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Abstract—This paper presents  a new  method for estimating the 

mean curve of impulse voltage waveforms that are recorded during 
impulse tests. In practice, these waveforms are distorted by noise, 
oscillations and overshoot. The problem is formulated as an 
estimation problem. Estimation of  the current signal parameters is 
achieved using a fast and accurate technique. The method  is based 
on discrete dynamic filtering  algorithm (DDF). The main advantage 
of the proposed technique is its ability in producing the estimates in a 
very short time and at a very high degree of accuracy.  The algorithm 
uses  sets of digital samples of the recorded impulse  waveform. The 
proposed technique has been tested using simulated data of practical 
waveforms. Effects of number of samples and data window size are 
studied. Results are reported and discussed. 
 

Keyword—Digital Filtering, Estimation, Impulse wave, 
Stochastic filtering.  

I. INTRODUCTION 
TILITIES concern much about impulse testing of high    
voltage electrical apparatus in order to access the overall  

insulation strength. Impulse waves are characterized by 
several parameters: Peak magnitude, front time, tail time and 
chopping time. The earlier methods used for impulse testing of 
electrical equipment were  done through visual examination of 
the oscillographic traces. These method has problems when 
the impulse wave is distorted by superimposed oscillations or 
overshoot[1],[2].  

In general, the parameters of Lightning Impulse can be 
determined as per IEC 60-1 if the measured impulse is 
smooth. However, difficulties arise if the oscillations or 
overshoot are superimposed on the waveform. In such cases 
standards require to extract the mean curve to calculate the 
amplitude and frequency of the impulse wave [3-7].  

During the last few decades, digital waveform recorders and 
powerful computers have replaced the conventional methods 
in impulse wave testing [8],[9]. Most of the digital curve 
fitting methods rely on static state estimation techniques such 
as least  error squares  and  least  absolute value methods. 
Dynamic state estimation techniques such as Kalman filtering 
algorithm were also proposed in many  references. Pereze and 
Martinez [10] proposed the extended Kalman filtering 
algorithm approach using a smooth impulse model for 
constructing the mean-curve of lightning  impulses. Methods 
based on wavelet transform were also presented to measure 
the impulse wave parameters [11],[12].  
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Recently, many techniques based on heuristic search and 
artificial intelligence have been proposed and used in this area. 
Genetic algorithms, particle swarm and artificial neural  
networks are all examples of these techniques [13].  

This paper  introduces a new method based on digital 
dynamic filtering algorithm  for estimating the mean 
curveparameters of impulse voltage waveforms that are 
recorded during Impulse testing. The method can extract the 
mean curve parameters even if the waveform is contaminated 
with undesirable oscillations or noise.  The estimation problem 
is presented in state space form. The proposed technique is 
tested using generated waveforms. Results obtained show that 
the algorithm can identify and measure the mean curve of any 
distorted impulse waveforms. The algorithm can track the 
curve parameters on digital bases. 

II. MATHEMATICAL FORMULATION 
In this paper, two different simulated impulse waveforms  

are generated to perform the study. Having a digitized samples 
of the voltage signal, the problem is to find an estimate for the 
mean curve parameters, namely, peak magnitude, front time, 
tail time and chopping time (if it exists). In the first group, 
different standard noise free impulses such as switching and 
lightning impulses are used. In the second testing group, a 
noisy impulse wave is utilized. In both study cases, data 
generated from the standard equations that simulate the 
recorded waveforms are analyzed using the proposed 
algorithm. The resultant estimated parameters of the 
waveforms are then compared with the exact parameters or the 
calculated analytically in literature. Equation 1 represents the 
standard noise-free impulse waveform while equation 2 
represents a noisy impulse wave[4].  
 

)ee(A)t(v tt βα −− −=                     (1) 
 

)e)](tsin(Be)ee(A[)t(v tttt 2

1 γδβα ω −−−− −+−= (2) 
 
The problem unknowns in equations 1 are the voltage 

amplitude A and the time constants α and β. In addition to the 
voltages and time constants in equation 1, the noise 
parameters of equation 2 (B, ω, δ and γ) are also unknowns. 
Considering that the noise parameters can be filtered out. 
Equation 2 will always reduced to 1 after filtering out the 
noise. Based on this, we can use Taylor expansion to write 
equation 1 in the following form. 
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Now using the first four terms of the exponential function 

expansion, the above equation can be reduced to the following 
form 
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If  the signal is sampled at a pre-selected rate, Δ T , then m 

samples, for the  signal  would be obtained at t1, t2, …, tm. and 
we can write the following 
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Now define u as the number of unknowns (u=8) then  we 

can write this system in the conventional discrete state space 
compact  form as:  
 

v(k) = H(k)X(k)+e(k)                     (8) 
 

Where 

k             is the discrete step number 

v(k)       m * 1 measurement  vector 

H(k)      m * u  connection matrix 

X(k)      u * 1  state vector to be estimated 

e(k)      u  * 1 error vector to be minimized 

Once the state vector for the waveform is identified, the 
values of problem parameters can be calculated as  
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III. DESCRIPTION OF THE PROPOSED ALGORITHM 

In the first part, the on-line estimation process of the 
parameters described in section 2 is performed using the  
discrete least absolute value dynamic  filtering algorithm 
(DDF).  Although the complete derivation of the proposed 
filter equations is beyond the scope of this paper and  given in 
reference [14], a short description is given next.  The dynamic 
filter works on the discrete state space model described by the 
measurement equation and the state transition equation in the 
following form. 
 

( ) ( ) ( ) ( )kekXkHkv +=                              (10) 
 

( ) ( ) ( ) ( )kkXkkX ϖ+Φ=+1                                          (11) 
 

The state transition  formulation depends on the type of 
reference chosen. Either stationary reference or rotating 
reference can be used [9]. The measurement error vector e(k) 
and the state error ϖ (k) are assumed to be white sequence 
with known covariance as,  
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The initial condition of X(0) is a Gaussian random vector 

with the following statistics, 
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Where )0(P  is the initial error covariance matrix of the 

states, with dimensions u*u. The covariance of the error at any 
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step (k) can be obtained by replacing X(0) with X(k) in 
equation (17).       

The algorithm starts with an initial estimate for the system 

parameter vector ( )0X  and its error covariance matrix ( ( )0P ) 

at some point k=0. These estimates are denoted as PX , , 
where (_) means that these are the best estimations at this 
point, prior to assimilating the measurement at instant k. With 
such initial values, of both parameters and error co-variances, 
filter gain matrix K(k) at this step is calculated as follows, 
 

( ) ( ) ( ) ( )
11 −−

⎥⎦
⎤

⎢⎣
⎡ += kPLykRkHkK T

             (16) 
 

Assuming that the state vector dimension is ux1,  the 
vectors L and y are defined as:  L is ux1 column vector 

( )T1,,1,1 ; and yT is 1xu row vector ( )1,1  [9]. Using the filter 
gains, estimates are updated with measurements Z(k) through 
equation (20), and error co-variances for update estimates are 
computed from equation (19). 
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Finally, error co-variances and estimates are projected 

ahead to repeat with k=2. 
 

( ) ( ) ( ) ( ) ( )kQkkPkkP T +ΦΦ=+1                     (19) 
 

( ) ( ) ( ) )(ˆ1 kRkXkkX +Φ=+                             (20) 
 

The process is repeated  until the last sample is reached. It 
is assumed that the co-variances and the transition matrices are 
known.  

IV.  TESTING 
In this section, three study cases are considered to examine 

the behavior of the proposed algorithm. The first case 
represents a standard lightning impulse wave. The second 
waveform  is a standard switching impulse. In the third study 
case, a practical noisy signal is considered from the literature. 

A. Standard Lightning Impulses 
To represent a standard 1.2/50 lightning impulse, equation 1 

is used to generate the necessary data. The constants used are, 
A=207.45292274 KV , α and β equals 14659.3 and 2468000 
sec.-1 respectively[13]. 

Table I shows the effect of varying the number of samples 
on the accuracy of the estimated parameters. Results recorded 
in this table show that most results are accurate. Examining 

these results reveals that the maximum error in estimating the 
amplitude is about 0.5 % and the maximum error in estimating 
time constants are, 0.1% and 0.35 % respectively. It is notable 
that starting from  200 samples, the accuracy is very high.  
 

TABLE I  
ESTIMATED PARAMETERS (CASE 1) 

  Number of 
samples

A α β 

10 206.346610 14643.44  2468044.22  
100 207.129943 14649.75  2468041.02  
200 207.450224 14657.59  2467843.8  
300 207.451005 14657.27 2467885.38  
400 207.451000 14657.73  2467888.40  

B. Standard Switching Impulses 
In this test, a standard 250/2500 switching impulse is 

simulated [13]. Equation 1 is used to generate the required 
samples.  Parameters used to generate the signal are; A=250 
KV., α = 316.85 , β = 16005 sec.-1. Table II shows some of 
the results obtained.  

As in the case of lightning impulse, errors are very small. 
Maximum errors recorded for the amplitude, and the two time 
constants are, 0.75%, 0.95% and 0.5 %respectively.  It was 
observed that the error starts to be very small once the number 
of samples reaches 1000. Therefore, the recommended number 
of samples is 1000 in this case.   
 

TABLE II 
ESTIMATED PARAMETERS (CASE 2) 

  Number of 
samples

A α β 

50 248.762 313.11 15876.97 
100 248.553 316.31 15981.13 

1000 249.849 316.80 16005.44 
1500 249.901 316.80 16003.51 
2000 249.901 316.80 16003.11 

C. Practical Case Study 
In this test the generated wave is a simulated one that is 

typical when impulse testing performed on a low inductance 
winding of a transformer. The equation of the waveform is 
given as [12] 
 

)tsin(eV)tsin(eV)t(v tt
222111 φωφω βα +++= −−   

 
This waveform has a characteristic overshoot on the front 

and an oscillating under-swing. The purpose of choosing this 
waveform is to illustrate that such complicated waveforms can 
be handled by the algorithm. Parameters to be estimated here 
are the basic wave parameters V1=101.9, V2=115, in KV , 
α=0.00355, β=0.977 (time constants are in 1/(micro sec.)) and 
the noise parameters ω1=0.0138, ω2=1.636, Φ 1=1.815, 
Φ 2=4.177 (phase angles are in radians).  

In this case  the proposed filtering algorithm is hybrid  with 
simple genetic based algorithm (GA). The GA is used to 
extract the noise signal parameters ( frequencies and phase 
angles) [12]. Once these parameters are estimated the 
characteristic time constants and peak voltage can be 
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estimated, as in the previous cases, using the proposed 
method.   Table III gives   the results obtained for the noise 
parameters [12] while table IV shows samples of the results 
obtained for  the main estimated parameters. Results displayed 
are for the best sampling rate observed which was 1000 
samples while the data window size was 35 micro seconds.  
These tables indicate that the proposed method not only 
estimates the mean curve, but can also determine the noise 
level very accurately. The GA filter can be used also  to 
initialize the DDF. 
 

TABLE III 
ESTIMATED NOISE PARAMETERS   

Parameter ω1 ω2 �1 �2 
Estimated 0.0135 1.639 1.750 4.190 

Exact 0.0138 1.636 1.815 4.177 
 

TABLE IV 
ESTIMATED MEAN CURVE PARAMETERS  

Parameter V1 V2 α β 
Estimated 102.05 114.87 0.00346 0.979 

Exact 101.9 115 0.00355 0.977 

V. CONCLUSIONS 
This paper  presents  a new method for filtering the impulse 

wave forms superimposed by noise is presented. The method 
is based on optimal filtering  algorithm. The problem is 
formulated and presented in the state space form. The goal is 
to minimize the sum of absolute error in the measurement 
equations. The proposed technique is then used to solve the 
formulated problem. The method is tested using different 
simulated data, including pure and noisy waveforms. The 
results of this paper show that the proposed algorithm can 
identify and measure the impulse parameters of any distorted 
impulse wave in a power system. The algorithm can estimate 
the mean-curve of the impulse wave on digital bases. The 
method has also the advantage of self-tuning when dealing 
with non stationary waveforms. 
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