
International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:14, No:11, 2020

370

 

 

 
Abstract—Predicting the risk of Pancreatic Adenocarcinoma 

(PA) in advance can benefit the quality of care and potentially reduce 
population mortality and morbidity. The aim of this study was to 
develop and prospectively validate a risk prediction model to identify 
patients at risk of new incident PA as early as 3 months before the 
onset of PA in a statewide, general population in Maine. The PA 
prediction model was developed using Deep Neural Networks, a deep 
learning algorithm, with a 2-year electronic-health-record (EHR) 
cohort. Prospective results showed that our model identified 54.35% 
of all inpatient episodes of PA, and 91.20% of all PA that required 
subsequent chemoradiotherapy, with a lead-time of up to 3 months 
and a true alert of 67.62%. The risk assessment tool has attained an 
improved discriminative ability. It can be immediately deployed to 
the health system to provide automatic early warnings to adults at 
risk of PA. It has potential to identify personalized risk factors to 
facilitate customized PA interventions. 
 

Keywords—Cancer prediction, deep learning, electronic health 
records, pancreatic adenocarcinoma.  

I. INTRODUCTION 

A holds the top attention both of men and women since 
our incapability to track down early-stage illness. 

Especially, PA was the third most common cause of cancer-
related deaths in the United States [1] and the seventh leading 
cause of global cancer deaths in the worldwide [2]. Every 
year, lots of people die of “silent killers”, called PA which are 
hard to be identified and treated. Early diagnosis is crucial to 
its successful treatment before the deterioration of diseases. 
Medical disease diagnosis using Artificial Neural Networks 
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(ANN) [3] is currently a highly active research field in 
medicine system and it will be more widely used in 
biomedical systems for decades to come. Researchers have 
searched for effective biomarkers [4]-[6] which can aid in 
early diagnosis and have developed models to support disease 
risk prediction.  

Various epidemiologic and clinical characteristics are 
related with occurrence of PA, including family history of PA, 
inherited genetic, variation/influence, anthropometric 
variables [e.g., Body Mass Index (BMI)] [7], [17]. They are 
associated with medical comorbidities (e.g., pancreatitis, 
diabetes) [8], [21]. The age-adjusted cancer-related death rate 
is increasing for PA, and it is predicted that PA will be the 
second most significant key-factor of cancer-related deaths by 
2030 [9]. Furthermore, classification of high-risky individuals 
for PA or with early-stage disease was complicated because of 
the shortage of dependable screening instruments [10]. Cai et 
al. [11] studied a PA risk stratification prediction method by 
choosing 138 patients with chronic pancreatitis. A scoring 
algorithm based logistic regression was used to study the 
prediction. Further, the method to test the changes of 
precancerous in the pancreas among high danger individuals 
by the use of endoscopic ultrasound (EUS), computed 
tomography (CT) scan, doppler ultrasound (US), magnetic 
resonance imaging (MRI), or positron emission tomography 
(PET) has also been validated in several clinical studies [12], 
[29]. Chari et al. [13] proved that the 3-years cumulative 
incidence of PA among patients with new onset diabetes is as 
higher as 8 times than expected. Gold et al. [14] confirmed the 
potential role of PAM4 in discovering early stage pancreatic 
cancer, which was uncovered in precursor lesions of PA. 
Lately, numerous studies had been concentrated early 
detection of PA through the identification and validation of 
promising biomarkers [15], [16]. To our knowledge, no 
established screening method has been presented for sporadic 
PA. The non-invasive precursor lesions named pancreatic 
intraepithelial neoplasia (PanIN) progress from PanIN1 to 
PanIN3 and into PA within an undefined timeline [18]. A 
scoring method based logistic regression was used to develop 
the prediction rule. Hsieh et al. [19] predicted PA in the 
patients with type 2 diabetes using logistic regression and 
ANN models. Klein et al. [20] developed a relative risk model 
for men and women of European ancestry based on non-
genetic and genetic risk factors for pancreatic cancer [20]. 
Lucenteforte et al. [22] focused on lifestyle to predict PA. 
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Masahiro et al. [23] presented a PA risk prediction model in 
the general population in Japan with AUC of 0.63 (95% 
confidence interval, 0.60-0.66) or 0.61 (0.58-0.64) ,which was 
on the basis of data including directly determined or imputed 
SNP genotypes for 664 pancreatic cancer case and 664 age- 
and sex-matched control subjects. While an ANN model 
performed considerably well to predict PA on the basis of 
commonly available data in the EHR, inclusion of personal 
high-risk features for PA (e.g., pancreatic cysts, family history 
etc.) could potentially improve the performance of the model. 
Pannala et al. [24] proved that diabetes appeared to be 
associated with early stage PA. It is judged that symptoms 
manifest about 6 months after PA gets unresectable. 
Therefore, identifying those at high risk yet asymptomatic is 
very significant to test PA while it is still resectable. Hence, it 
can be shown that diabetes associated with PA may be a 
paraneoplastic phenomenon caused by the cancer [25], [26]. 
Permuth-Wey et al. [27] studied the quantified familial risks 
of PA, and through a meta-analysis, obtained more accurate 
estimates of familial risk. In another study, an ANN model 
was created to test PA based on a data set of symptoms [28]. 
A total sample of 120 patients (i.e., 90 training samples and 30 
test samples) with 11 possible symptoms and 3 outputs were 
chosen for this model [29]. In another method, Wang et al. 
[30] predicted familial PA risk through a Mendelian algorithm 
(i.e., PancPRO) that was built by extending the Bayesian 

modeling framework.  
In this study, we aimed to develop an EHR-based risk 

assessment model to forecast patients’ PA risk as early as 3 
months before the onset of PA in a statewide. By using the 
EHR data from the population in the State of Maine, U.S., and 
the deep learning algorithm, we believed that the deep model 
could uncover the underlying clinical and pathophysiological 
patterns/interactions of impactful predictors, and eventually 
obtain a higher accuracy. 

II. METHOD 

A. Dataset 

The study cohort was formed by patients with age of 35 
years and older that visited Maine health care facilities, 
including 35 hospitals, 34 federally qualified health centers, 
from January 1, 2014 to March 31, 2018. This retrospective 
dataset was a subset of the health information exchange (HIE) 
network and was authorized by the HealthInfoNet 
organization after the de-identification process. The personal 
information was removed during the analysis and publication 
procedure. This study was exempted from ethics review by the 
Stanford University institutional review board. The inclusion 
and exclusion criteria were summarized in Fig. 1. A total of 
265,225 individuals were recruited in this study. 

 

 

Fig. 1 Study design. The study cohort was derived from EHRs of patients with age of 35 years and older that visited Maine health care facilities 
and divided into the derivation and validation cohorts for model development and evaluation 

 
B. Prediction Task 

Fig. 2 illustrates the prediction task. The task is to predict 
the onset of PA diseases prior to diagnosis time. We use EHR 
information accumulated in the history window to predict 
diagnoses in the prediction window. We also add a gap period 

between the end of the history window and the start of the 
prediction window. The study is to prohibit the model from 
counterfeit data generated right before the diagnosis time. 
Specifically, our model selected a 12-month historical 
window, a 3-month gap and a 24-month predictive window in 
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this study. 

 

Fig. 2 Overview of prediction framework 
 

C. Definition of PA and Predictive Variables 

A PA record was defined according to the codes of C25.0-
C25.9 from the International Classification of Disease, 10th 
Revision code (ICD-10).  

To predict the risk of new-incident PA in the following two 
years, we compiled EHR datasets of the patients from a 12-
month historical window. Patients who suffered PA during the 
targeted time frame were chart-reviewed by internal physician 
curators such that only the first PA records were utilized in a 
24-month prediction window in this study. As a result, a total 
of 4361 PAs were identified, and a binary outcome label (1 or 
0) was assigned to the cases and controls as the predictive 
dependent variables. 

Accordingly, the candidate predictors were extracted from 
the EHR dataset during the time period of January 1, 2014 to 
December 31, 2015, which were mainly demographic 
characteristics, clinical utilization features, disease diagnosis 
from ICD-10 codes. We sampled the case or control group to 
randomly divide the same group subjects to 4:1 (training:test) 
subgroups. Subsequently, these 4/5 or 1/5 of the case and 
control subjects were combined to form the training or test 
cohort respectively. Therefore, the training or testing dataset 
was stratified and divided, rather than constructed by pure 
random. 

D. Model Construction and Interpretation 

1 Data Preprocessing 

a. Feature Extraction  

Every patient in the dataset was represented by a sequence 
of events, with each event providing the patient information 
that was recorded within a year period; The available data 
within these a year windows, along with additional summary 
statistics and augmentations, formed a feature set that was 
used as input to our predictive models. 

We extract numerical lab and vital sign values from the 
EHR data. According to target dictionary, we selected 
common vital signs (i.e., weight, BMI, blood pressure, 
temperature, pulse and respiration rate) as well as lab test 
names. To keep the test simple, we will reference both vital 
signs and lab test values as lab values in the following 
sections.  

Overall there are more than 300 types of lab test extract 
from the EHR. The most frequent item, weight, is found in 
about 65% of encounters, while the prevalence other diseases 
of pancreas to around 1% at the 233rd most frequent item. 

In each encounter, the same item may have multiple values 
if the patient was diagnosed multiple times in a day. We 
computed the median, min and max within each encounter. 
We also standardized the sample values by subtracting mean 
and dividing by the standard deviation of the training sample 
distribution.  

We did not use any imputation of missing numerical values, 
because common imputation of missing values does not 
always provide consistent augmentation to predictive models 
built on EHR. Instead, we associated each numerical feature 
with one or more discrete ‘presence’ features to help our 
algorithms to differentiate between the absence of a numerical 
value and an actual value of zero. Moreover, these existence 
features enciphered whether particular numerical values were 
considered to be medium, very low or very high. For some 
data points, the explicit numerical values were not recorded 
(usually when the values were considered medium), and the 
provision of this encoding of the numerical data allowed our 
algorithms to deal with these measurements even in their 
absence. Discrete features, such as diagnostics or procedural 
codes, were also quantified as binary presence features. 

All numerical features were standardized to the [0,1] range 
after covering the extreme values at the 1st and 99th 
percentile. This prohibits the normalization from being 
possessed by potentially large data entry errors, while 
preserving most of the vital feature value. 

2. Models for Predicting PA 

Our predictive system operates over the EHR. At the time 
point, input features (as described in ‘Feature representation’) 
were provided to a statistical model, the output of which is a 
probability of stage of PA occurring in the next two years. If 
this probability exceeds a chosen operating threshold, we 
make a positive prediction that can then trigger a dangerous 
signal. This is a common framework within which existing 
algorithms also fit, and we describe the baseline methods in 
‘Competitive baseline methods’ below. The contribution of 
this work is in the design of the deep model that is used and its 
training procedure, and the demonstration of its effectiveness 
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—on a large-scale EHR dataset and across many different 
regimes— in making better predictions of future PA. 

Fig. 3 gives a schematic view of our model, which makes 
predictions by first transforming the input features using an 
embedding module. This embedding is fed into a multi-layer 
neural network, the output of which at the time point is fed 

into a prediction module that provides the probability of future 
PA at the time horizon for which the model will be trained. To 
provide useful predictions, we train an ensemble of predictors 
to estimate the confidence of the model, and the resulting 
ensemble predictions are then calibrated using isotonic 
regression to reflect the frequency of observed outcomes [33]. 

 

 

Fig. 3 A schematic view of our model 
 

a. XGBoost Cell and DNN Cell 

Firstly, the XGBoost layers transform the high-dimensional 
and sparse input features into a lower-dimensional continuous 
representation that makes subsequent prediction simply. Then, 
we use a deep neural network perceptron with residual 
connections and rectified-linear activations and use L1 
regularization on the embedding parameters to prevent 
overfitting and to ensure that our algorithm still focuses on the 
most-salient features. We compared simpler linear 
transformations, which did not perform as well as the multi-
layer version we used.  

b. Prediction Targets and Training Samples 

The output of the DNN is fed to a final linear prediction 
layer that makes predictions over future prediction windows 
(2-year windows 3-month ahead). We use a cumulative 
distribution function layer across time windows to keep 
monotonicity, because the presence of PA within a shorter 
time window implies a presence of PA within a longer time 
window. Each of the resulting two outputs provides a binary 
prediction for PA at a specific time window and is compared 
to the ground-truth label using the cross-entropy loss function 
(Bernoulli log-likelihood). 

Our overall loss function is the weighted sum of the cross-
entropy loss from the PA predictions and the squared loss for 

each of the laboratory-test predictions. We inquired into the 
use of oversampling and overweighting of the positive labels 
to account for class imbalance. For oversampling, each mini-
batch contains a larger percentage of positive samples than 
average in the entire dataset. For overweighting, the prediction 
for positive labels contributes proportionally more to the total 
loss. 

c. Hyperparameters 

We framed our proposed model on basis of the validation 
set performance and subsequently performed an analysis of 
the design choices. All variables are initialized via normalized 
initialization [31] and trained using the Adam optimization 
scheme [32]. We use exponential learning-rate decay during 
training process. The best validation results were implemented 
using an initial learning rate of 0.001, with a batch size of 128. 
The best-performing DNN architecture used a cell size of 128 
units per layer and 3 layers. 

d. Competitive Baseline Methods 

Established models for future PA prediction make use of 
L1-regularized gradient-boosted trees, trained on a clinically 
relevant set of features that are known to be important either 
for routine clinical practice or the modelling of pancreatic 
function. A curated set of clinically relevant features was 
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chosen using existing PA literature and the consensus opinion 
of 5 clinicians: three senior attending physicians with over 
twenty-five years expertise, two pancreatic cancer experts. 
This set was further extended to include 30 of the most-salient 
features discovered by our deep learning model combined 
with XGBoost(XGBoost+DL) that were not in the original 
table, to give further predictive signal to the baseline. The 

final curated dataset contained 233 base features of 
demographics, admission information, vital sign 
measurements, select laboratory tests and medications, and 
diagnoses of chronic conditions that are directly associated 
with an increased risk of PA. The top 173 feature set is listed 
in Table I. 

 
TABLE I 

THE TOP 173 FEATURE IMPORTANCE VALUES CALCULATED BY XGBOOST+DL 
Feature Description Gain Feature Description Gain Feature Description Gain 

Age Group >=85 0.11263 Encounter for screening for malignant 
neoplasms 

0.00260 Polyene Antifungal 0.00070

Tobacco use 0.10638 Glaucoma 0.00259 Other interstitial pulmonary diseases 0.00070

BMI 0.10231 Age-related cataract 0.00244 Serotonin-3 Receptor Antagonist 0.00068

Overweight and obesity 0.08176 Asthma 0.00235 Thiazide-like Diuretic 0.00067

Other diseases of pancreas 0.05101 Vitamin K Antagonist 0.00232 Other cardiac arrhythmias 0.00067

Male, Age Group 65-74 0.03421 alpha-Adrenergic Agonist 0.00221 Phosphodiesterase 5 Inhibitor 0.00065

Other disorders of kidney and ureter, not 
elsewhere classified 

0.02613 Hypertensive chronic kidney disease 0.00219 Other hypothyroidism 0.00065

Female, Age Group 50-64 0.01856 Other and unspecified polyneuropathies 0.00219 Vitamin B12 0.00065

Disorders of lipoprotein metabolism and 
other lipidemias 

0.01557 Sleep disorders 0.00217 BMI 34.0-34.9, adult 0.00064

Opioid Agonist 0.01288 Diverticular disease of intestine 0.00198 Malignant neoplasm of prostate 0.00063

Age Group 50-64 0.01159 Personal history of other diseases and conditions 0.00195 Gastrointestinal System, Excision 
procedures 

0.00061

Penicillin-class Antibacterial 0.01087 Problems related to lifestyle 0.00189 Calcium Channel Blocker 0.00061

Proton Pump Inhibitor 0.01058 Gout 0.00185 Patient had Other Government 
insurance 

0.00061

Age Group 65-74 0.01038 Disorders of vitreous body 0.00177 Insulin Analog 0.00059

Essential primary hypertension 0.00996 Female 0.00176 Purpura and other hemorrhagic 
conditions 

0.00058

Angiotensin 2 Receptor Blocker 0.00866 Malignant neoplasm of esophagus 0.00170 Aortic aneurysm and dissection 0.00056

Long term current drug therapy 0.00812 Other diseases of liver 0.00167 Non-narcotic Antitussive 0.00054

Nonsteroidal Anti-inflammatory Drug 0.00711 gamma-Aminobutyric Acid-ergic Agonist 0.00151 Loop Diuretic 0.00054

Live Attenuated Herpes Zoster Virus 
Vaccine 

0.00687 Biguanide 0.00147 Paroxysmal tachycardia 0.00053

Presence of cardiac and vascular implants 
and grafts 

0.00667 Potassium Salt 0.00143 Heart failure 0.00052

Serotonin and Norepinephrine Reuptake 
Inhibitor 

0.00666 Patient had Medicaid insurance 0.00138 Estrogen 0.00051

Male 0.00644 Herpes Simplex Virus Nucleoside Analog DNA 
Polymerase Inhibitor 

0.00127 Disorders of mineral metabolism 0.00049

Beta-Adrenergic Blocker 0.00609 Xanthine Oxidase Inhibitor 0.00126 Creatinine [Mass/volume] in Blood 0.00048

Type 2 diabetes mellitus 0.00609 Personal risk factors, not elsewhere classified 0.00125 Complications and ill-defined 
descriptions of heart disease 

0.00046

Encounter for other postprocedural aftercare 0.00604 Persons encntr hlth serv for spec proc & trtmt, 
not crd out 

0.00124 Cardiomyopathy 0.00045

Herpesvirus Nucleoside Analog DNA 
Polymerase Inhibitor 

0.00602 Lower Joints, Replacement procedures 0.00124 Cholinergic Muscarinic Antagonist 0.00045

Histamine-2 Receptor Antagonist 0.00601 Gastro-esophageal reflux disease 0.00123 Phenothiazine 0.00044

Patient had Medicare insurance 0.00588 Presence of other functional implants 0.00122 Malignant neuroendocrine tumors 0.00043

Osteoporosis without current pathological 
fracture 

0.00575 Central Nervous System Stimulant 0.00121 Encounter for screening for 
infec/parastc diseases 

0.00042

Anti-epileptic Agent 0.00554 Antiarrhythmic 0.00118 Spondylosis 0.00042

Quinolone Antimicrobial 0.00553 Peroxisome Proliferator Receptor alpha Agonist 0.00118 Chronic kidney disease CKD 0.00042

Corticosteroid 0.00536 Allergy status to drug/meds/biol subst 0.00117 Central alpha-2 Adrenergic Agonist 0.00042

Patient had Blue Cross insurance 0.00535 Polymyxin-class Antibacterial 0.00113 l-Thyroxine 0.00042

Serotonin Reuptake Inhibitor 0.00521 Disorders resulting from impaired renal tubular 
function 

0.00111 Thoracic, thoracolum, and 
lumbosacral intvrt disc disorders 

0.00042

Tricyclic Antidepressant 0.00485 Anticholinergic 0.00111 Nitroimidazole Antimicrobial 0.00041

Beta2-Adrenergic Agonist 0.00435 Malignant neoplasm of breast 0.00110 Progestin 0.00038

Encntr for general exam w/o complaint, susp 
or reprtd dx 

0.00428 Sulfonylurea 0.00109 Abnormal results of liver function 
studies 

0.00035

Thiazide Diuretic 0.00415 Dopamine-2 Receptor Antagonist 0.00109 Arteriolar Vasodilator 0.00034

Aminoketone 0.00407 Male erectile dysfunction 0.00108 Other chronic obstructive pulmonary 
disease 

0.00034
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Feature Description Gain Feature Description Gain Feature Description Gain 

Patient had Commercial insurance 0.00384 Serotonin-1b and Serotonin-1d Receptor 
Agonist 

0.00107 Encounter for adjustment and 
management of implanted device 

0.00033

Angiotensin Converting Enzyme Inhibitor 0.00382 Beta Lactamase Inhibitor 0.00105 Nonergot Dopamine Agonist 0.00033

Muscle Relaxant 0.00367 Dihydrofolate Reductase Inhibitor Antibacterial 0.00100 Thiazolidinedione 0.00032

Nitrate Vasodilator 0.00349 Atrial fibrillation and flutter 0.00098 Nonrheumatic aortic valve disorders 0.00032

Dihydropyridine Calcium Channel Blocker 0.00348 Other pulmonary heart diseases 0.00096 Abnormal laboratory tests SODIUM 0.00032

Amide Local Anesthetic 0.00347 Azole Antifungal 0.00095 Malignant neoplasm of bronchus and 
lung 

0.00030

Benzodiazepine 0.00335 Low Molecular Weight Heparin 0.00089 Encounter for contraceptive 
management 

0.00025

Encounter for immunization 0.00332 Acquired absence of organs, not elsewhere 
classified 

0.00085 5-alpha Reductase Inhibitor 0.00025

Personal history of malignant neoplasm 0.00331 Osmotic Laxative 0.00083 Atypical Antipsychotic 0.00024

Antihistamine 0.00323 Irritable bowel syndrome 0.00081 Benign prostatic hyperplasia 0.00022

Personal history of certain other diseases 0.00323 Calcineurin Inhibitor Immunosuppressant 0.00079 Dependence on enabling machines 
and devices, NEC 

0.00020

Macrolide Antimicrobial 0.00320 Pain, not elsewhere classified 0.00077 Chronic sinusitis 0.00019

Factor Xa Inhibitor 0.00309 Catecholamine 0.00076 Type 1 diabetes mellitus 0.00019

Encounter for other aftercare and medical 
care 

0.00308 Chronic ischemic heart disease 0.00076 Platelet Inhibitor 0.00018

alpha-Adrenergic Blocker 0.00299 Encounter for screening for other diseases and 
disorders 

0.00074 Other postprocedural states 0.00018

Peroxisome Proliferator Receptor gamma 
Agonist 

0.00296 HMG-CoA Reductase Inhibitor 0.00074 Persons encntr health serv for oth 
cnsl and med advice, NEC 

0.00013

Encntr for oth sp exam w/o complaint, 
suspected or reprtd dx 

0.00279 Encntr for f/u exam aft trtmt for cond oth than 
malig neoplm 

0.00074 Other and unspecified osteoarthritis 0.00013

Antiemetic 0.00269 Other specified health status 0.00073 Cardiac Glycoside 0.00006

  Other and unspecified hearing loss 0.00073 Vitamin D deficiency 0.00006

 

e. Evaluation 

The data were split into training, validation and test sets in 
such a way that information from a given patient was present 
only in one split. The training split was used to train the 
proposed models. The validation set was used to iteratively 
improve the models by selecting the best model architectures 
and hyperparameters. Deep learning models with softmax or 
sigmoid output trained with cross-entropy loss are prone to 
miscalibration, and recalibration ensures that consistent 
probabilistic interpretations of the model predictions can be 
made [34]. The best models were evaluated on the 
independent test set that was retained during model 
development. 

The main metrics used in model selection and the final 
report are: the area under the receiver operating curve. The PA 
episode sensitivity corresponds to the percentage of all PA 
episodes that were correctly predicted ahead of 3-month time 
within the corresponding time windows of up to 2-year.  

III. RESULTS 

A. Model Performance 

The AUC ROC of the XGBoost+DL model was 0.809(95% 
CI: 0.764–0.853) in the independent prospective cohort, 
indicating that the model was acceptable (Fig. 4). The AUC 
ROC curves of other models built with some popular 
algorithms, such as XGBoost (AUC 0.79, 95% CI: 0.747–
0.832) and KNN (AUC 0.734, 95% CI: 0.685–0.734), on the 
same datasets were also shown in Fig. 4, which indicated that 
the XGBoost+Deep Learning model performed better than 
XGBoost and KNN.  

Using the XGBoost+DNN on the EHR-based data, our 

prediction model found that PA patients were more likely to 
be in age groups of  ≥ 65 years, to have diagnosed overweight 
and obesity, to have other diseases of pancreas. In general, a 
total of 233 features were significant in the predictive model. 
The performance of model decision interpretation is 
demonstrated using three representative individuals from the 
prospective cohort. 

 

Fig. 4 ROC curves of three different algorithms applied on the 
prospective cohort. The AUC of XGBoost+DL model is 0.809, the 
AUC of the XGBoost model is 0.790, and the AUC of  the KNN 

model is 0.734. The XGBoost+DL model has highest AUC and best 
performance compared to the KNN model and the XGBoost model 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:14, No:11, 2020

376

 

 

IV. DISCUSSION 

In this study, we constructed an EHR-based PA risk 
predictive model that adopted a XGBoost+DNN algorithm to 
automatically integrate useful clinical information of disease 
diagnoses, medication consumption, clinical utilization, lab-
test results and predicted an older individual’s risk of PA in 
the future two years. In the validation phase, this model 
attained an AUC of 0.809, and stratified individuals into three 
distinct risk categories of PA (high, intermediate, and low). 
About 54.35% of the individuals that had a confirmed PA 
event with a 2-year EHR cohort were classified into the 
increased risk categories. More importantly, our model 
successfully captured 91.20% of all PA that required 
subsequent chemoradiotherapy, with a lead-time of up to 3 
months and a true alert of 67.62%, indicating the model’s 
better performance for the long-term PA prediction. 

V. CONCLUSION 

In conclusion, we have constructed and validated a 
powerful risk assessment tool to predict adults’ risk of PA in 
the future two years, by using the EHR data from the 
population in Maine. We intend that this constructed PA risk 
assessment tool could be immediately deployed to provide 
early three months warnings to adults with increased PA risk 
and identifying their personalized risk factors to facilitate 
customized PA interventions. 
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