International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:12, No:10, 2018

A Finite Element/Finite Volume Method for
Dam-Break Flows over Deformable Beds
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Abstract—A coupled two-layer finite volume/finite element
method was proposed for solving dam-break flow problem
over deformable beds. The governing equations consist of the
well-balanced two-layer shallow water equations for the water flow
and a linear elastic model for the bed deformations. Deformations
in the topography can be caused by a brutal localized force or
simply by a class of sliding displacements on the bathymetry.
This deformation in the bed is a source of perturbations, on
the water surface generating water waves which propagate with
different amplitudes and frequencies. Coupling conditions at the
interface are also investigated in the current study and two mesh
procedure is proposed for the transfer of information through the
interface. In the present work a new procedure is implemented at
the soil-water interface using the finite element and two-layer finite
volume meshes with a conservative distribution of the forces at
their intersections. The finite element method employs quadratic
elements in an unstructured triangular mesh and the finite volume
method uses the Rusanove to reconstruct the numerical fluxes. The
numerical coupled method is highly efficient, accurate, well balanced,
and it can handle complex geometries as well as rapidly varying
flows. Numerical results are presented for several test examples of
dam-break flows over deformable beds. Mesh convergence study is
performed for both methods, the overall model provides new insight
into the problems at minimal computational cost.

Keywords—Dam-break flows, deformable beds, finite element
method, finite volume method, linear elasticity, Shallow water
equations.

I. INTRODUCTION

ODELING of the wave-seabed interaction has been one

of the oldest challenges facing geotechnical engineers,
as it is important to design offshore engineering projects like
pipelines and break waters. In addition to the floating/sinking
of objects on the seabed like mines or wrecked ships, the
design of offshore structures under different environmental
conditions has become more essinitial, challenging and
critical. Experiments [9] and numerical simulations [12] have
been done to try understanding this complicated process.
Analytical models were described the sea response [2]-[4], [7].
However, the majority of these models assume the pressure on
the bed-water interface using the wave theory [8], [10], this
is applicable as initial approximation for many cases if there
is only seabed and water wave interaction,however, the water
flow around any object will be three-dimensional (3D) and it
is not easy to be solved using the wave theory.
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This problem has attracted more and more attentions in
engineering and coastal, many experimental studies have also
been carried out. Authors in [1] carried out a series of
two-dimensional wave tank experiments, to investigate the
relationships through the waves, the dynamic stresses within
the seabed and the pressure on interface. A one dimensional
cylindrical experiment were done to study the wave driven
oscillatory pore pressure in a sandy seabed were carried out
[5]. Although many efforts have been made in the previous
studies, the problem of the bed-wave interaction is still not
completely understood, due to the complicated mechanics of
seabed response under the ocean waves.

In this study we aim to tackle the problems of wave-seabed
interaction, as gaining more accurate results for more complex
beds geometry. To achieve this we utilize a coupled model
to simulate the two layers shallow water induced by elastic
deformations in the bed topography. The perturbation on
the free-surface is assumed to be caused by a sudden
changes in the bottom beds. Attention is concentrated on
the development of a simple and accurate representation of
the interaction between water waves and bed deformation to
simulate practical shallow water waves and bed deformations
without relying on complex differential with free boundary
conditions.

This paper is structured as follows: A brief overview of
the governing equations considered in this study is given in
Section II. A short review of the numerical methods used is
outlined in Section III. In Section IV results of benchmarks
and novel testing are presented. Finally in Section V some
conclusions are drawn.

II. MODELING OF DAM BREAK OVER DEFORMABLE BEDS

In this section a coupled two-dimensional equations of
linear elasticity for the soil bed and the one-dimensional
two-layer shallow water equations for the water flow are
utilized, the governing equations for each system are described
in the next subsections:

A. Equations for Water Flow

In the current study we are interested in solving the
hydraulic flows occuring on the water free-surface, The
one-dimensional two-layer shallow water equations with
different densities, p1, p2, as p1< p2 given as:

8h1 0
rTaRs %(hﬂn) =0,
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where wuq, uy are the water speed in the first and second layer
respectively, hi,ho are the water height in the first and seconf
layer respectively, and ¢ is the gravity constant. Fig. 1 shows
the system characterestics for more illustrations.

Fig. 1 Illustration of a coupled system

The main advantage of the above system is the fact, that
the two layers shallow water models avoids the expensive
computational three dimensional Navier-Stokes equations,
and obtains satisfied horizental flow velocities as vertical
velocities are relatively small, on the other hand it avoids
the drawback of single layer shallow water in missing some
physical dynamics in the vertical motion.

B. Equations for Bed Deformations

In solid mechanics the conservation laws produce three
important governing equations, mass, linear momentum
and energy conservations, the linear elasticity and steady
slow incompressible viscous flows governing equations are
summarized as:

The equation of equilibrium, which given by:

V-o+f=0 )

in which o is the stress tensor and f the body force. The
displacement vector is denoted by u and the infinitesimal
strain is then defined by:

€= %(Vu + (vu)™) 3)

and the constitutive equation reads:

vE_(gouwry
c0=———"—""—(V-u —e
14+v)(1-2v) 1+v
In which £ is the Youngs modulus and v is poisson’s ratio.
Interaction between flow and soil domain through the interface

as shown in Fig. 2.
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Fig. 2 Interaction between flow and soil domain through the interface

III. NUMERICAL PROCEDURES

The two layers shallow water equations are investigated in
this part, as a non-conservative system compared to the single
layer shallow water model.

For ease the governing equations in the previous model were
re-arranged into vector form:

OW  OF(W)
ot =AW ®)

where W is the vector of conserved variables, F(W) is the
vector of flux functions Q is the vectors of source terms.

hi hiug
_ | hiu _ | hauf + 5gh3
W - hg ) F(W) - hz’lLQ bl (6)
hoty hgu% + %gh%
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With the ratio r = % For hydraulic applications with

r~1, and u; ~ us, a Ifrst order approximation of the eigen
values can be obtained [6]:

)\1 ~ Um — v/ g(hl + hz),
Ao & Uy + v/ g(hy + he),

Ag%Uc—\/(l—r)g GLE (1—(

(ug —up)?
1—r)g(h1 + hy)

hi + ho ) ®
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N B h1h2 - (U,g — U1)2
Ay R Uc+\/(1 T)ghl + ho (1 (1—r)g(h1 +h2))

where:

Uy = Mg, and U, = Mpsgas,

The shallow water domain is discretized into group of
control volumes [z; 1, ;,1], with uniform sizes Az and
then divide the temporal domain into subintervals [t,, ;1]
with step size At. The previous system was integrated in
space over a control volume and obtain the relation:

-4
2 "2 (. 9
7 N Q; ©))
where W;(¢) is the averaged solution W in the control volume
at time t.

Wi(t) = — /xH%W(t,x)dm (10)

Az T

g

W"*l—w-—AtF"'%i*%JFAtQ. (11
7 - 7 A’L‘ )

A. Two Dimensional Linear Elastic Finite Element

The deformations occur in plane strains, where the
fundamental relationship for linear elastic finite element is :

[K][u] = [F] (12)

where F is the load vector, K is element stiffness matrix ,
which is for an arbitrary element is obtained from:

K://BTEBjdgdn (13)
Q

as B is the strain deformation matrix, j is the determinant of
the jacobian matrix, given as J = ngy) , uis the displacement
vector. This is typically solved by calculating the stiffness
matrix, inverting it, then solving for displacement. Finally the

stress-strain relationship is given by:

o] = [D][€] (14)

where € is the strain vector, found from displacement
components, D is the elastic symmetric component.

IV. APPLICATIONS AND NUMERICAL RESULTS

To examine the performance of our system we present
numerical results for several test examples. We illustrate
the accuracy for both two-layer shallow water system
and the linear elastic finite element model. As with all
explicit time stepping methods the time step is specified
according to the Courant-Friedrichs-Lewy (CFL) condition as:

A=C, BT

———————— 15
max | A | (15)

where \,k=1,2,3.4 are the approximated eigen values, and C,.
is a constant to be choosen less than unity. In all the examples
presented in this paper the courant number is set to 0.5 and the
time step At is adjusted at each step according to the stability
condition.

A. Lock Exchange Problem

The accuracy of the proposed finite element and two
layers shallow water were checked for validation. To test
the two layers shallow water we solve the Lock exchange
problem, where in this example the two layers are initially
seperated-the lighter water is on the left, while the heavier
one is on the right:

—Z(x),0,0,0 =<0

(h1(,0), 1w, 0), ha(,0), g2(x, 0) = {o 0,—Z(x),0 x>0

where 2the bottom topography is Gaussian-Shape function Z(x)
= e ¥ — 2. The gravitational constant is g = 9.81, and the
density ration r = 0.98. The computational domain is [-3,3],
and the boundary conditions are q; = —¢qo at each end of
the interval. The problem solved using different numbers of
grid points and the L!-error were calculated compared to
very refined (12,800 grid points) mesh and the errors, rate of
convergence and the computational time are shown in Table 1.

TABLE I
ERRORS FOR THE LAX-FRIEDRICH ACCURACY TEST PROBLEM USING
DIFFERENT GRIDPOINTS

N Error in H  Rate CPU

100 6.55E-2 - 0.15
200 2.2E-2 1.07  0.35
400 7.7E-3 1.07  1.08
800 4.0E-3 113 322
1600 2.4E-3 1.2 6.22

As from the above table the mesh shows very good rate of
convergence, and the method is fist order. Next we examine
the finite element method by comparing the numerical vertical
and horizental displacements results for a homogenous and
isotropic rectangular domain with 100 m length and 10m hight
to the analytical solution [11] assuming the Young’s modulus
of elasticity is 10,000 Mpa, and the poisons ratio = 0.2, which
can be clearly shown in Fig. 3.
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Fig. 3 Finite element displacement compared to the analytical solution
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real state of water flow without relying on Riemann problem
solvers. Third, reasonable accuracy can be obtained easily
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and no special treatment is needed to maintain a numerical
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balance, because it is performed automatically in the integrated
numerical flux function. Finally, the proposed approach does

not

require either nonlinear solution of algebraic equations

or special front tracking techniques. Furthermore, it has
strong applicability to various problems in shallow water
flows over deformed beds as shown in the numerical results.
The proposed approach has been numerically examined for
the test example of free-surface flow problems on different
topographies.

(11

[10]
(1]

[12]

REFERENCES

M. Banner and W.Peirson. Wave breaking onset and strength for two
dimensional deep water wave groups. J. Fluid Mech, 585:93-115, 2007.
A. Bermudez, J. Ferrin, L. Savedra, and M. Vazques-Cendon. A
projection hybrid finite volume/element method for low-mach number
flows. J. Comput. Phys, 271:360-378, 2014.

H. Dark and L. Stewart. An analytical model for predicting underwater
noise radiated from offshore pile driving. In Proceedings of the fifth
Asia pacific congress on computational mechanics Conference, pages
2-20, December 2013.

H. Dark and L. Stewart. An analytical model for wind-driven arctic
summer sea ice drift. The cryosphere, 10:227-244, 2016.

U. Drahne, N. Goseberg, S. Vatar, N. Beisiegal, and J. Behrens. An
experimental and numerical study of long wave run-up on a plane beach.
Journal of marine science and engineering, 4:1-23, 2016.

M. Le Gal, D. Violeau, R. Ata, and X. Wang. Shallow water numerical
models for the 1947 gisborne and 2011 tohoku-oki tsunami with
kinematic seismic generation. Coastal Engineering, 139:1-15, 2018.

J. Greenberg and A. Leroux. A well-balanced scheme for the numerical
processing of source terms in hyperbolic equations. SIAM J.Numer.Anal,
33:1-16, 2006.

R. Harcourt. A second moment model of langmuir turbulance. J. Phys.
Oceanogr, 43:673-697, 2013.

C. Liao, Z. Lin, Y. Guo, and D. Jeng. Coupling model for waves
propagating over a porous seabed. Theoritical and applied mechanics
letters, 5:85-88, 2015.

C. Ng. Water waves over a muddy bed: a two-layer strokes boundary
layer model. Coastal engineering, 40:221-242, 2000.

H. Poulos and E. Davis. Elastic solutions for soil and rock mechanics.
The University of Sydney, Australia, 1991.

D. Tong, C. Liao, J. Chen, and Q. Zhang. Numerical simulations of a
sandy seabed response to water surface waves propagating on current.
Journal of marine science and engineering, 6:1-14, 2018.

399



