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Abstract—This paper presents a fault-tolerant implementation for 

adder schemes using the dual duplication code. To prove the 

efficiency of the proposed method, the circuit is simulated in double 

pass transistor CMOS 32nm technology and some transient faults are 

voluntary injected in the Layout of the circuit. This fully differential 

implementation requires only 20 transistors which mean that the 

proposed design involves 28.57% saving in transistor count 

compared to standard CMOS technology.  
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I. INTRODUCTION 

DDITION is one of the fundamental arithmetic 

operations. It is used extensively in many VLSI systems 

such as microprocessors and application specific DSP 

architecture. In addition to its main task, which is adding two 

numbers, it is the nucleus of many other useful operations 

such as, subtraction, multiplication, address calculation, etc. 

[1], [2]. As a result, design of a high-performance full-adder is 

very useful and important [3]-[6] to ameliorating the 

performance of overall modules. This is the reason of many 

researchers trying to present different logics of 1-bit Full adder 

[7], [8]. The most conventional one is complementary CMOS 

full adder (C-CMOS) [9]. It is based on regular CMOS 

structure with pull-up and pull-down transistors and has 28 

transistors. Another conventional adder is the Complementary 

Pass-Transistor Logic (CPL) [10]-[12] with swing restoration 

which uses 32 transistors. CPL produces many intermediate 

nodes and their complement to make the outputs. The basic 

difference between the pass transistor logic and the 

complementary CMOS logic styles is that the source side of 

the pass logic transistor network is connected to some input 

signals instead of the power lines [13], [14]. A Transmission 

Gate Full-Adder (TGA) presented in [15] contains 20 

transistors. 

Double pass transistor full adder cell has 48 transistors and 

operation of this cell is based on the double pass transistor 

logic in which both NMOS and PMOS logic network are used 

[16]. On the other hand, the design of faster and highly 

reliable adder is of major importance. Thus, much effort has 

been invested in research that has led to faster and more 

efficient ways to perform this operation [17], [18]. 

Fault tolerance allows a reliable system operation in the 

presence of errors [19], [20]. While classical fault tolerant 

architectures such as triple modular redundancy (TMR) are 
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very costly, self-checking circuits provide an interesting 

alternative [21], [22]. Self-checking circuits consist of a 

functional unit encoded by means of an error detecting code 

and are continuously verified by the checker [23]. Typically, 

computed results are verified by using a self-checking design 

technique, primarily because the self-checking property allows 

both transient/intermittent and permanent faults to be detected, 

thus preventing data contamination. That is why from the very 

early developments of fault tolerant computers, an important 

amount of effort had been done on designing self-checking 

arithmetic units. The first ones are based on arithmetic residue 

codes [24], [25]. Then a parity prediction scheme has been 

proposed in [26] and [27]. A Berger code prediction scheme 

has been also developed in [28], and more recently self-

checking fully differential design has been proposed [29].  

In this paper, we present a self-checking full adder based on 

two-rail encoding scheme. To prove the efficiency of the 

proposed method, the circuit is simulated in double pass 

transistor CMOS 32nm technology and some transient faults 

are voluntary injected in the Layout of the circuit. The 

proposed design involves 28.57% saving in transistor count 

compared to standard CMOS technology.  

The paper is organized as follows. In Section II, we 

describe the proposed design. Section III shows the simulation 

results in 32 nm double pass transistor process technology. 

Conclusions are given in Section VI.  

II. PROPOSED DESIGN 

The blooming development of Computer Science has led to 

the growth of integrated circuit (IC) devices. Most of the Very 

Large Scale IC (VLSI) applications, such as digital-signal 

processing and microprocessors, use arithmetic operations 

extensively [30]. In addition, among these widely used 

operations, subtraction and multiplication are most commonly 

applied. The 1-bit full adder is the building block of these 

operation modules. 

A Full Adder is a three-input two-output block, where the 

inputs are the two bits to be summed, a and b, and the carry 

input bit (Cin), which derives from the calculations of the 

previous digits. The outputs are the result of the sum operation, 

Sum, and the resulting value of the carry output bit (Cout) [31]. 

Many full adders have been designed and published in 

literature. They are built upon different logic styles [32]. In 

this paper, we present a self-checking full adder based on the 

double pass transistor technology. 
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A. Double Pass-Transistor Logic (Dpl) 

The basic difference of pass transistor logic compared to the 

CMOS logic style is that the source side of the logic transistor 

networks is connected to some input signals instead of the 

power lines. In the Double Pass Transistor Logic (DPL) style 

[33]-[35], both NMOS and PMOS logic networks are used in 

parallel.  

Pass transistor logic is attractive as fewer transistors are 

needed to implement important logic functions, smaller 

transistors and smaller capacitances are required, and it is 

faster than conventional CMOS. However, the pass transistor 

gates generate degraded signals, which slow down signal 

propagation. This situation will be more critical when the 

output signals should be propagated to next stage as is the case 

for the carry gate in ripple carry adder. To avoid this signal 

degradation, inverters are added in the outputs of the circuit. 

The schematic of the proposed static DPL logic circuit for a 

full adder is shown in Fig. 1. 
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Fig. 1 The proposed self-checking full adder 

 

Inverters are added to restore degraded signals generated by 

the differential SUM and carry gate. This fully differential 

implementation requires only 20 transistors which mean that 

the proposed design involves 28.57% saving in transistor 

count compared to standard CMOS technology.  

B. Self-Checking Design 

Self-checking circuits are increasingly becoming a suitable 

approach to the design of complex VLSI circuits, to cope with 

the growing difficulty of on-line and off-line testing [36]. 

They are class of circuits in which occurrence of fault can be 

determined by observation of the outputs of the circuits. 

Self-checking circuits are based on an appropriate coding of 

the inputs and outputs of the circuit. Code checkers are used to 

monitor whether the circuit responses are within the output 

code space. As long as this condition is fulfilled, the output is 

assumed to be correct. If the code checker reveals a non code 

word, an error is detected [37]. 

The checker determines whether the output of the circuit is 

a valid code word or not. It also detects a fault occurring 

within itself [38]. Double-rail checker is based on the dual 

duplication code as shown in Fig. 2. It compares two input 

words X and Y that should normally be complementary 

( y x= ) and delivers a pair of outputs coded in dual-rail. 

 

 

Fig. 2 Dual rail checker cell 

 

A self-testing dual-rail checker can be designed as a parity 

tree where each XOR gate is replaced by a dual rail checker 

cell. The resulting checker is also an easily testable circuit 

since only four code inputs are needed to test a dual rail 

checker of any length [39]. This checker is important in self-

checking design since it can be used to check dual blocks (and 

duplicated blocks by inverting the outputs of one of them). 

However, its more significant use consists on the compaction 

of the error indication signals delivered by the various 

checkers of a complex self-checking circuit. Each checker 

delivers a pair of outputs coded in dual-rail. Thus, the dual-rail 

checker can compact the dual-rail pairs delivered by the 

various checkers of the system into a single dual-rail pair. This 

pair delivers the global error indication of the system. 

III. SIMULATION RESULTS 

The full adder circuit is implemented in full-custom 32nm 

DPL technology [40]. SPICE simulations of the circuit 

extracted from the layout, including parasitic, are used to 

demonstrate that this adder has an acceptable electrical 

behaviour. The SPICE simulation of the differential full adder 

is as shown in Fig. 3. 

As it is shown in Fig. 3 (b), the differential outputs are 

complementary which proves that the circuit is fault free. 

In order to verify the circuit’s capability with realistic 

circuit defects, we simulate the adder in the presence of faults. 

Faults are voluntarily and manually injected into the physical 

layout of the circuit. In this case, the fault is injected in the 

primary input: (a a= ). The SPICE simulations are shown in 

Fig. 4. 
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Fig. 3 Differential full adder. (a): Layout, (b): Electrical simulation (SPICE) 

 

In order to show the importance of the dual rail checker in 

the detection of faults, we simulate a two bit of the full adder of 

Fig. 4. Fig. 5 gives an example of these simulations.  

Simulations show that when the fault is injected into the 

primary input (a), the duplicated outputs sum (Sum1/Sumb1 

and Sum2/Sumb2) and carry (Cout1/Coutb1 and 

Cout2/Coutb2) do not remain complementary so that checkers 

(Sum checker and/or carry checker) indicate a non-valid code. 

In this case, the fault is detected by the outputs of the carry 

checker. We can see that fCout and fCoutb are not 

complementary and indicate a non-valid code.  
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Fig. 4 SPICE simulation of the adder in 32nm DPL technology with injection of primary fault (a a= ) 
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Fig. 5 SPICE simulation of the 2 bits full adder in 32nm DPL technology with injection of a primary fault (a a= ) 

 

IV. CONCLUSION 

In this paper, a fault-tolerant full adder is proposed. The 

circuit is simulated using the double pass transistor logic. This 

technique involves 28.57% saving in transistor count compared 

to standard CMOS technology.  

The presence of faults in the proposed design is detected 

using a double rail checker. In the presence of any fault a non-

valid code word is provided as input to the checker yielding a 

non-valid output code word, hence the fault is detected. 
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