
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2448

Abstract—The group mutual exclusion (GME) problem is an

interesting generalization of the mutual exclusion problem. Several
solutions of the GME problem have been proposed for message
passing distributed systems. However, none of these solutions is
suitable for real time distributed systems. In this paper, we propose a
token-based distributed algorithms for the GME problem in soft real
time distributed systems. The algorithm uses the concepts of priority
queue, dynamic request set and the process state. The algorithm uses
first come first serve approach in selecting the next session type
between the same priority levels and satisfies the concurrent
occupancy property. The algorithm allows all n processors to be
inside their CS provided they request for the same session. The
performance analysis and correctness proof of the algorithm has also
been included in the paper.

Keywords—Concurrency, Group mutual exclusion, Priority,
Request set, Token.

I. INTRODUCTION

HE design of protocols for distributed real time systems is
more challenging than that for normal distributed systems

because the real time systems must satisfy stringent response
time constraints in addition to the logical correctness of the
system. Nevertheless, the distributed systems are emerging as
a highly promising candidate for implementing the next
generation of high performance real time systems. However,
the distributed system must be fine tuned before they can be
used to monitor and control critical real time systems. The real
time systems (RTS) are generally classified as soft real time
systems (SRTS) and hard real time systems (HRTS) [22]. In
the soft real-time systems, the utility of the system goes down
with every unit of time elapsed after missing the deadline.
However, missing a deadline does not lead to catastrophic
system failure in SRTS. The hard real-time systems are those
in which the utility of a system becomes zero in the event of a
missed deadline and missing a deadline could lead to a
catastrophic system failure. Although, both paradigms namely,
shared memory and message passing exist, we have
considered the message passing systems only.

Resource sharing is an important aspect of the real time
distributed systems. Some resources are inherently non

Abhishek Swaroop is with the Department of Computer Science &
Engineering of G.P.M. College of Engineering, Delhi 110036 India (phone:
+91-11-22300003; fax: 91-11-27203937; e-mail: abhi_pu1@ yahoo.co.in).

Awadhesh Kumar Singh is with the Department of Computer Engineering,
National Institute of Technology, Kurukshetra 136119, India (e-mail:
aksinreck@rediffmail.com).

shareable and must be accessed in a mutually exclusive way.
Many algorithms exist in the literature to solve the mutual
exclusion problem [1, 10, 18, 19, 20] in message passing
distributed systems. Some of these algorithms have been fine
tuned to suits the needs of real time systems in [12, 13, 14, 15,
16, 21].

In [2] Joung proposed group mutual exclusion (GME)
problem as generalization of classical mutual exclusion
problem, and modeled it as congenial talking philosophers
(CTP) problem. In group mutual exclusion a process request a
session (alternatively called forum), before entering its
Critical Section (CS), processes requesting for the same
session are allowed to be in their CS simultaneously.
However, processes requesting for different sessions must do
so in a mutually exclusive way. The readers-writer problem
can be considered as a special case of GME problem. In order
to achieve this, we can use a common read session for all
processes and a unique write session for each individual
process.

The requirements for group mutual exclusion problem are:
Mutual exclusion: No two processes, requesting for a

different session can be in their critical sections concurrently.
Starvation Freedom: A process attempting to attend a

session will eventually succeed.
Concurrent Occupancy: If some process P, has requested

for a session X and no other process is currently attending or
requesting a different session, then P can attend X without
waiting for any other process to leave the session.

The first algorithm for GME problem was given by Joung
[2] for shared memory model. In [3] Joung proposed two
algorithms RA1 and RA2 based on Ricart - Agrawala
algorithm [10] to solve GME problem for message passing
systems. Several non token-based algorithms for GME
problem have been proposed in the literature [3,6,7,8]. Token-
based algorithms for GME problem have been presented in
[4,9,11,17]. However, none of these algorithms is suitable for
real time systems. Mittal–Mohan algorithm [4] considers the
concept of priority in selecting the next session type.
However, the priority of a session is decided by the number of
processes willing to attend that session. In Mittal-Mohan
algorithm a requesting process can not assign priority to a
request. Therefore, in its present form Mittal-Mohan algorithm
can not be used for real time distributed systems.

The paper presents a token- based algorithms for solving
GME problem for soft real time systems (SRTS). Our
algorithm is based upon the concept of dynamic request sets.

A Distributed Group Mutual Exclusion
Algorithm for Soft Real Time Systems

Abhishek Swaroop, and Awadhesh Kumar Singh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2449

The concept have been used earlier also [1 18], but to handle
some other problem that is comparatively simple. In the
proposed scheme, a captain process is responsible for the
session initiation and sending start message to other processes
requesting for the same session, called followers, in order to
allow them to enter in CS.

The rest of the paper is organized as follows. We describe
the system model and assumptions in section 2, the data
structures and the messages used in our algorithm are
explained in section 3 and the description of the algorithm is
given in section 4. The correctness proof and performance
analysis of the algorithm are given in section 5 and section 6
respectively. The concluding remarks are given in section 7.

II. THE SYSTEM MODEL
We assume an asynchronous distributed system. The

system has N sites, numbered as 1,2,3,..,N. The sites do not
share any memory or global clock, and the only way of
communication between sites, is through message passing.
The system is fully logically connected, i.e. every site can
send message to every other site. We assume that, at each site
i, there exists exactly one process Pi. Once a process has
requested for a session, it will not make new requests unless
the old request is serviced. Each process Pi also announces its
priority Zi while requesting a session. A higher value of Zi
indicates higher priority level. The lowest priority level is one
and the highest priority level is K.

III. NOTATIONS
Each process may be in any one of the following 6 states:
(i) R- requesting for a session.
(ii) N- not requesting.
(iii) EC- process is executing in its CS as captain.
(iv) EF- process is executing in its CS as follower.
(v) HI- process is holding token because, no pending

request is there.
(vi) HS- process is holding token because, some followers

are still in their CS.
Every process Pi stores following local variables-
statei - stores the current state of process Pi.
RSi - stores the ids of all the processes, to which Pi must

send its request, in case it wishes to attend a session and not
possessing the token.

SNi,, - where SNi[j]=k denotes that Pi knows about k
requests made by Pj.

captaini, - stores the id of the captain of the current session,
if Pi is in its CS as follower. Otherwise captaini is set to
NULL.

The token in our algorithm contains following variables-
token.queue - token.queue is a priority queue to store all

pending requests. The requests for the same session are
grouped together, and are treated as single entry in the queue.
A priority level is associated with each entry in token.queue.
The priority level of an entry is assigned equal to the priority
of the highest priority process, requesting for the session,

associated with the entry. The entry with highest priority level
always remains at the head of the token.queue.

token.type - stores the type of the current session
token.followers - stores the number of follower processes

still in their CS.
In our algorithm various messages are exchanged among

processes in order to solve GME problem. We briefly describe
each message.

request (i,SNi,X,Zi) – When a process Pi wishes to attend a
session X with priority Zi , and Pi is not holding the token
then it sends a request message containing its id, sequence
number of request, type of session requested and the priority
of the process Pi to all processes in its request set

start (i) - start message is sent to a process to allow it to
enter in CS as follower of Pi.

complete (i) - When a process Pi executing in its CS as
follower, comes out of CS, it sends a complete message to its
captain.

token (token.queue,token.type,token.followers) - A unique
token exists in the system and only the process holding the
token can enter in its CS as captain. Whenever a session
finishes and next session is selected, the token is passed to the
new captain.

IV. DESCRIPTION OF THE ALGORITHM
The complete pseudo code of our algorithm is given in

Appendix A; however, brief description of the algorithm is
given in this section. Initially all processes are in state N,
having their captain as NULL, all entries of SN are zero and
the Request set of each process contains ids of all other
processes except itself. Only exception is process P1. We
assume that P1 holds the token initially, therefore, the
variable state1 is set to HI and RS1 is initialized to empty set.

A process Pi wishing to attend a session X with priority Zi
and not possessing the token, sends its request to all members
in its request set, changes its state to R and waits for the token
or start message. Upon receiving the token, Pi initiates a new
session and enters in its CS as captain along with its followers.
In case Pi receives a start message, it enters in its CS as a
follower. If Pi possesses an idle token it enters in its CS as
captain. However, if Pi is holding token in HS state, it enters
in its CS again only if the requested session is the same as the
current session and the token.queue is empty. Otherwise, the
request is added in token.queue.

A procedure add_request(i,X,Zi) is called to accommodate
a new request in token.queue according to its priority level
and the requested session, where i is the id of the requesting
process, X is the session requested and Zi is the priority level
of the request. There exists only one entry for a session. Also,
a priority level is associated with each entry in token.queue. If
the entry for the requested session X already exists in
token.queue, Pi is also added in the list of processes
requesting for session X. If the priority level of the newly
arrived request is greater than the priority level of the entry for
session X, the priority level of the entry for session X is set

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2450

equal to the priority of the newly arrived request. After that
the entry for session X is moved forward according to its new
priority level in token.queue. On the other hand, if there is no
entry corresponding to session X then a new entry is created
and added in the token.queue according to its priority level.

When a process Pi receives a request (j,SN,X,Zi), it discards
the old request without taking any action. However, if the
request is new, Pi updates the value of SNi[j]. If Pj is not in its
request set, Pi adds Pj in its request set. Pi also sends a request
to Pj, if it is requesting for a session. If Pi is holding an idle
token, it immediately sends it to Pj. However, if Pi is holding
token in state EC or HS, it passes a start message to Pj only if
token.queue is empty and the session requested is the same as
the current session. Otherwise procedure add_request is
called to add the request of Pj is in token.queue.

When a follower process comes out of its CS, it sends a
complete message to its captain; it changes its state to N and
sets its captain to NULL. However, when a captain process
comes out of its CS, it checks the number of followers still in
CS. If there are still some follower processes in their CS, the
captain changes its state to HS. If no follower process is in CS
and no pending requests are there, the captain process changes
its state to HI. However, if there are pending requests in the
token.queue, the captain process changes its state to R or N ,
depending upon whether its request is in token.queue or not,
removes next captain and its followers from the token.queue,
sends token to the next captain, and sends start messages to all
followers. Before sending the token to the next captain the
priority level of all entries in token.queue are incremented by
one.

Upon receiving a complete message the captain decrements
the variable token.followers by one. If the state of the captain
is HS and token.followers is zero, the captain changes its state
to HI if token.queue is empty. However, if token.queue is not
empty, the captain process changes its state to R or N
depending upon whether its request is in token.queue or not,
removes the next captain and its followers from token.queue,
sends token to the next captain, and sends start messages to all
followers. The priority level of each entry is also incremented
by one before transferring the token in order to remove the
possibility of starvation.

 The captain process on receiving token changes its state
to EC and enters in its CS. Upon receiving a start message, a
process changes its state to EF, sets the variable captain and
enters in its CS.

V. CORRECTNESS OF THE ALGORITHM
In this section we will show that our algorithm satisfies all

requirements, which are necessary for a solution of group
mutual exclusion problem.

A. Safety
The mutual exclusion requirement in GME problem says

that, no two processes requesting for a different session, must
be in their CS simultaneously. There exists only one token in
the system, and only the process holding the token can initiate

a session as a captain. The process holding the token can send
the start message to only those processes requesting for the
same session. Further the token is not transferred to another
process, until the current captain and all its followers have
come out of their CS. Therefore, no two processes requesting
for a different session, can be in their CS at the same time.

B. Freedom from Starvation
A priority queue is associated with the token to store the

pending requests. A priority level and a session type are
associated with each entry in the token.queue. The entry with
the highest priority level is always at the front of the
token.queue in order to favor sessions associated with higher
priority levels. However, an FCFS approach is used to select a
session, among sessions having same priority levels. Further,
the priority of long waiting processes is gradually enhanced
using the idea of aging [Silberschatz] in order to completely
remove the possibility, if any, of starvation. Whenever a new
session is selected the priority level of all sessions, whose
requests are stored in token.queue, is incremented by one.
Therefore, the process having lowest priority level will also be
able to attain highest priority level after K-1 session switches.

 If a request for the current session type arrives at the
captain, it first checks whether the token.queue has any
pending requests or not. The captain sends start message to
the requesting process, only if the token.queue is empty.
However, if the token.queue is not empty, the request is added
in the token.queue. This entry policy reduces the concurrency
and hence the resource utilization, however, it removes the
possibility that the processes of a particular group keep on
requesting for the currents session and not allowing other
processes to enter in their critical sections. Therefore, we can
say that, the sessions in our algorithm are served in a
starvation free manner.

C. Concurrent Occupancy
In the proposed algorithm, when a process starts a session

as a captain, it captures all the processes (requesting for the
same session), whose requests are stored in the token.queue, at
the time of entry in its CS. When the captain process is in state
EC or state HS and a request for the current session arrives, it
checks whether the token.queue is empty or not. If the
token.queue is empty, it immediately sends a start message to
the requesting process. The requesting process enters in its CS
upon receiving the start message. Hence, it is proved that our
algorithm satisfies the concurrent occupancy property.

VI. PERFORMANCE ANALYSIS OF THE ALGORITHM
In this section we analyze the performance of our

algorithms using following performance parameters: message
complexity /CS request, average message size, forum switch
complexity, maximum concurrency, and synchronization
delay. Forum switch complexity [2] and maximum
concurrency are applicable only for GME algorithms, not for
mutual exclusion algorithms.

Message complexity: The messages exchanged, during the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2451

execution of the algorithm are, request, token, start and
complete. The request messages are sent by a requesting
process to all processes in its request set. The maximum
cardinality of a request set can be n-1; therefore a requesting
process can send at the most n-1 request messages. Therefore,
if a process enters in CS as captain, in the worst case, n
messages (n-1 ‘request’ messages and one token message),
needs to be exchanged. However, in case of a follower
process, in the worst case, n+1 message are required (n-1
‘request’ messages, one ‘start’ message, and one ‘complete’
message). However, in the best case no message needs to be
exchanged. If a process holding token in HI state, wish to
attend a session, in that case a new session will be started
immediately and the state of the process changes from HI to
EC. No message exchange is required in this case.

Average message size: The Table I describes the various
messages used in our algorithm and their sizes.

TABLE I

MESSAGES AND THEIR SIZE
Message Type Size
‘request’ O(1)
‘token’ O(N)
‘start’ O(1)
‘complete’ O(1)

Among the messages used in the algorithm, only the token

has the size O(N). However, the token is exchanged, only
when a new session is initiated. Therefore, in the best case (all
processes requesting for the same session), the average
message size will be O(1), because one token, N-1 ‘start’, N-1
‘complete’ and some ‘request’ messages (depending upon the
cardinality of the request sets at each site), will be exchanged.
However, in the worst case (all processes requesting for a
different session); N token messages will be exchanged,
besides the ‘request’ messages. In this case the average
message size will be O(N).

Maximum concurrency: In our algorithm the request of a
process requesting for the current session can be fulfilled by
the captain process, if no request for some other session is
pending in the token.queue. Therefore, if all the processes are
requesting for the same session, they can be in their CS
concurrently. Hence, the maximum concurrency of our
algorithm is n.

Forum switch complexity: The pending requests for a
particular session in token.queue are grouped together and the
requests for one session are treated as a single entry in
token.queue. Therefore, at any point of time there can be at
most min(n,m) entries in token.queue. If a process requests for
a new session, which has no entry in token.queue till now,
then a new entry is created and added at the tail of the queue.
If we assume only one priority level, after a process has made
a request, at most min(n,m) forum switches can take place.
However, in a prioritized environment where k priority levels
exist, a process with higher priority can be placed ahead of a
lower priority process, even if the lower priority process

entered the queue before the higher priority process. However,
due to aging the priority of lower priority process(es) will
increase with each forum switch and would succeed in
attaining the highest priority level after at most K-1 session
switches. Therefore, the forum switch complexity of the
algorithm is max{min(n,m),(K-1)}.

Synchronization delay: The heavy load synchronization
delay of the algorithm is 2T in the worst case and T in the best
case, where T is the maximum message propagation delay.

Under heavy load conditions, there will always be some
pending requests in token.queue, therefore, as soon as a
captain comes out of CS and no follower is in its CS, the token
is passed to the next captain , and the, heavy load
synchronization delay is T. However, if the last process to
come out is a follower, it will first send a complete message to
the captain, which in turn finish the session and passes the
token to next captain. Therefore, the synchronization delay in
this case will be 2T.

VII. CONCLUSION AND FUTURE WORK
In the present paper, we proposed a token-based algorithm

for the group mutual exclusion problem which favors the
requests with higher priority levels. This feature of the
algorithm makes it suitable for soft real time distributed
systems also. The introduction of priority makes a system
susceptible to starvation problem. It has been taken care by
using the idea of aging while maintaining the strongest
fairness requirement that is FCFS, among sessions having
same priority levels. The algorithm satisfies the mutual
exclusion and concurrent occupancy. The algorithm has
reduced forum switch complexity keeping maximum
concurrency as n. To the best of our knowledge, the proposed
work is the first algorithm on group mutual exclusion that
allows a process to declare a priority level along with its
request for a session and the algorithm favors the sessions
with higher priority levels. Although, Mittal-Mohan algorithm
[4] uses the concept of priority to enhance the resource
utilization, they do not allow individual processes to assign
priority level to their request. However, our algorithm allows
individual processes to assign priority level to their request.
This characteristic makes our algorithm suitable for use in soft
real time environment. An interesting extension of the work
could be making it suitable for hard real time systems, which
have more stringent deadlines to meet.

APPENDIX
Appendixes, if needed, appear before the acknowledgment.

A. The pseudo code of the algorithm

Code for initialization:
For i = 1 to n
 {
 statei=N; captaini =NULL
 RSi=ids of all other processes except Pi
 For j = 1 to n SNi[j]=0;
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2452

state1=HI; RS1=Ø
token.type=NULL; token.queue=Ø
token.followers=0

Pi request for a forum X with priority Zi:
SNi[i]=SNi[i]+1
If (statei=HI)
{
 token.type=X; statei =EC
 RSi= Ø; Enter CS
}
Else if (statei=HS)
 {
 If (token.queue= Ø) && (token.type=X)
 {
 statei=EC; Enter CS
 }
 Else call Add_ request (i,X,Zi)
 }
Else
 {
 statei=R;
 Send request (i, SNi[i], X,Zi) to all members of RSi
 }

Pi receives request (j,SN,X,Zj):
If SN>SNi[j] /* otherwise old request
{
 SNi[j] =SN
 If (statei=R) && (iRSj ∉)
 {
 Add j to RSi
 Send request (i,SNi[i], Y) to j
 }
 Else If (statei=EC)
 {
 If (token.type=X) && (token.queue=Ø)
 {
 token.followers=token.followers+1
 Send start (i) to Pj
 }
 Else call add_ request (j,X,Zj)
 }
Else If (statei=HI)

 {
 Add j to RSi; Send token to Pj
 }

Else If (statei=HS)
 {
 If (token.type=X) && (token.queue=Ø)
 {
 token.followers=token.followers+1
 Send start (i) to Pj
 }
 Else call add_ request (j,X,Zj)
}

 Else Add j to RSi
 }

 Pi receives start (j):
captaini=j; Statei=EF; Enter CS

Pi exits from CS:
 If statei=EF

 {
 Send complete (i) to captaini
 captaini=NULL; statei=N
 }
Else
 {
 If (token.followers=0) && (token.queue=Ø)
 {
 statei=HI; token.type=NULL
 }
 If (token.followers=0) && (token.queue≠Ø)
 {
 If (i’s request in token.queue) statei =N else statei=R
 Increment priority level of all entries in token.queue by one
 Add all processes which are in token.queue and
 which can work as captain to RSi
 Select new captain Pj

 Remove Process j and its followers from the front of the queue
(requesting for a session X)

 token.type=X
 token.followers=number of follower processes
 Send token (token.queue, token.type, token.followers) to Pj
 Send start (j) to all followers

 }
 Else statei =HS
}

Pi receives comlete(j):
token.followers=token.followers-1
If (token.followers=0) && (statei=HS)
 {
 If (token.queue=Ø) statei=HI
 Else
 {
 If (i’s request in token.queue) statei =N else statei=R
 Increment priority level of all entries in token.queue by one

 Add all processes which are in token.queue and can work
as captain to RSi
 Remove Process Pj and its followers from the front of the
token.queue (requesting for X)
 token.type=X
 token.followers=number of follower processes
 Send token (token.queue, token.type, token.followers) to Pj
 Send start (j) to all followers
 }

 }

Pi receives token
statei=EC; enter CS; RSi =Ø

Proceedure Add_request(i,X,Z)

 If (entry for session X already in token.queue
 Add current request also in the list of requests for X
 If (X.priority<Z) X.priority=Z
 else
 {
 create a new entry in token.queue for session X
 add this request at the rear of the token.queue
 X.priority=Zi
 }
 Y=session in entry ahead of entry of X in token.queue
 While (Y.priority<X.priority)
 {
 Swap entry corresponding to session X with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2453

 entry corresponding to session Y
 Y=session in entry ahead of entry of X in token.queue
 }
}

REFERENCES
[1] Ye-In chang, M.Singhal and M. T. Liu, “A dynamic token based

distributed mutual exclusion algorithm”, In proc. of 10th annual
international phoenix conference on computers and communications,
Pages 240 – 246, 1991.

[2] Y.J.Joung, “Asynchronous group mutual exclusion (extended abstract)”,
In proceedings of the 17the annual ACM symposium on principles of
distributed computing (PODC), Pages 51 –60, 1998.

[3] Y.J.Joung, “The Congenial talking philosopher problem in computer
networks”, distributed computing, Vol. 15, Pages 155-175, 2002.

[4] N.Mittal and P.K.Mohan, “An efficient distributed group mutual
exclusion algorithm for non-uniform group access”, In proceedings of
the international conference on parallel and distributed computing
systems, 2005.

[5] P.Kean and M.Moir, “A simple local spin group mutual exclusion
algorithm”, In proceedings of the 18th annual ACM symposium on
principles of distributed computing, pages 23-32, 1999.

[6] Y.Manabe and J.Park, “A quorum based extended group mutual
exclusion algorithm without unnecessary blocking”, In proceedings of
10th international conference on parallel and distributed systems
(ICPADS’04), 2004.

[7] R.Attreya and N.Mittal, “A dynamic group mutual
exclusion algorithm using surrogate quorums”, In proceedings of the 25th
IEEE conference on distributed computing systems (ICDCS’05), 2005.

[8] M.Toyomura, S.Kamei and H.Kakugawa, “A quorum–based distributed
algorithm for group mutual exclusion”, PDCAT’03 Pages 742-746,
2003.

[9] D.Lin, T.-S.Moh and M.Moh, “Brief announcement: improved
asynchronous group mutual exclusion in token passing networks”, In
proceedings of PODC’05, Pages 275-275, 2005.

[10] G.Ricart and A.K.Agrawala, “An optimal algorithm for mutual exclusion
in computer networks”, communications of the ACM 24(1), Pages 9-17,
1981.

[11] Q.E.K Mamun, H.Nakazato, “A new token based group mutual
exclusion in distributed systems”, In the proc. of the Vth international
symposium on parallel and distributed computing, 2006.

[12] F.Mueller, “Prioritized token-based mutual exclusion for distributed
systems” 9th Symposium on parallel and distributed processing, Pages
791-795, 1998.

[13] A. Housini, M.Trehel, “Distributed mutual exclusion token-permission
based by prioritized groups”, Proc. of ACS/IEEE international
conference, Pages 253-259, 2001.

[14] Y.Chang, “Design of mutual exclusion algorithm for real time
distributed systems”, Journal of Information science and engineering,
Vol.10, Pages 527-548, 1994.

[15] A. Goscinski, “Two algorithms for mutual exclusion fro real time
distributed systems”, Journal of Parallel and Distributed Computing,
Vol. 34(1), Pages 1-13, 1996.

[16] Y.I.Chang, “Comments on two algorithms for mutual exclusion in real-
time distributed computer systems”, Journal of Parallel and Distributed
Computing, Vol. 23, 449-454 (1994).

[17] O.Thiare, M.Gueroui, and M.Naimi, “Distributed group mutual
exclusion based on client/servers model”, In the proceedings of 7th
international conference on parallel and distributed computing,
applications and technologies (PDCAT’06), 2006.

[18] M. Singhal, “A heuristically–aided Algorithm for mutual exclusion in
distributed systems”, IEEE Transactions on Computers, vol. 38, no.5,
pp. 651 – 662, 1989.

[19] I. Suzuki, T. Kasmi, “A distributed mutual exclusion algorithm”, ACM
Transactions on Computer Systems, vol. l3, no. 4, pp. 344 – 349, 1985.

[20] M. Maekawa, “A √n algorithm for mutual exclusion in decentralized
systems”, ACM Transactions on Computer Systems, vol. 3, no. 2, pp.
145 – 159, 1985.

[21] S. Karnar, and N. Chaki, “Modified Raymond’s Algorithm for
priority(MRA-P) based mutual exclusion in distributed systems”,
ICDCIT 2006,LNCS 4317, pp. 325-332, 2006.

[22] Siberschatz, A., Galvin, P. B., Gagne, G. “Operating Systems Concepts”,
6th edition, John Wiley & Sons, Inc., 2002.

