
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3764

Abstract—Knowledge is indispensable but voluminous

knowledge becomes a bottleneck for efficient processing. A great
challenge for data mining activity is the generation of large
number of potential rules as a result of mining process. In fact
sometimes result size is comparable to the original data.
Traditional data mining pruning activities such as support do not
sufficiently reduce the huge rule space. Moreover, many practical
applications are characterized by continual change of data and
knowledge, thereby making knowledge voluminous with each
change. The most predominant representation of the discovered
knowledge is the standard Production Rules (PRs) in the form If P
Then D. Michalski & Winston proposed Censored Production
Rules (CPRs), as an extension of production rules, that exhibit
variable precision and supports an efficient mechanism for
handling exceptions. A CPR is an augmented production rule of
the form: If P Then D Unless C, where C (Censor) is an
exception to the rule. Such rules are employed in situations in
which the conditional statement ‘If P Then D’ holds frequently
and the assertion C holds rarely. By using a rule of this type we are
free to ignore the exception conditions, when the resources needed
to establish its presence, are tight or there is simply no information
available as to whether it holds or not. Thus the ‘If P Then D’ part
of the CPR expresses important information while the Unless C
part acts only as a switch changes the polarity of D to ~D. In this
paper a scheme based on Dempster-Shafer Theory (DST)
interpretation of a CPR is suggested for discovering CPRs from the
discovered flat PRs. The discovery of CPRs from flat rules would
result in considerable reduction of the already discovered rules.
The proposed scheme incrementally incorporates new knowledge
and also reduces the size of knowledge base considerably with
each episode. Examples are given to demonstrate the behaviour of
the proposed scheme. The suggested cumulative learning scheme
would be useful in mining data streams.

Keywords—Censored production rules, cumulative learning,
data mining, machine learning.

I. INTRODUCTION
 NOWLEDGE is the information that represents long-
term relationships, that is, ways of doing things,

commonsense, ideas, methods, skills, and so forth.
Knowledge is “condensed” information,”squashed”
information, an extraction, the “essence” of things. A huge

Rekha kandwal is a Ph.D scholar at School of Computer and System

Sciences (SC&SS), Jawaharlal Nehru University (JNU), New Delhi-
110067, India (e-mail: phone: 91-11-55157029 email:
rekha.kandwal@gmail.com).

Kamal K.Bharadwaj is a Professor at SC&SS, JNU, New Delhi, India
(phone: 91-9810196636, e-mail: kbharadwaj@gmail.com)

amount of knowledge has been accumulated worldwide
during the conscious existence of humanity. This knowledge
is changing all the time. There are many issues related to
knowledge viz How to make use of existing knowledge in a
computer program? How to represent it in such a way that
we keep the richness and the depth of knowledge and also
make it reasonable to use? How to make compromises with
constantly changing knowledge?

 Whatever method for representing problem knowledge is
used in a computer system, it is usually a way of simplifying
the problem to make it reasonable to handle. One of the
widely used representations in knowledge Engineering is
the Production System. Standard Production rules, of the
type IF P THEN D, are not efficient for approximate
reasoning and unable to exhibit variable precision in the
reasoning process due to rigidity in their structure. Also
these rules fragment the knowledge that exists in the data
resulting in a large number of discovered rules that makes
analysis of the rules very difficult.

As an extension of standard production rule, Michalski
and Winston [7] have suggested the Censored Production
Rule (CPR) as an underlying representational and
computational mechanism to enable logic based systems to
exhibit variable precision in which certainty varies while
specificity stays constant. A CPR has the form, If P Then D
Unless C, where C (Censor) is the exception condition.
Such rules are employed in situations in which the
conditional statement ‘If P Then D’ holds frequently and
the assertion C holds rarely. By using a rule of this type we
are free to ignore the censor (exception) conditions, when
the resources needed to establish its presence are tight or
there is simply no information available as to whether it
holds or does not hold. As time permits the Censor
condition C is evaluated establishing the conclusion D with
higher certainty if C does not hold or simply changing the
polarity of D to ~D if C holds. For example, the rule If
Sunday Then John works in the yard Unless weather is bad,
has the interpretation that if it is Sunday and the weather is
good, John will work in the yard; and if it is Sunday and the
weather is bad (which occurs rarely), John will not work in
the yard.

CONALD (Conference on Automated Learning and
Discovery), hosted by CMU came up with a no. of
promising research directions for future and posed a trivial
problem: Can we devise cumulative learning algorithms that
can incrementally incorporate new data & knowledge? [10]
In this paper an attempt is made to exploit the inherent

A Cumulative Learning Approach to Data
Mining Employing Censored Production Rules

(CPRs)
Rekha Kandwal, and Kamal K.Bharadwaj

K

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3765

structural properties of CPRs to accommodate cumulative
learning scenario. A dynamic system which comprehends
the knowledge with each episode is developed. Results on
the behaviour of the proposed scheme are also included.

II. BACKGROUND
The major shortcomings of an ordinary logic based

reasoning system based on standard production rule If P
Then D, is that you cannot tell much about the way you
want it to perform its task. For example, you can not give
the following instructions [7]:
• Give me a reasonable answer immediately even if it is

somewhat general and if there is enough time then give
me a more specific answer.

• Give me a reasonable answer immediately. If there is
enough time tell me you are more confident in the
answer or change your mind and give me a better
answer.

• Give me only a highly certain answer even if it is
somewhat general, and if there is enough time then give
me a more specific answer.

• Give me a reasonable answer immediately even if it is
somewhat less certain and if you have enough time then
give me a more specific answer.

A system having represented real-world knowledge
should also be capable of handling these types of
requirements for natural and efficient reasoning. In the real
world, both humans and computers often have to reason
using insufficient, incomplete, or tentative premises.
Moreover, both are subject to constraints of time and
memory. Variable precision logic (VPL) [7] is concerned
with problems of reasoning with incomplete information,
subject to resource constraints and the problem of reasoning
efficiently with exceptions. VPL offers mechanisms for
handling trade-off between the precision of inferences and
computational efficiency of driving them. Specificity and
certainty are two aspects of precision. Certainty refers to the
degree of belief in a statement, whereas specificity refers to
the degree of detail of a description. A system that gives
more specific answers given more time (or resources in
general) is called a “variable specificity system“. A system
that gives more certain answers given more time is called a
“variable certainty system”. There can be various
combinations of the two systems, reflecting that specificity
and certainty are inversely related; we can gain specificity at
the expense of certainty, or vice-versa.
 Let us now give a more quantitative definition of a
censored production rule:
 P ⇒ D ⎣ C. (1)
Where P is a premise, D is a decision, and C is a censor.
Although the unless operator,⎣, is logically equivalent to the
commutative exclusive-or operator, the unless operator has
an expositive aspects which is not commutative. In order to
capture the asymmetry precisely, let us associate two
parameters, γ1 and γ2, with rule (1)

 P ⇒ D ⎣ C: γ1, γ2. (2)
Both γ1 and γ2 are point probabilities, one indicating the
strength of the relationship between P and D, and the other,
between P and C. Now consider the following sets: Ω is a

finite sample of events; ΩP is the set of events for which P
holds; ΩPD is the subset of events for which both P and D
hold; ΩPC is a subset of events for which both P and C hold.
Given these sets, the parameters γ1 and γ2 are defined as
follows:

 γ1 =
Pr[P]

D]Pr[P,
 = Pr [D|P] ≈

||

|

P

PD

Ω

 Ω |
 ,

 γ2 =
Pr[P]

C]Pr[P,
 = Pr [C|P] ≈

||

|

P

PC

Ω

 Ω |
,

Where |Ωi| denotes the cardinality of Ωi. Also we assume
that ΩD ∩ ΩC = ∅ and
ΩD ∪ ΩC = ΩP ; thus Pr[P|D] + Pr[C|P] = 1.
A CPR exhibits variable precision in which certainty varies
while specificity remains constant.

III. CUMULATIVE LEARNING BASED ON CPRS
CPR system helps us to collect fragmented knowledge

and representing these as collective one significantly
reducing the knowledge base. This representation scheme
reduces the complexity of the discovered knowledge
substantially, makes knowledge base easy to understand and
efficient for future processing.
 Under the Dempster-Shafer Interpretation of VPL, four
belief values are associated with each Censored Production
Rule [3, 8]:
P → D ⎣ C: α,β,γ,δ (3)
such that
 (i) P∧ ∼C → D: α
 (ii) P∧ C → ∼D: β
 (iii) P → D: γ
 (iv) P → ∼D: δ

That is a CPR (3) can be factorized into four PRs, (i) -
(iv). This interpretation suggests a mechanism for
discovering CPRs from the set of PRs. That is a CPR (3)
can be discovered from a group of already discovered four
PRs ((i)-(iv)).

For example, the following rule set generated as a result
of mining on certain data:
(i) Weekday_morning ∧∼Oversleep → Read_paper : 0.9
 the ‘0.9’ states that on weekday mornings when I do not
oversleep I read the paper at least 0.9 of the time because
there are other factors which would keep me from reading
paper; such as the paper boy throwing it on the roof, which
are not being considered;
(ii) Weekday_morning ∧Oversleep → ∼Read_paper : 1
 the ‘1’ states that on weekday mornings when I
oversleep I certainly do not read the paper.
(iii) Weekday_morning → Read_paper : 0.6
 the ‘0.6’ states that I read the paper at least three out of
five weekday mornings as I oversleep at most twice a week.
(iv) Weekday_morning → ∼Read_paper : 0.2
 the ‘0.2’ states that I do not read the paper at least one out
of five weekday mornings because I oversleep at least once
a week.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3766

Combining all the above four flat rules, we can discover a
single Censor Production rule which expresses all the above
four rules:

Weekday_morning → Read_paper ⎣ ∼ Oversleep
 : 0.9, 1, 0.6, 0.2,
stating that I read the paper before going to work unless I
oversleep, which occurs once or twice a week
 This is the first step towards comprehension of knowledge
where a set of four rules is converted into a single CPR
thereby reducing the knowledge base considerably
(depending on the nature of data the maximum reduction
could be even one fourth). As machine learning techniques
are increasingly being used to solve real life problems, post
analysis of rules will become increasingly important. In
dynamic domain where rules may change over time, it is
important to know what the changes are. Here it is presumed
that Flat production rules are made available by using a
suitable data mining algorithm and these flat rules are
reduced to CPRs as above. The proposed system would act
on such rules to generate comprehensive knowledge with
each episode. This activity handles change in knowledge
incrementally without revisiting the original database.
 Following Michalski and Winston [7], the following
combination of rules can be used for considerable reduction
of knowledge base:

 P1→ D ⎣ C
 > P1∨ P2 → D ⎣ C (4)
 P2→ D ⎣

 P→ D1 ⎣ C
 > P → D1∧ D2 ⎣ C (5)
 P→ D2 ⎣ C

 P→ D ⎣ C1
 > P → D ⎣ (C1∨ C2) (6)
 P→ D ⎣ C2

 P→ D ⎣ C1

 > P → D1 ⎣ (C1∨ C2) (7)
 D→ D1 ⎣ C2
 D→D1

A. Cumulative Learning Algorithm

Input: Knowledge base KB1 and Knowledge base KB2.
/* For each rule, ‘IF’ part is represented as ‘Pset’,
‘UNLESS’ part as ‘Cset’ and ‘decision part’ as ‘Dset’ */

Output: Knowledge base KB3

1. for (i=0;i<=no. of rules in KB1; i++)
 for (j=0;j<=no. of rules in KB2; j++)
 {If (Pset of Ri== Pset of Rj)
 {If (Dset of Ri==Dset of Rj)
 {If (Cset of Ri==Cset of Rj)

 { a. construct a new rule ‘Rk’ where
 Pset ← Pset of Ri ;

 Dset ← Dset of Ri ;
 Cset ← Cset of Ri ;
 b. Mark Ri and Rj

 c. store Rk in KB3;k++;}
 else
 {a. construct a new rule ‘Rk’ where
 Pset ← Pset of Ri ;

 Dset ← Dset of Ri ;
 Cset ← (Cset of Ri V Cset of Rj) ;
 b. Mark Ri and Rj

 c. store Rk in KB3;k++;}
 }

 If (Cset of Ri==Cset of Rj)
 { a. construct a new rule ‘Rk’ where

 Pset ← Pset of Ri ;
 Dset ← Dset of Ri ∧ Dset of Rj ;
 Cset ← Cset of Ri ;
 b. Mark Ri and Rj

 c. store Rk in KB3;k++;}
 }

else{If (Dset of Ri==Dset of Rj)

 { a. construct a new rule ‘Rk’ where
 Pset ← (Pset of Ri ∨ Pset of Rj);
 Dset ← Dset of Ri;
 Cset ←(Cset of Ri ∨ Cset of Rj);
 b. Mark Ri and Rj

 c. store Rk in KB3;k++;} }
}

2. for (all Unmarked Ri in KB1)
 { a. construct a new rule ‘Rk’ where
 Pset ← Pset of Ri ;
 Dset ← Dset of Ri ;
 Cset ← Cset of Ri ;
 b. Mark Ri
 c. store Rk in KB3;k++; }

 3. for (all Unmarked Rj in KB2)
 { a. construct a new rule ‘Rk’ where
 Pset ← Pset of Rj ;
 Dset ← Dset of Rj ;
 Cset ← Cset of Rj ;
 b. Mark Rj
 c. store Rk in KB3;k++; }

By applying algorithm in each episode, the size of
knowledge base reduces significantly giving us a good
summary of the knowledge accommodating new knowledge
suitably and removing all redundant information. For
example, suppose KB1 and KB2 are knowledge base
containing the set of rules collected over different point of
time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3767

KB1:
1.obstacle_ahead∧speed_distance_ratio high → use_brakes

2.obstacle_ahead∧speed_distance_ratio high
 → use_brakes ⎣ tire_traction poor

3. on ice_road→ tire_traction poor ⎣ using_chain

KB2:
 1.obstacle_ahead∧speed_distance_ratio high
 → use_brakes ⎣ brake_condition poor

2.on gravel_road → tire_traction poor

 Applying our algorithm to these different knowledge bases,
we can have a single knowledge base KB3 which contains
the comprehensive but complete set of rules as:

KB3:
1.obstacle_ahead ∧ speed_distance_ratio high
 → use_brakes ⎣ tire_traction poor ∨ brake_condition poor

2. on ice_road ∨ on gravel_road
 → tire_traction poor ⎣ using_chain

IV. PROPOSED SCHEME
In the proposed cumulative learning scheme transactions

over a long duration are divided into sets of consecutive
episodes. In every episode the knowledge base generated
depends not only on the current set of knowledge but also
efficiently accommodate knowledge gained during the
previous episode. This new knowledge base will act as
‘knowledge of previous episode’ in future processing.
Instead of making mining a finite, closed ended process
which produces a well defined knowledge, the idea is to

make it a continuous process thereby generating continually
improved knowledge. The proposed scheme is summarized
diagrammatically in Fig.1 and explained through an
example in Fig. 2.

V. CONCLUSION
The problem of too many rules has been studied by many

researchers in data mining. The main approaches used are:
using some interestingness measures to filter out those
uninteresting rules; using the user’s domain knowledge to
help him identify unexpected rules, using some user defined
measure to prune the rule space. Limited research has been
done on what happens after a set of rules has been induced.
In this paper, we have exploited the inherent properties of
CPRs system to implement cumulating learning approach as
post processing scheme. As a preprocessing of the proposed
learning algorithm, possible CPRs are discovered from the
already discovered set of flat PRs. The transformation of
PRs into CPRs results in considerable reduction in the
number of already discovered PRs. The proposed
cumulative learning scheme incrementally incorporates new
knowledge with each episode. Thereby generating
continually, improved set of CPRs with minimum
redundancy.

As data streams are gaining prominence in a growing
number of emerging applications, advanced analysis and
mining of data streams is becoming increasingly important.
[14,15]. One of the most important applications of the
proposed cumulative learning scheme would be in mining
data streams. Development of cumulative learning schemes
based on Hierarchical Censored production rules (HCPRs)
system [2, 3, 4] is under progress

Fig. 1 Cumulative learning scheme

Previous episode

PRs

KB1
(PRs and CPRs)

KB2
(PRs and CPRs)

KB3
(PRs and CPRs)

DM Pre-processing

Cumulative
learning

Current episode

Data
Streams

 Next episode
(KB1 KB3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3768

REFERENCES
[1] Han, J., Kamber, M. “Data mining: Concepts and Techniques”

Academic Press (2001).
[2] Bharadwaj, K.K., Jain, N.K.: Hierarchical Censored Production

Rules (HCPRs) System, Data and Knowledge Engineering, vol.8
(North Holland), 1992.

[3] Bharadwaj, K.K., Neerja, Goel, G.C.: Hierarchical Censored
Production Rules (HCPRs) Systems Employing the Dampster-Shafer
Uncertainty Calculus, Information and Software technology,
Butterworth-Heinemann Ltd. (U.K.) Vol. 36 No., 155-164, 1994.

[4] Jain, N.K. ,Bharadwaj, K.K.,: Some Learning Techniques in
Hierarchical Censored Production Rules(HCPRs) System,
International Journal of intelligent systems, John Wiley & sons,
Inc.,vol. 13,pp 319-344, 1997.

[5] Quinlan, J.R. (1986): Induction of Decision tress: Machine
learning;1(1);81-106,1986.

[6] Adriaan, P., Zantingre, D. “Data Mining”, Addison Wesley, 1999.
[7] Michalski, R.S., Winston, P.H., Variable Precision Logic, Artificial

intelligence,29,121-146,1986.
[8] Jain,N.K., Bharadwaj K.K. and, Norian Marrengallo “ Extended

Hierarchical Censored Production Rules System”, vol. 9, no 3-4,
journal of Intelligence Systems, UK ,1999.

[9] Ananthanarayana, V.S., Murty, M.N., Subramanian, D.K.: Dynamic

Data Mining, Proceedings of the International Conference, KBCS-
2002.

[10] Sebastian Thrun, Christos Faloutsos, Tom Mitchell, Larry
Wasserman: Automated Learning and Discovery: State-Of-The Art
and Research Topics in a Rapidly Growing Field, CMU_CALD-98-
100, September 1998.

[11] Ryszard S. Michalski, Pavel Brazdil: Introduction, Special Issue on
Multistrategy learning, Machine Learning, vol 50, pp 219-222, 2003.

[12] Bing Liu , Minqing Hu and Wynne Hsu, "Intuitive Representation of
Decision Trees Using General Rules and Exceptions" American
Association for Artificial Intelligence,2000.

[13] Nikola K.Kasabov. “Foundation of Neural Networks, Fuzzy systems,
and Knowledge Engineering” The MIT Press (2001).

[14] Brian Babcock, Shivnath Babu, Mayur data, Rajeev Motwani, and
Jennifer Widom: Models and Issues in data Stream Systems,
Proceeding of 21st ACM Symposium on Principles of Database
Systems (PODS 2002).

[15] Guozhu Dong, Jiawei Han, laks V.S. Lakshmanan, Jian Pei, Haixun
Wang, Philip S. Yu: Online Mining of changes from data Streams:
Research Problems and Preliminary Results, In Proceedings of the
2003 ACM SIGMOID Workshop on Management and Processing of
data Streams.

Cumulative learning

Fig. 2 Cumulative learning for flying objects

bird (x) → flies(x)
bird(x) ∧~penguin(x)→ flies(x)
bird(x) ∧ penguin(x) → ~flies(x)
bird (x) → ~flies(x)
balloon (x) → flies(x)
penguin(x) → bird(x)
airplane (x) → flies(x)

DM

pre-processing

 Previous episode
(KB1: PRs and CPRs)

 Current episode
 (KB2: PRs and CPRs)

Data Streams

 Next episode
 (KB1 KB3)

bird(x) → flies(x) ⎣ penguin(x)
balloon (x) → flies(x)
penguin(x) → bird(x)

bird (x) → flies(x) ⎣ kiwi(x)∨ ostrich(x)
bird(x) ∧ young(x)→ ~flies(x)
balloon (x) → flies(x) ⎣ burst_down(x)

⎣

bird (x) → flies(x) ⎣ penguin(x) ∨ kiwi(x)∨ ostrich(x)
bird(x) ∧ young(x)→ ~flies(x)
balloon (x) → flies(x) ⎣ burst_down(x)
penguin(x) → bird(x)
airplane (x) → flies(x) ⎣ has_wings_broken(x)

