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Abstract—The Minimal Residual (MR) is modified for adaptive 

filtering application. Three forms of MR based algorithm are 
presented: i) the low complexity SPCG, ii) MREDSI, and iii) 
MREDSII. The low complexity is a reduced complexity version of a 
previously proposed SPCG algorithm. Approximations introduced  
reduce  the algorithm to an LMS type algorithm, but, maintain the 
superior convergence of the SPCG algorithm. Both MREDSI and 
MREDSII are MR based methods with Euclidean direction of search. 
The choice of Euclidean directions is shown via simulation to give 
better misadjustment compared to their gradient search counterparts. 
 

Keywords—Adaptive filtering, Adaptive least square, Minimal 
residual method.  

I. INTRODUCTION 
LGORITHMS for finding the optimum weight vector of 
an adaptive filter can be classified into two: direct 

method and iterative method. Most of these methods are 
derived from standard method for solving least squares 
problem, but modified to suit the stochastically recursive cost 
function. The main difference between direct and iterative 
method is that iterative method offers much lower 
computational complexity for every system update. For 
example, for an adaptive filter with order N ,  the Least Mean 
Square (LMS) algorithm which is derived from the steepest 
descent method has computational complexity of ( )O N , the 
lowest thus far, whereas algorithm based on direct method 
such as the Recursive Least Squares (RLS) and the QRD-
RLS, both have computational complexity of ( )2O N , which 

is considered to be too high for many practical applications. 
 Several conjugate gradient (CG) based adaptive filtering 
algorithm have also been derived [1, 2]. The main issue in 
these methods is to try and find the best estimate for gradient 
and search directions in the absence of the full knowledge of 
the autocorrelation matrix, and, in the presence of noise in the 
system. Noisy estimates of gradient can easily lead to loss of 
conjugacy among search directions which may cause 
instability of the algorithm. 
 Recently, the Stochastic Pairwise Conjugate Gradient 
(SPCG) algorithm is introduced [3]. The method is a form of 
stochastic gradient descent method where the stepsize is 
chosen to insist pairwise conjugation of successive gradient.  
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The method was shown to have comparable performance with 
other CG-based method while having lower computational 
complexity because it avoids explicit computation of 
conjugate  
search directions. It was also noted in [3] that the SPCG 
algorithm is a form of recursive Minimal Residual (MR) 
method where the direction of search is the current residual 
vector.  
 The MR method can also be performed with direction of 
search other than the residual vector [4]. In this 
correspondence, we explore this idea further in search of a 
better alternative to the SPCG algorithm. The objective is two 
fold: i) to improve computational complexity, and, ii) to avoid 
gradient search that usually leads to poor convergence when 
the eigenvalue spread of the autocorrelation matrix is large. 
Three different forms of MR-like methods are presented here, 
namely the low complexity SPCG and MR methods with 
Euclidean direction of search (MREDSI and MREDSII).  

A. Adaptive Filtering Problem 

The linear adaptive filtering problem is the following 
minimization problem, 
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where ( )s i R∈  is the desired signal, and, ( ) T

iy i = a x  is the 
filter output at the i th sample instant.  
For a transversal finite impulse response (FIR) adaptive filter, 
vectors N

i R∈a  are formed by the input ( )u i , such that 

( ) ( ) ( )1 1
T

i u i u i u i N= − − +⎡ ⎤⎣ ⎦a L , and vector NR∈x  
is an estimate of the filter coefficient vector. The quantity 

( )T
i ie s i= −a x  is the error signal and x  is updated by 

minimizing the sum of squared error cost function ( )nJ x . 

The constant [ ]0,1λ ∈  is known as the forgetting factor. 
 With definitions 
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the minimization problem in (1) can be shown to be 
equivalent to solving the normal equation 

 
nΦ =x p ,                      (2) 
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where T

n nΦ = A A . Recursive updates of nΦ  and np are 
possible [5] through the formulas, 
 
     1

T
n n n nλ −Φ = Φ + a a , 

  ( )1n n ns kλ −= +p p a . 

B. Minimal Residual (MR) Method for Adaptive Filtering 

The standard MR method for solving linear system of 
equation of the form =Ax b  updates the approximation by 
the formula 

( ) ( ) ( ) ( )1k k k kα+ = +x x d , 
where the stepsize ( )kα  is chosen so that the residual two 

norm squared ( ) 21

2

k+−b Ax  is minimized along the direction 

of search ( )kd . This procedure is also equivalent to an 
orthogonal projection technique where the stepsize ( )kα  is 
chosen so that the residual vector ( ) ( )1 1k k+ += −r b Ax  is 

orthogonal to the subspace ( ){ }kspan Ad  (see Figure 1). 

 
 
 
 
 
 
 
 
 

Fig. 1 Geometrical interpretation of the MR iteration 
 
When applying this method to the adaptive filtering problem, 
we seek to update the adaptive filter coefficient vector using a 
similar idea, that is to choose stepsize ( )kα  that minimizes the 

residual 2-norm squared ( ) 21

2

k
k k

+−Φp x  along the stochastic 

direction of search ( )kd . Since matrices kp  and kΦ  are 
updated recursively every time the system is updated, the 
method becomes a stochastic minimization algorithm. The 
long term behaviour of the method can be understood by 
considering the recursive form for the residual vector ( )kr . 
From [2], 
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Let  
( ) ( ) ( ) ( ) ( )1 1ˆ k k k k k

k k kα+ += −Φ = − Φr p x r d .  
 

By construction of the MR method, kα  is chosen so that 
( ) ( )( )1ˆ , 0k k

k
+ Φ =r d . Therefore, we have, 
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Assuming, kd  is a descent direction, (3) implies that, as 

1 0ke + → , the behaviour of the stochastic MR based adaptive 
filtering algorithm approaches that of its deterministic 
counterpart. 

II. VARIATION OF MR ADAPTIVE FILTERING ALGORITHM 
The SPCG algorithm proposed in [3] can be viewed as a 

(stochastically) recursive form of the standard Minimal 
Residual (MR) method, where the direction of search is set to 
be the current residual. It can also be treated as a form of 
stochastic gradient descent algorithm. Although the SPCG 
algorithm shows higher convergence rate compared to the 
LMS algorithm, the computational complexity of SPCG 
algorithm is still rather high (refer Table 1). The SPCG 
algorithm also has the tendency to produce high 
misadjustment especially when the autocorrelation matrix Φ  
has large eigenvalue spread.  

In order to overcome the disadvantages of the SPCG, we 
introduce several variations of MR –like algorithm, 

i) Low complexity SPCG; 
ii) MREDSI; 
iii) MREDSII. 

The low complexity SPCG is a modification of the SPCG 
algorithm, where the residual vector is approximated by the 
stochastic gradient approximation used in the LMS algorithm. 
Algorithms MREDSI and MREDSII explores two forms of 
updating the coefficient vector by MR-like iterations along 
Euclidean directions. 

A. Low Complexity SPCG 

The low complexity SPCG has ( )O N  complexity, and this is 
achieved by making approximations to steps (7) and (9) in 
Table 1, i.e., 
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The steps above has 4 1N +  multiplications and 1N −  
additions, and, explicit formation of kΦ  and kp  is avoided. 
These approximations reduce the algorithm to an LMS type 
algorithm with a stepsize that minimizes the residual. The low 
complexity SPCG needs to be periodically restarted with the 
exact values for ( )kr  and ( )kb  to avoid stagnation [6]. 
Restarting after every N  sample update, maintains the 
complexity at ( )O N  per sample update. 

 

( )kAd

( )1k+r ( )kr



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:2, 2010

268

 

 

 

B. MR Iterations along Euclidean Directions 

The SPCG and its low complexity version produce large 
misadjustment especially when the autocorrelation matrix has 
large eigenvalue spread. The eigenvalueapread (or the spectral 
condition number) is the ratio of the largest and the smallest 
eigenvalue of Φ . It has a value 1≈  when the input signal to 
the filter is white (i.e. uncorrelated) and 1>  for coloured (i.e. 
correlated) signal. It is well known that gradient based 
methods are sensitive to eigenvalue spread.  

In an effort to reduce sensitivity to eigenvalue spread, we 
introduce MR like method where solutions are updated along 
Euclidean directions. This choice of search direction is not 
only orthogonal but also easy to implement. We describe two 

different methods, MR-EDSI and MR-EDSII, both are of 

( )2O N  complexity. 

1) MR-EDSI 
We assume the approximate solution is updated as 

              ( ) ( ) ( )
1 1 1 2 2

k k k
k k N N k kα α α+ = + + + + = + Σx x e e e xK , 

where [ ]0 0 1 0 T

i =e L L , with 1 appearing in the 
i th place. The stepsizes , 1, ,i i Nα = K , are computed as 
follows: 
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The choice of iα ’s above guarentees ( )1 0T
k k k+ Σ =r R% , where 

1k k k k+ = − Σr r R% . 
2) MR-EDSII 

Another version of the MR-EDS algorithm takes after the 
EDS algorithm [7] where the MR projections are performed 
along the Euclidean direction cyclically. In both algorithm 
the current weight vector is updated as follows, 
 

  ( ) ( ) ( )1

1

N
k k k

i i
i

α+

=

= +∑x x e . 

The major difference between MR-EDS II and the EDS 
algorithm is in the calculation of the stepsize ( )k

iα . In EDS 

algorithm, ( )k
iα  is the minimizer of ( )( )k

i iJα α∇ +x e , 

whereby in the MR-EDS II, ( )k
iα  is the minimizer of 

( )( )k
k k i iα α∇ −Φ +p x e , i.e., for MR-EDSII, 
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    ( )i

kΦ  - the i th row of kΦ . 
 

The choice of ( )k
iα  guarentees ( ) ( ) ( )

1 1 0k T k T
i i i i+ +Φ = Φ =r e r .  

III. SIMULATION RESULTS 
Our simulation is based on an adaptive system modeling 

configuration given in Figure 2. The input signal is passed 
through a colouring filter with frequency response 

( ) 1

2

1
1

−−
−

=
z

zH
α
α , where 1<α . The parameter α  controls 

the eigenvalue spread of the input autocorrelation matrix, 

                                           TABLE 1 
                                 THE SPCG ALGORITHM 

 × / ÷  +/ −  
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where 0=α  gives uncorrelated sequence (white) with 
eigenvalue spread 1≈ . The aim is to find the parameters of a 
model x  through an adaptive algorithm so that the difference 
between the unknown system output, ( )ns , and the adaptive 
model output, ( )ny , is minimized according to the cost 

function ( )nJ x . Noise, ( )nη , with a variance of  0.001 is 
added to the output of  the unknown system. 

The performance of the algorithm is studied based on the 
propagation of the ensemble average of the mean error norm. 
The convergence rate of the algorithm refers to the number of 
iterations to reach steady state error, and, misadjusment is 
evaluated based on the value of the steady state error. 

 
 
 
 

 
 
 

 
 
 
 
                                                                                            
                                                                      
                                                                                

Fig. 2 Adaptive system modeling 
 

A. Convergence Rate 

In Figure 3, the performance of MR based algorithms are 
compared with that of the LMS algorithm. It is clear that the 
MR based algorithms have superior convergence rate 
compared to LMS despite having higher computational 
complexity. Even the low complexity SPCG shares the same 
rate of convergence with its original version. There is 
evidence however that the MR based algorithm tend to 
produce larger misadjustment compared to LMS.  

 
Fig. 3a  Convergence rates of low complexity SPCG and SPCG 
compared with LMS 

 
Fig. 3b Convergence rates of MREDSI and MREDSII compared with 
LMS 

B. Stability with respect to Eigenvalue Spread 

In Figure 4, the value of α  is set to be 0.5 which leads to the 
value of eigenvalue spread of 6.6≈ . Unlike SPCG and LMS, 
the misadjustment of MREDS algorithms seem to be 
unaffected by the increased eigenvalue spread. Between 
MREDSI and MREDSII, we see that MREDSII is more 
stable. MREDSI seems to be showing signs of instability 
where large errors are produced at the onset of adaptation. The 
MREDSII algorithm also shows better performance compared 
to EDS algorithm. 

 
Fig. 4a: MREDSI gives smaller misadjustment compared to SPCG, 
LMS and EDS. However convergence seems to be slower 

 
Fig. 4b MREDSII gives small misadjusment as well as high 
convergence rate 
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IV. SUMMARY AND DISCUSSIONS 
A family of three MR based adaptive filtering algorithms is 

presented. The low complexity SPCG algorithm provides a 
lower complexity version of the original SPCG proposed in 
[Ahmad]. This new version is an LMS-type algorithm with a 
stepsize calculated via the MR formula. Simulation results 
verify the superior convergence of low complexity SPCG 
compared to the LMS algorithm. Although some 
approximations are made to derive the low complexity 
version, with restarting, the algorithm maintains the 
performance of the original version. 

Choosing Euclidean vectors as direction of search in 
MREDSI and MREDSII meets the objective of improving 
misadjustment which seems to be a disadvantage in their 
gradient search counterparts. Between the two versions, 
MREDSII shows better performance in that it gives better  
rate of convergence compared to MREDSI. It was also noted 
that although MREDSII and the EDS adopt similar update 
formulas, the choice of stepsizes in MREDSI allows it to 
provide better misadjustment than EDS. 
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