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Abstract—C-control chart assumes that process nonconformities 

follow a Poisson distribution. In actuality, however, this Poisson 
distribution does not always occur. A process control for 
semiconductor based on a Poisson distribution always underestimates 
the true average amount of nonconformities and the process variance. 
Quality is described more accurately if a compound Poisson process is 
used for process control at this time. A cumulative sum (CUSUM) 
control chart is much better than a C control chart when a small shift 
will be detected. This study calculates one-sided CUSUM ARLs using 
a Markov chain approach to construct a CUSUM control chart with an 
underlying Poisson-Gamma compound distribution for the failure 
mechanism. Moreover, an actual data set from a wafer plant is used to 
demonstrate the operation of the proposed model. The results show 
that a CUSUM control chart realizes significantly better performance 
than EWMA. 
 

Keywords—Nonconformities; Compound Poisson distribution; 
CUSUM control chart.  

I. INTRODUCTION 
HE yield has a direct impact on the manufacturing cost, so 
it is frequently used as an index for the evaluation of the 

integrated circuit (IC) manufacturing performance. Generally, 
in IC Manufacturing, the yield is affected by the number of 
defects on the wafer. The defect count for most IC wafer 
processes is generally monitored using a C-control chart as a 
tool for statistical process control. The C-control chart assumes 
that the occurrence of nonconformities is a Poisson distribution. 
References [1], [2] mentioned that the distribution of 
nonconformities on the wafers becomes clustered when the 
wafer area increases. Reference [3] believed that the clustering 
of nonconformities in wafers often violates the “independent” 
assumption of the Poisson model. Reference [4] used a revised 
c-chart, based on a Neyman Type-A distribution, to correct the 
error caused by using a conventional c-chart. References [5], [6] 
found that a negative binomial model is more appropriate to 
clustering in wafer nonconformities. The control model is also 
more flexible, because there are two parameters in a negative 
binomial model and only one parameter in the Poisson process. 
Reference [7] used fuzzy theory to modify a traditional 
C-control chart and then used this modified chart to 
simultaneously monitor nonconformities and their clustering 
on wafers. During wafer manufacture, a defective item 
normally has more than one defect. When the numbers of 
defective items fall in a Poisson distribution and 
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nonconformities in these defective items fall into other types of 
distribution, the defects  
in this process fall in a compound Poisson distribution [8]. 

Traditional Shewhart control charts are very popular in 
statistical process control. A major advantage of these charts is 
that they are relatively sensitive to large shifts in the production 
process. The exponentially weighted moving average (EWMA) 
and cumulative sum (CUSUM) control charts are two very 
effective alternatives to the Shewhart control chart, which can 
be used when small to moderate-sized shifts are of interest [9]. 
Reference [10] proposed the use of EWMA Control Charts for 
monitoring wafer quality, when the failure mechanism is a 
Negative Binominal Process. There is no certain method for the 
calculation of the smoothing parameter for an EWMA control 
chart. Reference [9] suggested that it could be set between 0.05 
and 0.25, but the reference value for a CUSUM control chart 
can be decided using a sequential probability ratio test, 
whereupon the optimized average run length (ARL) for the out 
of control state can be determined [11]. 

In this study, a CUSUM control chart is constructed under 
the assumption that the failure mechanism exhibits a negative 
binomial distribution (Poisson- gamma compound distribution) 
in the production process. An actual data set from a wafer plant 
is used to demonstrate the operation of the proposed model. 

II.   LITERATURE REVIEW  
In a manufacturing process of wafers, the assumption of 

randomness for a defect’s location on a wafer and the 
independent relationships for different defects is made (i.e., the 
probability that the defects fall at any point in the wafer is the 
same) if a traditional c-chart is used to monitor the defect count, 
It results in a constant defect density. With this assumption, the 
probability of the occurrence of k defects in one die of the wafer 
is as equations (1-2):  

 

( )
!k
 ekP
kλ

=
λ−

                           .....k 321= ,    (1)   

      AD=λ .                           (2) 
 
where λ  is the average number of defects in the die, A is the 
area of the die, and D  is the defect density.  

Reference [6] pointed out the Poisson distribution model 
can predict the yield reasonably accurately when the area of the 
die is smaller than 0.25 cm2. As the area of the die increases, the 
Poisson distribution model underestimates the average number 
of defects. Reference [12] proposed the concept of defect 
density and believed that it is different for dies and wafers. He 
proposed that the defect density must be expressed by a 
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probability density function ( )λf . This function is quite 
different from the Poisson distribution model, which assumes 
that the defect density is a constant. The probability of the 
occurrence of k defects in [12]’s compound model is expressed 
as equation (3):  

 

( ) ( ) λλ∫
λ

= ∞
λ−

df
!k

ekP   
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0 .                         (3)  

 
where λ  is the average number of defects and )(f λ  is the 
probability density function of λ . This model is also called the 
compound Poisson yield model.  

Reference [13] proposed a negative binominal distribution 
model, which is one of the compound Poisson yield models. 
This compound Poisson model examines the distribution of 
defects on wafers from two perspectives:  
(1) The number of clusters on the wafer follows a distribution 

with a defect density function, )(f λ ,  
(2) The number of defects in a cluster has another distribution 

(normally a Poisson distribution), 
where λ  itself is a random variable.  The negative binominal 
model for the defect density function ( )(f λ ) is described by the 
Gamma distribution, denoted as )/,(Gamma~Y αλα . The 
function for the gamma density is expressed as equation (4): 
 

( ) ( )
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              (4) 

 
So the compound Poisson distribution model can be 

expressed as equation  (5):  
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Then the following negative binominal distribution 

probability model can be obtained through deduction [14] :  
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where the parameter α is the clustering parameter. When α 
becomes smaller, clustering becomes more serious. 
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=p , so the probability density function in equation 

(6) can be rewritten as equation (7): 
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Meaning that the negative binomial distribution itself can be 
viewed as a compound Poisson distribution that has a random 
variable, λ, and is distributed according to )/,( Gamma λαα . 
The mean and the variance of a negative binominal distribution 
can be derived by algebraic operation, as follows equations 
(8-9) [15]:  
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The negative binomial distribution has two parameters, λ  

and α . Then the defect count can be modeled and the 
probability of the yield (p(x)=0) of a die can be calculated using 
equation (6).     

III. CUSUM CONTROL CHART AND ARL  
Average run length (ARL) is defined as the expected number 

of plotted points on a control chart before the first point exceeds 
the control limits. It is a common index, used to measure the 
efficiency of a particular control chart. An effective and 
efficient CUSUM control chart can provide the desired ARL 
and the value of the control limit in the continuous inspection 
chart should be selected to produce the desired ARL.  The ARL 
is a criterion used to chart performance in this research. This 
section describes the features and applications of the negative 
binomial CUSUM control chart and the calculating method of 
ARL using the Markov chain approach proposed by [16].  

A.  CUSUM Control Chart   
The CUSUM chart directly incorporates all the information 

in the sequence of sample values by plotting the cumulative 
sums of the deviations of the sample values from a target 
values. It is more sensitive to small and moderate shifts than the 
Shewhart chart, when used to monitor a manufacturing process. 
The CUSUM and EWMA control charts are two very effective 
alternatives and are comparables in terms of the run length 
performance for many processes. The traditional approach for 
monitoring process defects involves taking samples at each die 
with a negative binomial count of defects.  If the average 
number of nonconformities in the process exhibits a negative 
binomial distribution, the expected value and the variance of 
the negative binomial distribution are derived using equations 
(8) and (9), with the known parameters for clustering. 

Let tx (t=1,2,…) be the count of defects obtained from the 
tth observation in the process, k  is a reference value and is a 
constant when a process is in control, with parameters of 
average defect count, λ , and clustering, α . The control limit 
of CUSUM chart is used to detect an increase in the number of 
defects, λ . accumulates derivations from λ  and α  that are 

above target with  statistic tS . It can be expressed as equation 
(10):  
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}kxS ,max{S ttt −+= −10  t = 1, 2, ...,          (10) 

If statistic tS  exceed the decision interval, h , the process is 
considered to be out of control. Meaning that the process drifts 
or shifts off the target value, then the CUSUM signals and an 
adjustment is made to some controllable variable to bring the 
process back in line. In order to improve the sensitivity of a 
CUSUM at the beginning of the process, the fast initial 
response (FIR) or head-start value of the statistic, uS =0 , (0 ≤ 

u < h ) is used [17].  
The proper selection of the reference values k and decision 

interval h is quite important, because they have a substantial 
impact on the performance of the CUSUM. It is usually 
recommended that these parameters be selected to provide 
good average run length performance. The reference values  k 
can be obtained using the sequential probability ratio test 
(SPRT) to test a simple hypothesis, 00 λ=λ:H , against the 
simple hypothesis,  11 :H λ=λ , where 0λ  is the λ  of 
in-control state, and 1λ  is the λ  of out-of-control state, λ . 
Reference [11] proposed optimal stopping times for the 
detection of changes in distributions and showed that the 
reference value chosen using SPRT can be optimal, in terms of 
run length performance. Reference [18] proposed a method to 
calculate the reference value for CUSUM charts, based on 
Bernoulli and binomial counts. Under the assumption of a 
negative binomial distribution, the reference values k of a 
CUSUM control chart can be expressed as equation (11):   
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B. ARL Calculation for a NB CUSUM Chart 
The performance of control charts used for statistical process 

control can be described by an ARL. And ARL can be 
calculated using the Markov chain approach proposed by [16]. 
For the purpose of monitoring an iid process’s outputs, suppose 
that a one-sided control chart is used to monitor the quality 
characteristic, X . For a continuous charting statistic, there are 
m  distinct values within the control limits that result in a finite 
number of possible values for the charting statistic. These 
values are treated as states of a finite Markov chain and all of 
the values that exceed the limits are incorporated into the 
absorbing states. Assuming an iid process ( ,...X,X 21 ) wherein 
the initial probabilities of the Markov are given, the transition 
probability matrix is used to determine both the mean and the 
distribution of the run length of the chart. It is used to evaluate 
the run length properties of a traditional Shewhart chart, a 
CUSUM chart and an EWMA chart.  

A unified method to find the run length distribution and the 
ARL of a control chart, based on the finite Markov chain 
approach, is further described by [19]. In addition, this method 
yields the variance or standard deviation of the run length as a 
byproduct. Under the assumption of independence, the method 

for calculating the ARLs of a one-side CUSUM chart has two 
steps, as follows:  
Step 1. Divide the area of the one-sided control chart into m  

states and then a sequence of discrete random variables of 
the charting statistic can be obtained.  

       Given m ( m is a positive integer number) and a decision 
interval, h , let ( )mSt  be a finite-state homogeneous 
Markov chain on the space, Ω , so { ,...,a,a 10=Ω  

},a,a mm 1− where   aa...aa mm <<< −110 and 
{ }110 −ma,...,a,a  are the transition states and ma  is an 
absorbing state. The represented values of these transition 
states are w,  iai  = for  .,...,m,, i 1210 −=  The charting 
statistic value at time t and its mapping to the Markovian 
state correspond to: 
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where ( )122 −= mh/w . 
Step 2. Based on the charting statistic a Markov chain, )m(Mt , 

that has a finite state space, S, and a transition matrix, 
)m(P , of the form can be expressed as equation (12):  

 

⎥
⎦

⎤
⎢
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0
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P                      (12)  

 
      where the sub-matrix, R(m), contains the probabilities of 

going from one in-control state to another in-control state 
and is an m x m matrix, the ))1R((I m−  is a column vector 
of probabilities corresponding to the in-control states to the 
absorbing state, I is the identity matrix and 1  is a column 
vector of ones.  

      If }kxS ,max{S ttt −+= −10 , and if the statistic, tS , 
exceeds the decision interval, h , the process is considered 
to be out of control and the process is assumed to be initially 
in state 0. The one-step transition probability, ijP , and the 

matrix of transition probability, R, from the state, i 
(i=0,1,…,m-1), into a new state, j (j=0,1,…,m-1), can be 
shown as equations (13-15):  
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for i =0,1,2,…,m-1 and j =1,2,…,m-1,   
where I is the incomplete gamma function and [ • ] is the 
Gaussian function. Since tx  is an integer random variable 
the Gaussian function replaces the first parameter in the 
incomplete gamma function, ie, [ • ] is used to obtain the 
integer value.  
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Let N(m) denote the run-length random variable induced by 
the finite Markov chain. Then, the ARL can be obtained from 
equation (16), if a positive integer, m, is given.  

 
11R(I0π

−−′== ))m)(m())m(N(EARL        (16)  
 
The term, 0π′ = (1,0,…,0), is the probability vector of an 

initial state with 1, corresponding to a specified state and zeros 
elsewhere. 

IV. CUSUM CONTROL CHART FOR A POISSON GAMMA 
COMPOUND DISTRIBUTION  

In the production process for ICs, a wafer defect detector is 
used to check nonconformities in the wafer and die, after each 
process. In order to validate the use of a CUSUM control chart 
for a Poisson Gamma compound distribution, the data collected 
by [20] was used. The size of the wafers was six inches and 101 
wafers were collected. Each wafer was cut into 198 dies. The 
area of the wafer was 176.72 cm2 and the area of each die was 
0.73 cm2. All 101 wafers exhibited clustering, as shown in 
Table I. 

TABLE I 
NO. OF NONCONFORMITIES IN SAMPLES OF 101 WAFERS 

A B A B A B A B A B A B A B 
1 18 16 50 31 23 46 43 61 26 76 25 91 17 
2 22 17 42 32 16 47 58 62 26 77 35 92 27 
3 14 18 29 33 20 48 52 63 22 78 25 93 15 
4 25 19 22 34 15 49 40 64 19 79 22 94 9 
5 49 20 29 35 29 50 20 65 20 80 8 95 7 
6 17 21 16 36 19 51 18 66 20 81 135 96 101
7 5 22 11 37 29 52 63 67 27 82 105 97 83 
8 38 23 22 38 13 53 37 68 25 83 27 98 27 
9 18 24 14 39 68 54 19 69 12 84 18 99 16 

10 10 25 21 40 44 55 24 70 14 85 16 100 18 
11 11 26 21 41 22 56 33 70 17 86 9 101 14 
12 12 27 21 42 34 57 9 72 15 87 36   
13 8 28 19 43 23 58 18 73 8 88 24   
14 21 29 16 44 27 59 33 74 10 89 42   
15 13 30 25 45 14 60 22 75 17 90 17   
A: sample number   
B: Number of Nonconformities 
 

 

A. Calculation of 0ARL  for a NB CUSUM Control Chart   

From Table I, one can get the average and the variance for 
these wafer nonconformities are 26.535 and 421.63, 
respectively. And the average defect density in the wafer is 

15010.D =  per cm2, the average number of nonconformities 
for each die is calculated, using equation (2), to be 0.1096ˆ =λ  
and the clustering parameter α̂  is 1.0 from equation (9). 
Assume that the estimated error in these parameters is 
negligible and that the in-control process is a NB distribution 
with parameters, 0.1096=λ0  and 00 .1=α , and that the shift 

of the parameter values, 01 2 λ=λ ˆ*  = 0.2192, the mean shifts 
to be detected quickly.  

The reference value is  k=0.1575 from equation (11). 
Supposing that the decision interval is divided into 2001 zones 
(m=2000), the 0ARL , when the negative binominal CUSUM 
control chart is in-control state is obtained using the above ARL 
calculation method for the upper and lower sides. For the 
purpose of comparison, the 0ARL  are also obtained by 
simulation, using 20,000 runs for each different situation. The 
calculation and simulation results for the different situations are 
summarized in Table II. 

 
TABLE II 

0ARL FROM CALCULATION AND SIMULATION 

h ARL0 simulation 

3.00 191.73 191.36 

3.50 287.46 286.55 

3.84 369.35 369.26 

4.00 414.95 414.74 

4.50 606.16 605.30 

5.00 844.75 847.06 

5.50 1179.2 1181.44 

6.00 1588.1 1625.08 

 
From Table II, it is seen that 0ARL  for the calculation and 

simulation are almost the same for different widths of control 
limits and that they increase when the desired control limits 
increase. The 0ARL  can also be selected to be 370 if the same 
probability of type I error as the Shewhart control chart is 
desired. At this time, the control limits, h=3.84 can be chosen 
for this CUSUM chart for process control. 

B.  A Comparison of the Performance of the Cusum and 
Ewma Charts 

In general, the use of a CUSUM charting procedure without 
a head start (S0 = 0) to show the ARL of the CUSUM chart is 
common, but using the control statistics with a head start (S0 
>0) allows faster detection of a process shift if it occurs at the 
beginning of the process. Usually, the value of the head start is 
a half of the decision interval (S0 = 0.5* h) when no sample is 
taken at the beginning of the process. In order to make a fair 
comparison between the use or not of a head start, this study 
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investigates both the zero state (s0=0) ARL and the head start 
with a half decision interval (s0=h/2) for this real example.  

Firstly, it is supposed that the average number of 
nonconformities in the production process is a negative 
binominal distribution. The acceptable probability of type I 
error is 0.002 during the process control. At this time, 0ARL  is 
500. The initial state of the process is at the 0-state when S0=0, 
or at the (m/2)-th state when S0=h/2. Secondly, it is assumed 
that the average number of nonconformities in the wafer 
increases by 2.5 times during the production process (i.e. from 
26.535 to 66.338). At this time, the average number of 
nonconformities in the dies increases from 0.1096=λ0  to

0.2740=λ1 .  
Because the number of nonconformities also depends on the 

clustering parameter, the effect of the clustering parameter, α , 
on the ARL performance of CUSUM charts is also examined. 
Supposed there are three different clustering parameter values 
in a wafer. They are 70.=α , 41.=α  and 24.=α . It is seen 
that the average number of nonconformities in a wafer 
increases by 0.462 σ , 0.478 σ  and 0.491 σ , for these three 
different clustering parameters. In the first situation, the initial 
state of the process is at the 0-state, with S0=0. The ARL 
algorithm uses the control limit of the previous CUSUM 
control chart. The average run lengths, denoted as 1ARL , are 
35.26, 33.41 and 31.83, for the different reference values, =k
0.177, 0.178, 0.179, and the different upper decision intervals, 

=h 3.935, 3.686, 3.500. When the process shifts to 1λ  for the 
respective different clustering parameter values ( 70.=α ,

41.=α , or 24.=α ). If the initial state of the process is at the 
(m/2)-th state with S0=h/2, the different parameters and values 
of ARL1 can also be determined for different respective 
clustering parameter values ( 70.=α , 41.=α ,or 24.=α ). 
These are summarized in table III, for the EWMA model 
proposed by Yu et al. (2011).  

 
TABLE III 

1ARL  OF NB CUSUM & EWMA CONTROL CHART 
 ARL1 k h ARL1 k h ARL1 k h 
A 25.7 0.177 4.04 23.86 0.178 3.78 22.53 0.179 3.60 

B 30.41  28.51  27.26  

A: CUSUM (S0=h/2) 
B: EWMA*: Yu’s (2011) EWMA charts 

 
From Table III, it is seen that ARL1 is 30.41 and 25.70 for the 

respective EWMA and CUSUM control charts with a 
probability of type I error of 0.002, an initial state of S0=h/2 and 
a clustering parameter of 0.7. If a clustering parameter is 1.4 or 
4.2, then ARL1 will be 28.51 and 23.86 or 27.26 and 22.53 for 
the respective EWMA and CUSUM control charts with a 
probability of type I error of 0.002. This demonstrates that the 
performance of the CUSUM is better than that of the EWMA. 
All of the situations demonstrate the same characteristic for 
different combinations of clustering parameters and initial 
states. 

V.  CONCLUSIONS 
The yield rate has a high impact on the production cost for 

the semiconductor industry. Therefore, the rapid detection of 
process variation is vital to cost reduction in process 
monitoring. This paper provides the calculating formula for a 
CUSUM’s reference values, calculates one-sided CUSUM 
ARLs using the Markov chain approach and demonstrates the 
calculation of two-sided CUSUM ARLs, to construct a 
CUSUM control chart. The data from a real case are also used 
to illustrate the application of the proposed control chart. The 
results show that when there is clustering of nonconformities, a 
negative binomial CUSUM control chart effectively highlights 
die nonconformities. The performance of the CUSUM for this 
real case is also better than that of the EWMA control chart, so 
the negative binomial CUSUM control chart can more 
effectively monitor wafer nonconformities and reduces the cost 
of quality control, to allow enterprises in the semiconductor 
industry to remain competitive. 
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