different interference-to-clutter ratios (ICR). The complex 

envelop of the received signal has been considered to have 
Rayleigh distributed amplitude and uniform phase. As far as 
one is concerned with single-hit detection, this corresponds to 
both Swerling I and Swerling II fluctuating models. We 
assume in our evaluation that the reference window contains 
m unknown targets, where 0 ≤ m ≤ N–p and m=0 corresponds 
to the homogeneous case. 

A. Effect of Initial Population 
The F-ACCAD algorithm has been developed under the 

assumption that the cell averaging samples, which define the 
thresholds kT̂ , are clutter samples without interference. Note 
that the behavior of the algorithm may change according to 
whether the initial population is homogeneous or 
nonhomogeneous.   

Let β be the probability that the initial population, defined 
by if, at least, the smallest cell containing an interference plus 
clutter is less than or equal to the thp  sample containing 
clutter only. When there is no interfering targets, β=1. In the 
presence of m interfering targets, the initial population cells  
X(1), X(2), …, X(p) may contain interference plus clutter 
samples. Therefore,  β can be defined as follows [6]  

β = 1– Prob( 1iX ≤ cpX )                          (22) 

where 1iX  represents the smallest interfering target sample 
after the samples ranked in order, i.e., 1iX ≤ 2iX ≤ … ≤ imX  

and cpX  denotes the thp  sample of the order statistics 

)mN(ccpcc X...X...XX −≤≤≤≤≤ 21  where cjX , (j=1, 2,…, 
N-m), contains the clutter samples only.  

The probabilities β obtained for different values of ICR and 
m, are presented in Table III. We observe that, when ICR 
increases, β remains close to 1 even when several 
interferences are present. 
 

TABLE III 
PROBABILITIES Β THAT INITIAL POPULATION IS HOMOGENEOUS IN MULTIPLE 

TARGET SITUATIONS 
ICR  

(N,p) 
 

m 10dB 20dB 30dB 40dB 
1 0.9494 0.9948 0.9995 0.9999 
2 0.8743 0.9862 0.9986 0.9998 

 
(16,12) 

4 0.5431 0.9335 0.9929 0.9993 
4 0.8420 0.9829 0.9982 0.9998 
8 0.5736 0.9432 0.9941 0.9994 

 
(36,24) 

12 0.1197 0.7619 0.9721 0.9970 

B. Probability of Censoring 
Fig. 3 shows the probability of censoring for N=36, p=24, 

σ=0.355, and m=8 interferences with different ICR. fcP  has 

been fixed at 210− . Note that the F-ACCAD algorithm has the 
capability to determine the exact number of interferences with 
probability of 44% at ICR=25dB, and 45.5% at ICR=30dB. 
The algorithm is also characterized by a low probability of 
under-censoring ( uP ) compared to that of over-censoring 
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( oP ). In practice, under-censoring may degrade the 
performance of the censoring algorithm, whereas over-
censoring is a desirable property when the number of 
interferences is unknown [6]. 
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Fig. 3 Probability of censoring in multiple target situations 

 
Fig. 4 shows the effect of the number of interfering targets 

on the performance of the F- ACCAD algorithm. The 
probability of under-censoring is computed for m=2, 6, and 10 
interferences and displayed as a function of ICR.  Note that 
for high and moderate levels of ICR, the probability of under-
censoring is relatively small and insignificant compared to the 
probability of the event (k≥m), which is equal to (1- uP ). For 
low levels of ICR, the number of interfering targets has a 
slight effect on the performance; the higher the value of m, the 
higher is the probability of under-censoring.  
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Fig. 4 Probability of under-censoring in multiple target 

situations 
 

Fig. 5 shows the effect of the shape parameter σ on the 
performance of the F-ACCAD algorithm in the presence of 
m=8 interfering targets. The probability of under-censoring is 
computed as a function of σ and displayed for ICR=25 and 
35dB. Note that, as σ increases, uP  also increases. However, 
the F-ACCAD algorithm has the potential to maintain 
relatively small values of uP  at high values of shape 
parameter σ.  
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Fig. 5 Probability of under-censoring in multiple target situations 

C. Probability of Detection 
In this section, the detection performance of the F-ACCAD 

algorithm in log-normal clutter is evaluated. Single pulse 
detection is considered and a Rayleigh fading model is 
assumed for the fluctuating targets.  Unless otherwise stated, 
the ICR has been set equal to signal-to-clutter ratio (SCR). 
That is, the outlying targets are assumed to have the same 
radar cross-section as the primary target. In Fig. 6 the 
detection performance of the F-ACCAD algorithm for 
(N,p)=(36,24) and (N,p)=(16,12) configurations in a 
homogeneous background is presented. The results are 
compared with that of the ideal processor whose detection 
threshold is adjusted according to (2). As the figure shows, the 
curve of the F-ACCAD algorithm closely matches that of the 
ideal detector when (N,p)=(36,24).  However, there is a slight 
degradation in algorithm’s performance when (N,p)=(16,12), 
which is expected and may be attributed to the small number 
of reference window samples exploited in estimating the 
unknown clutter distributional parameters.  
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Fig. 6 dP  against SCR of  F-ACCAD detector in homogeneous 

environments 
 

In Fig. 7, the detection performance of the F-ACCAD 
algorithm in the presence of m interfering targets is presented. 
We note that as the number of interfering targets present in the 
reference window increases, the detection probability 
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decreases. However, this degradation in probability of 
detection is more pronounced at higher values of σ.   
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Fig. 7 dP  of F-ACCAD  detector in multiple target situations for two 

values of σ 

VI. SUMMARY AND CONCLUSION 
In this paper, we have considered the problem of automatic 

censoring of unknown number of interfering targets in log-
normal clutter. A novel technique has been proposed; namely, 
the F-ACCAD algorithm. This algorithm uses pre-computed 
thresholds to discriminate between homogeneous and 
nonhomogeneous populations in log-normal clutter.  The 
effectiveness of the proposed F-ACCAD algorithm has been 
assessed by computing the probability of censoring and 
probability of detection for different numbers of interfering 
targets and at different values of ICR. Simulation results show 
that the proposed F-ACCAD algorithm performs robustly in 
the presence of high and moderate levels of interferences. The 
F-ACCAD algorithm is also characterized by having small 
probability of under-censoring and is capable to maintain 
good performance even at relatively high values of shape 
parameter σ.  
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