International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

A Formal Implementation of Database Security

Yun Bai

Abstract— This paper is to investigate the impplementation of se-
curity mechanism in object oriented database system. Formal methods
plays an essential role in computer security due to its powerful expres-
siveness and concise syntax and semantics. In this paper, both issues
of specification and implementation in database security environment
will be considered; and the database security is achieved through
the development of an efficient implementation of the specification
without compromising its originality and expressiveness.

Keywords— database security, authorization policy, logic based
specification

I. INTRODUCTION

Authorization specifications have long been an important
issue in computer system security. Specifically, in a database
system, the function of the authorization is to control access
to the system. It only allows the authorized users performing
authorized operations on the data resource of the system.

A variety of logic authorization specification approaches
have been proposed. Woo and Lam’s [7] proposed a formal
approach using default logic to represent and evaluate autho-
rizations. However, they did not consider the constraints of the
access control of the system. Hence it is not clear how to judge
a policy base is legitimate or not with respect to the system
restriction. This approach is not suitable for object oriented
database security specification since it’s hard to capture the
hierarchical structure and the constraints of the database. In
[2], a general framework on a logic formalism was proposed to
model discretionary, mandatory access control and role-based
access control models. The syntax and the semantics of the
framework were given and also some example applications
were presented. This work was mainly used for the analysis
and the comparison of some existing access control models
and their decidability. Whether this general framework can
be used to model access control in object oriented database
scenario is not clear. Bettini et al [3] formalized a rule-based
security policy framework which included provisions and
obligations, and investigated a reasoning mechanism within
this framework in a general database scenario. This work
investigated authorization policy with a logic framework from
management point of view. The specification of authorization
policy itself was not fully investigated and the implementation
issue was not discussed.

In summary, most of the current works emphasize enchanc-
ing the expressive power of the authorization policies, their
evaluation, propagations, reasoning and delegations, while the
implementation efficiency for such powerful formalizations are
not seriously considered.

This paper is to address high level authorization speci-
fications and its efficient implementation in object oriented

Yun Bai is with School of Computing and Mathematics, University of
Western Sydney, NSW 1797, Australia, E-mail: ybai @scm.uws.edu.au

database scenario. The rest of the paper is organized as
follows. Section 2 specifies object oriented database system;
section 3 incorporates authorization rules into database and
section 4 maps the specification into a logic programming
language and implements the language. Section 5 concludes
the paper.

II. OBJECT ORIENTED DATABASE SPECIFICATION

The basic building blocks of an object oriented database are
objects nested in the hierarchical structure; the relationships
among these objects to indicate how they are related; and the
restrictions on the data objects to satisfy certain user and
system requirements. We propose a logic language £° which
has a simple yet flexible syntax, it can be suitably used to
formalize various features of object oriented database system.
In the language, two sorts of objects will be specified: a finite
set of object constants which represent object instances of the
database and a finite set of object variables which represent
a general framework of objects of the database. Generally,
a set of derived data objects is generated by applying some
functions to certain existing data objects of the database. To
achieve this, we define a finite set of function symbols as
methods which apply to object(s) to generate new object(s)
from the database.

We propose an object proposition to represent object con-
stant, object variable and object derived from various methods;
an isa proposition to capture the hierarchical structure and
membership feature of object oriented database; and constraint
proposition to represent different restrictions on different ob-
jects.

For instance, the hierarchical structure and membership
feature of an object oriented database can be represented
by isa proposition as: O isa member of C' or O isa
subclass of C. When the details of a data proposition is
not interested in the context, we usually use the notation ¢ to
denote it. If we use ¢ to denote the general data proposition,

a constraint proposition can be expressed as: ¢ if ¢1,-- -, ¢.
it states that if ¢q,-- -, ¢ are true, then ¢ is true. That is, ¢
is a derived data object from data objects ¢, - - -, ¢k.

With the three propositions, an object oriented database can
be formally defined as a finite set of object propositions
specifying different kinds of data objects, a finite set of
isa propositions expressing how these objects are related
within the database and a finite set of constraint propositions
restricting the objects to satisfy various user and system
requirements.

III. INCORPORATE AUTHORIZATION RULES INTO
DATABASE SPECIFICATION

This section is to extend the database specification to include
authorization rules in order to control access to the database

17

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

system. A specific authorization rule is to define which subject
holding what kind of access right for which object. To properly
define our authorization rules, we need to define a finite set
of subjects, a finite set of access rights and a finite set of
objects. In our specification, a data object can act as either a
subject or an object in terms of access control. All three sets
consist constants to represent specific instances and variables
to represent general items. An authorization fact that a subject
S has access right R for object O is represented using a ground
formula holds(S, R,O). A ground formula is a formula free
of variables. We use lower case letters for variables and capital
letters for constants.

We define an access fact is an atomic formula holds(s, r, 0)
(or holds(s,r, o|f), where o| f indicates a method associated
with object o0.) or its negation. An access fact expression
is defined as follows: (i) each access fact is an access fact
expression; (ii) if 1) is an access fact expression and ¢ is an isa
or object proposition, then i) A ¢ is an access fact expression;
(iii) if ¢ and ¢ are access fact expressions, then 1) A ¢ is an
access fact expression.

Based on the above definition, we define an access propo-
sition as: v implies ¢ with absence . This proposition says
that ¢ is true if ¢ is true under the condition that ~ is not
presented.

A special form of the above access proposition occurs when
v is empty. In this case, we can rewrite it as: 1) provokes ¢.
This is viewed as a causal or conditional relation between 1)
and ¢. Furthermore, when v is also empty, we rewrite it as:
always ¢, which specifies a condition that ¢ should always
be true.

Now we can define an authorization rule base. It is defined
as a finite set of data propositions representing various objects
and subjects of the database; a finite set of access propositions
specifying access permits of the data objects; and a finite set
of constraints being complied by the data objects regulated
by users or systems.

For example, some authorization rules for accessing
database can be specified as:

holds(s,r, c) A o isa subclass of ¢
implies holds(s,r,0)
with absence —holds(s,r,0),)

and

holds(s,r,c) A o isa member of ¢
implies holds(s,r,0)
with absence —holds(s,r,0), 2)

The above two propositions express the hierarchy and
membership authorization inheritance properties.

The proposed high level specification language is expressive
enough to represent authorizations in object oriented database
environment. Within this specification, constraints, causal and
inherited authorizations as well as general default authoriza-
tions can be properly justified.

IV. LoGIC PROGRAM AND IMPLEMENTATION

We propose to use logic programming approach to imple-
ment this high level specification language £°. The major
reason is that logic programming has a powerful declarative
semantics which can be used to express default reasoning in
authorization rules. On the other hand, the proof procedure
associated with logic programs is also well developed and can
be employed in the implementation of the language.

The basic idea is that for an arbitrary authorization rule
base, each proposition in this rule base is translated into a logic
program rule; then we need to prove that there exists a one-to-
one correspondence between the model of the rule base and
the answer set of the translated logic program. By restricting
every formula ¢ (i) or 7y) occurring in the propositions to be a
literal L, our propositions can be translated into logic program
rules (3) - (5) respectively as follows:

Holds(L', s) « Holds(L,s), notHolds(Ls, s), 3)
Holds(L',s) «+ Holds(L, s), 4)

Holds(L, s) «— Q)

(3) is a special rule which includes negation as failure not
to represent default information. (3) states that if L; holds in
state s, and Lo does not present in state s, then L holds in
state s. (4) and (5) are just direct translations of other normal
propositions.

To ensure that there is no semantic loose of this logic
program translation, it must show that there is a one-to-
one correspondence between the rule base semantics and the
logic program semantics. To achieve this result, answer set
semantics will be used to characterize the translated logic
program.

The implementation of the high level specification language
consists of the following stages:

(1) Implementing a parser for syntax checking of the high
level specification language £°. The user specifies an
authorization rule base by using this high level language.
The function of parser is to check if there is any syntactic
error in this rule base.

(2) Implementing an automatic translation procedure from
the rule base specification to a logic program. The
translation method has been described. However, to
implement this translation procedure, it is necessary
to add one more set of rules that are used to derive
persistent facts. In the rule base, the persistence of rule
facts are represented by model intersections, i.e. any
fact that is in every model of the rule base is viewed as
persistent. But in logic program, as a function symbol
Result is been introduced, the fact which is true in the
current state is represented by the rule:

1) implies ¢ with absence ~
To carry those persistent fact over the state, a special
default rule as the following is needed:
Holds(L, Result(T, s)) —
Holds(L, s),not~Holds(L, Result(T, s)),
which states that if L holds in state s, and no evidence

18

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

to show that L does not hold in state Result(T,s),
then L is derived by default to be persistent in state
Result(T, s).

(3) Implementing a computation mechanism of computing
answer set of the translated logic program. As mentioned
before, after proving the equivalence between the se-
mantics of rule base and the answer set of the logic
program, the answer set of the translated logic program
to characterize the original authorization rule base can
be used. To implement the answer set computation,
proper optimalized strategies may be used to simplify
the procedure.

In summary, the complete implementation of the proposed
high level language can be described as the following figure:

Rule Base | Rule Base

Parser

l

Logic Program
Translation

l

Logic Program| __|
Computation

— Answer Set

Fig. 1. High level database security language.

V. CONCLUSION

In this paper, we proposed a logic specification and im-
plementation approach for object oriented database security.
The aims of this paper are to propose a formal specification
for object oriented database and the authorization rules for
accessing it, then to investigate the implementation of the spec-
ification for secure database system. So far, the specification
part has been completed. We are currently investigating the
mapping of the authorization rules to logic programs and the
implementation of logic programs.

REFERENCES

[1]1 E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo, “A Logic-based
Approach for Enforcing Access Control”. Computer Security, vol.8, No.2-
2, pp109-140, 2000.

[2] E. Bertino, B. Catania, E. Ferrari and P. Perlasca, “A Logical Framework
for Reasoning about Access Control Models”. ACM Transactions on
Information and System Security, Vol.6, No.1, pp71-127, 2003.

[3] C. Bettini, S. Jajodia, X. S. Wang and D. Wijesekera, “Provisions and
Obligations in Policy Management and Security Applications”. Proceed-
ings of the Very Large Database Conference, pp502-513, 2002.

[4] S. Jajodia, P. Samarati, M.L. Sapino and V.S. Subrahmanian, “Flexible
Support for Multiple Access Control Policies”. ACM Transactions on
Database Systems, Vol.29, No.2, pp214-260, 2001.

[5] N. Li, B. Grosof and J. Feigenbaum, “Delegation Logic: A Logic-
based Approach to Distributed Authorization”. ACM Transactions on
Information and System Security, Vol.6, No.1, pp128-171, 2003.

[6] L. Wang, D. Wijesekera and S. Jajodia, “A logic-based framework for
attribute based access control,” Proceedings of the ACM Workshop on
Formal Methods in Security Engineering, pp45-55, 2004.

[71 T.Y.C. Woo and S.S. Lam, “Authorization in Distributed systems: A
Formal Approach”. Proceedings of IEEE Symposium on Research in
Security and Privacy, pp33-50, 1992.

19

