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Abstract—Knowledge is indispensable but voluminous 

knowledge becomes a bottleneck for efficient processing. A great 
challenge for data mining activity is the generation of large 
number of potential rules as a result of mining process. In fact 
sometimes result size is comparable to the original data. 
Traditional data mining pruning activities such as support do not 
sufficiently reduce the huge rule space. Moreover, many practical 
applications are characterized by continual change of data and 
knowledge, thereby making knowledge voluminous with each 
change. The most predominant representation of the discovered 
knowledge is the standard Production Rules (PRs) in the form If P 
Then D. Michalski & Winston proposed Censored Production 
Rules (CPRs), as an extension of production rules, that exhibit 
variable precision and supports an efficient mechanism for 
handling exceptions. A CPR is an augmented production rule of 
the form:  If P Then D Unless C, where C (Censor) is an 
exception to the rule. Such rules are employed in situations in 
which the conditional statement ‘If P Then D’ holds frequently 
and the assertion C holds rarely. By using a rule of this type we are 
free to ignore the exception conditions, when the resources needed 
to establish its presence, are tight or there is simply no information 
available as to whether it holds or not. Thus the ‘If P Then D’ part 
of the CPR expresses important information while the Unless C 
part acts only as a switch changes the polarity of D to ~D. In this 
paper a scheme based on Dempster-Shafer Theory (DST) 
interpretation of a CPR is suggested for discovering CPRs from the 
discovered flat PRs. The discovery of CPRs from flat rules would 
result in considerable reduction of the already discovered rules. 
The proposed scheme incrementally incorporates new knowledge 
and also reduces the size of knowledge base considerably with 
each episode. Examples are given to demonstrate the behaviour of 
the proposed scheme. The suggested cumulative learning scheme 
would be useful in mining data streams. 
 

Keywords—Censored production rules, cumulative learning, 
data mining, machine learning.  

I. INTRODUCTION 
 NOWLEDGE is the information that represents long-
term relationships, that is, ways of doing things, 

commonsense, ideas, methods, skills, and so forth. 
Knowledge is “condensed” information,”squashed” 
information, an extraction, the “essence” of things. A huge 
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amount of knowledge has been accumulated worldwide 
during the conscious existence of humanity. This knowledge 
is changing all the time. There are many issues related to 
knowledge viz How to make use of existing knowledge in a 
computer program? How to represent it in such a way that 
we keep the richness and the depth of knowledge and also 
make it reasonable to use? How to make compromises with 
constantly changing knowledge?   

 Whatever method for representing problem knowledge is 
used in a computer system, it is usually a way of simplifying 
the problem to make it reasonable to handle. One of the 
widely used representations in knowledge Engineering is 
the Production System. Standard Production rules, of the 
type IF P THEN D, are not efficient for approximate 
reasoning and unable to exhibit variable precision in the 
reasoning process due to rigidity in their structure. Also 
these rules fragment the knowledge that exists in the data 
resulting in a large number of discovered rules that makes 
analysis of the rules very difficult.  

As an extension of standard production rule, Michalski 
and Winston [7] have suggested the Censored Production 
Rule (CPR) as an underlying representational and 
computational mechanism to enable logic based systems to 
exhibit variable precision in which certainty varies while 
specificity stays constant. A CPR has the form, If P Then D 
Unless C, where C (Censor) is the exception condition. 
Such rules are employed in situations in which the 
conditional statement ‘If P Then D’ holds frequently and 
the assertion C holds rarely. By using a rule of this type we 
are free to ignore the censor (exception) conditions, when 
the resources needed to establish its presence are tight or 
there is simply no information available as to whether it 
holds or does not hold.  As time permits the Censor 
condition C is evaluated establishing the conclusion D with 
higher certainty if C does not hold or simply changing the 
polarity of D to ~D if C holds. For example, the rule If 
Sunday Then John works in the yard Unless weather is bad, 
has the interpretation that if it is Sunday and the weather is 
good, John will work in the yard; and if it is Sunday and the 
weather is bad (which occurs rarely), John will not work in 
the yard. 

CONALD (Conference on Automated Learning and 
Discovery), hosted by CMU came up with a no. of 
promising research directions for future and posed a trivial 
problem: Can we devise cumulative learning algorithms that 
can incrementally incorporate new data & knowledge? [10] 
In this paper an attempt is made to exploit the inherent 
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structural properties of CPRs to accommodate cumulative 
learning scenario. A dynamic system which comprehends 
the knowledge with each episode is developed. Results on 
the behaviour of the proposed scheme are also included.  

II. BACKGROUND 
The major shortcomings of an ordinary logic based 

reasoning system based on standard production rule If P 
Then D, is that you cannot tell much about the way you 
want it to perform its task. For example, you can not give 
the following instructions [7]:  
• Give me a reasonable answer immediately even if it is 

somewhat general and if there is enough time then give 
me a more specific answer. 

• Give me a reasonable answer immediately. If there is 
enough time tell me you are more confident in the 
answer or change your mind and give me a better 
answer. 

• Give me only a highly certain answer even if it is 
somewhat general, and if there is enough time then give 
me a more specific answer. 

• Give me a reasonable answer immediately even if it is 
somewhat less certain and if you have enough time then 
give me a more specific answer. 

A system having represented real-world knowledge 
should also be capable of handling these types of 
requirements for natural and efficient reasoning. In the real 
world, both humans and computers often have to reason 
using insufficient, incomplete, or tentative premises. 
Moreover, both are subject to constraints of time and 
memory. Variable precision logic (VPL) [7] is concerned 
with problems of reasoning with incomplete information, 
subject to resource constraints and the problem of reasoning 
efficiently with exceptions. VPL offers mechanisms for 
handling trade-off between the precision of inferences and 
computational efficiency of driving them. Specificity and 
certainty are two aspects of precision. Certainty refers to the 
degree of belief in a statement, whereas specificity refers to 
the degree of detail of a description. A system that gives 
more specific answers given more time (or resources in 
general) is called a “variable specificity system“. A system 
that gives more certain answers given more time is called a 
“variable certainty system”. There can be various 
combinations of the two systems, reflecting that specificity 
and certainty are inversely related; we can gain specificity at 
the expense of certainty, or vice-versa.  
 Let us now give a more quantitative definition of a 
censored production rule: 
        P ⇒ D ⎣ C.                                                                 (1) 
Where P is a premise, D is a decision, and C is a censor. 
Although the unless operator,⎣, is logically equivalent to the 
commutative exclusive-or operator, the unless operator has 
an expositive aspects which is not commutative. In order to 
capture the asymmetry precisely, let us associate two 
parameters, γ1 and γ2, with rule (1) 

       P ⇒ D ⎣ C: γ1, γ2.                                                      (2) 
Both γ1 and γ2 are point probabilities, one indicating the 
strength of the relationship between P and D, and the other, 
between P and C.  Now consider the following sets: Ω is a 

finite sample of events; ΩP is the set of events for which P 
holds; ΩPD is the subset of events for which both P and D 
hold; ΩPC is a subset of events for which both P and C hold. 
Given these sets, the parameters γ1 and γ2 are defined as 
follows: 

            γ1 = 
Pr[P]  

D]Pr[P,
 = Pr [D|P] ≈  

||

|

P

PD

Ω 

 Ω |
   , 

             γ2 = 
Pr[P]  

C]Pr[P,
 = Pr [C|P] ≈  

||

|

P

PC

Ω 

 Ω |
,                                      

Where |Ωi| denotes the cardinality of Ωi. Also we assume 
that ΩD ∩ ΩC = ∅ and  
ΩD ∪ ΩC = ΩP ; thus Pr[P|D] + Pr[C|P] = 1. 
A CPR exhibits variable precision in which certainty varies 
while specificity remains constant.  

III. CUMULATIVE LEARNING BASED ON CPRS 
CPR system helps us to collect fragmented knowledge 

and representing these as collective one significantly 
reducing the knowledge base. This representation scheme 
reduces the complexity of the discovered knowledge 
substantially, makes knowledge base easy to understand and 
efficient for future processing. 
 Under the Dempster-Shafer Interpretation of VPL, four 
belief values are associated with each Censored Production 
Rule [3, 8]: 
P → D ⎣ C: α,β,γ,δ                                                  (3) 
such that 
      (i) P∧ ∼C → D: α 
      (ii) P∧ C → ∼D: β       
      (iii) P → D: γ 
      (iv) P → ∼D: δ  
 

That is a CPR (3) can be factorized into four PRs, (i) - 
(iv). This interpretation suggests a mechanism for 
discovering CPRs from the set of PRs. That is a CPR (3) 
can be discovered from a group of already discovered four 
PRs ((i)-(iv)).  

For example, the following rule set generated as a result 
of mining on certain data: 
(i) Weekday_morning ∧∼Oversleep → Read_paper : 0.9 
      the ‘0.9’ states that on weekday mornings when I do not 
oversleep I read the paper at least 0.9 of the time because 
there are other factors which would keep me from reading 
paper; such as the paper boy throwing it on the roof, which 
are not being considered; 
(ii) Weekday_morning ∧Oversleep → ∼Read_paper   : 1 
      the ‘1’ states that on weekday mornings when I 
oversleep I certainly do not read the paper. 
(iii) Weekday_morning → Read_paper      : 0.6 
    the ‘0.6’ states that I read the paper at least three out of 
five weekday mornings as I oversleep at most twice a week. 
(iv) Weekday_morning → ∼Read_paper     : 0.2 
    the ‘0.2’ states that I do not read the paper at least one out 
of five weekday mornings because I oversleep at least once 
a week. 
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Combining all the above four flat rules, we can discover a 
single Censor Production rule which expresses all the above 
four rules: 
 
Weekday_morning → Read_paper  ⎣ ∼ Oversleep    
                                                  : 0.9, 1, 0.6, 0.2, 
stating that I read the paper before going to work unless I 
oversleep, which occurs once or twice a week 
 This is the first step towards comprehension of knowledge 
where a set of four rules is converted into a single CPR 
thereby reducing the knowledge base considerably 
(depending on the nature of data the maximum reduction 
could be even one fourth). As machine learning techniques 
are increasingly being used to solve real life problems, post 
analysis of rules will become increasingly important. In 
dynamic domain where rules may change over time, it is 
important to know what the changes are. Here it is presumed 
that Flat production rules are made available by using a 
suitable data mining algorithm and these flat rules are 
reduced to CPRs as above. The proposed system would act 
on such rules to generate comprehensive knowledge with 
each episode. This activity handles change in knowledge 
incrementally without revisiting the original database. 
 Following Michalski and Winston [7], the following 
combination of rules can be used for considerable reduction 
of knowledge base: 
 
   P1→ D ⎣ C 
                          > P1∨ P2 → D ⎣ C             (4) 
   P2→ D ⎣ 
 
 
   P→ D1 ⎣ C 
                       > P    → D1∧ D2 ⎣ C             (5) 
   P→ D2 ⎣ C 
 
 
   P→ D ⎣ C1 
                       > P → D ⎣ (C1∨ C2)          (6) 
   P→ D ⎣ C2 
 
 
   P→ D ⎣ C1 

            > P → D1 ⎣ (C1∨ C2)      (7) 
   D→ D1 ⎣ C2 
   D→D1 
 
 

A.  Cumulative Learning Algorithm 

Input: Knowledge base KB1 and Knowledge base KB2. 
/* For each rule, ‘IF’ part is represented as ‘Pset’, 
‘UNLESS’ part as ‘Cset’ and   ‘decision part’ as ‘Dset’ */ 

Output: Knowledge base KB3 
  
1. for (i=0;i<=no. of rules in KB1; i++)  
       for (j=0;j<=no. of rules in KB2; j++) 
        {If (Pset of Ri== Pset of Rj) 
           {If (Dset of Ri==Dset of Rj) 
              {If (Cset of Ri==Cset of Rj) 

              { a. construct a new rule ‘Rk’ where  
                          Pset ← Pset of Ri ; 

                          Dset ← Dset of Ri ; 
                          Cset ← Cset of Ri ; 
                 b. Mark Ri and Rj  

             c. store Rk in KB3;k++;} 
         else  
           {a. construct a new rule ‘Rk’ where 
                    Pset ← Pset of Ri ; 

                           Dset ← Dset of Ri ; 
                           Cset ← ( Cset of Ri V Cset of Rj) ; 
              b. Mark Ri and Rj  

             c. store Rk in KB3;k++;} 
   } 

             If (Cset of Ri==Cset of Rj) 
          {  a. construct a new rule ‘Rk’ where  

                            Pset ←  Pset of Ri ; 
                            Dset ← Dset of Ri ∧ Dset of Rj ; 
                            Cset ← Cset of Ri ; 
                      b. Mark Ri and Rj  

               c. store Rk in KB3;k++;} 
   } 
 
else{If (Dset of Ri==Dset of Rj) 

                { a. construct a new rule ‘Rk’ where  
                         Pset ← (Pset of Ri ∨ Pset of Rj); 
                         Dset ← Dset of Ri; 
                         Cset ←(Cset of Ri ∨ Cset of Rj); 
                    b. Mark Ri and Rj  

             c. store Rk in KB3;k++;} } 
} 
  
2. for (all Unmarked Ri in KB1) 
        {  a. construct a new rule ‘Rk’ where  
                   Pset ←  Pset of Ri ; 
                   Dset ← Dset of Ri ; 
                   Cset ← Cset of Ri ;  
            b. Mark Ri 
            c. store  Rk in KB3;k++; } 
 
 3. for (all Unmarked Rj in KB2) 
        { a. construct a new rule ‘Rk’ where  
                   Pset ← Pset of Rj ; 
                   Dset ← Dset of Rj ; 
                   Cset ← Cset of Rj ;  
           b. Mark Rj 
           c. store  Rk in KB3;k++; } 
 
By applying algorithm in each episode, the size of 
knowledge base reduces significantly giving us a good 
summary of the knowledge accommodating new knowledge 
suitably and removing all redundant information. For 
example, suppose KB1 and KB2 are knowledge base 
containing the set of rules collected over different point of 
time. 
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KB1:       
1.obstacle_ahead∧speed_distance_ratio high → use_brakes 

2.obstacle_ahead∧speed_distance_ratio high 
                                         → use_brakes ⎣ tire_traction poor 
 
3. on ice_road→ tire_traction poor ⎣ using_chain 

KB2:  
 1.obstacle_ahead∧speed_distance_ratio high 
                                   → use_brakes ⎣ brake_condition poor  
  
2.on gravel_road → tire_traction poor 
 
 Applying our algorithm to these different knowledge bases,  
we can have a single knowledge base KB3 which contains 
the comprehensive but complete set of rules as: 
 
KB3:  
1.obstacle_ahead ∧ speed_distance_ratio high  
    → use_brakes ⎣ tire_traction poor ∨ brake_condition poor 
 
2. on ice_road ∨ on gravel_road  
     → tire_traction poor ⎣ using_chain 

IV. PROPOSED SCHEME 
In the proposed cumulative learning scheme transactions 

over a long duration are divided into sets of consecutive 
episodes. In every episode the knowledge base generated 
depends not only on the current set of knowledge but also 
efficiently accommodate knowledge gained during the 
previous episode. This new knowledge base will act as 
‘knowledge of previous episode’ in future processing. 
Instead of making mining a finite, closed ended process 
which produces a well defined knowledge, the idea is to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

make it a continuous process thereby generating continually 
improved knowledge. The proposed scheme is summarized 
diagrammatically in Fig.1 and explained through an 
example in Fig. 2. 

V. CONCLUSION 
The problem of too many rules has been studied by many 

researchers in data mining. The main approaches used are: 
using some interestingness measures to filter out those 
uninteresting rules; using the user’s domain knowledge to 
help him identify unexpected rules, using some user defined 
measure to prune the rule space. Limited research has been 
done on what happens after a set of rules has been induced.   
In this paper, we have exploited the inherent properties of 
CPRs system to implement cumulating learning approach as 
post processing scheme. As a preprocessing of the proposed 
learning algorithm, possible CPRs are discovered from the 
already discovered set of flat PRs. The transformation of 
PRs into CPRs results in considerable reduction in the 
number of already discovered PRs. The proposed 
cumulative learning scheme incrementally incorporates new 
knowledge with each episode. Thereby generating 
continually, improved set of CPRs with minimum 
redundancy.    

As data streams are gaining prominence in a growing 
number of emerging applications, advanced analysis and 
mining of data streams is becoming increasingly important. 
[14,15]. One of the most important applications of the 
proposed cumulative learning scheme would be in mining 
data streams. Development of cumulative learning schemes 
based on Hierarchical Censored production rules (HCPRs) 
system [2, 3, 4] is under progress 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Cumulative learning scheme 
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Cumulative learning 

Fig. 2 Cumulative learning for flying objects 

bird (x) → flies(x) 
bird(x) ∧~penguin(x)→ flies(x) 
bird(x) ∧  penguin(x) → ~flies(x) 
bird (x) → ~flies(x) 
balloon (x) → flies(x) 
penguin(x) → bird(x) 
airplane (x) → flies(x) 

DM 

pre-processing 

   Previous episode 
(KB1: PRs and CPRs) 

     Current episode 
 (KB2: PRs and CPRs) 

Data Streams 

     Next  episode 
  (KB1  KB3) 

bird(x) → flies(x) ⎣ penguin(x) 
balloon (x) → flies(x) 
penguin(x) → bird(x) 

bird (x) → flies(x) ⎣ kiwi(x)∨ ostrich(x) 
bird(x) ∧ young(x)→ ~flies(x) 
balloon (x) → flies(x) ⎣ burst_down(x) 

⎣

bird (x) → flies(x) ⎣ penguin(x) ∨ kiwi(x)∨ ostrich(x) 
bird(x) ∧ young(x)→ ~flies(x) 
balloon (x) → flies(x) ⎣ burst_down(x) 
penguin(x) → bird(x) 
airplane (x) → flies(x) ⎣ has_wings_broken(x) 


