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A Contribution to the Polynomial Eigen Problem
Malika Yaici, Kamel Hariche, Tim Clarke

Abstract—The relationship between eigenstructure (eigenvalues
and eigenvectors) and latent structure (latent roots and latent vectors)
is established. In control theory eigenstructure is associated with
the state space description of a dynamic multi-variable system and
a latent structure is associated with its matrix fraction description.
Beginning with block controller and block observer state space forms
and moving on to any general state space form, we develop the
identities that relate eigenvectors and latent vectors in either direction.
Numerical examples illustrate this result. A brief discussion of the
potential of these identities in linear control system design follows.
Additionally, we present a consequent result: a quick and easy
method to solve the polynomial eigenvalue problem for regular matrix
polynomials.

Keywords—Eigenvalues/Eigenvectors, Latent values/vectors,
Matrix fraction description, State space description.

I. INTRODUCTION

T
HERE exist many approaches for representing linear

multi-variable systems. The two approaches considered

here are the state space description (SSD) and the

matrix fraction description (MFD). In the SSD, the modal

decomposition of the state matrix into its eigenstructure

is very useful as it defines the stability and the dynamic

behaviour of a linear multi-variable system. In general, the

speed of response is determined by the eigenvalues whereas

the shape of the response is furnished by the eigenvectors.

If, through feedback, we are able to assign the eigenvalues to

predetermined values and we are able to align the closed loop

eigenvectors along predetermined directions, we will be able to

control the behaviour of a linear multivariable system in both

speed of response and shape of the response, achieving design

objectives such as input and output decoupling, reducing

sensitivity to perturbations in dynamic structure as well as

appropriate stability criteria [1]. Eigenstructure assignment is

a design methodology that facilitates control system design

by synthesizing a feedback gain matrix that exactly places

the closed loop eigenvalues whilst matching the closed loop

eigenvectors as closely as possible to a desired set [2].

Such technique can be related to the design objectives as

well as the final performance through its clear links with the

time domain response [3]. Eigenstructure assignment is an

excellent method for incorporating classical specifications on

damping, settling time, and mode decoupling into a modern

multivariable control framework [1], and has been shown to

be a useful tool for flight control design [4], [5].
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Matrix polynomials also play a central role in the

mathematical description of the dynamics of multivariable

systems. This fact has led to an active research effort in matrix

polynomials theory [6]. Multivariable systems described by a

MFD can be better decomposed into parallel subsystems for

less sensitivity and single designs of lower order controller i.e.

a block partial fraction expansion of an MFD [7]. Block Roots

(or solvents) can be constructed from latent roots and latent

vectors (under some condition of existence). Many papers

have considered using solvents for solving some linear algebra

problems or control problems, such as: Block partial fraction

expansion of a MFD with single and repeated poles [7],

[8]; Cascade decomposition and realization of multivariable

Systems Via Block-Pole and Block-Zero Placement [9];

State-Feedback decomposition of multivariable Systems Via

Block-Pole Placement [10].

Latent structure is, in some ways, analogous to

eigenstructure but its use and importance has still to be

explored particularly in control theory. It is known and has

been verified that latent values of the MFD of a system and

eigenvalues of the SSD of the same system are the same, but

the link between eigenvectors and latent vectors has not yet

been elaborated at my knowledge.

The link between state space representation and polynomial

matrices is well established in the book of Rosenbrock [11].

The purpose of our paper is to establish the relationship

between the MFD latent vectors and SSD eigenvectors of

a linear multivariable system. A consequence of this is

that we are able to use it as part of a new formulation

for solving the polynomial eigenvalue problem (PEP)

through companion matrices. The classical approach to solve

polynomial eigenvalue problem is linearization to matrix

pencils then determine the eigenvalues of this pencil matrix

using classical methods [12]-[15]. At the onset of our studies,

we privately postulated that, if we could establish the structural

links between latent vectors and eigenvectors, we should then

be able to combine design methodologies and get the benefits

of both descriptions. Early results are promising and we will

report on this work very soon.

some theoretical preliminaries on eigenstructure and latent

relationship between latent structure and eigenstructure, and

how to generate one from the other. This is illustrated by a

above result in solving the PEP, via an illustrative example. In

II. PRELIMINARIES

Here, we present some established material in order to

define symbols and nomenclature and collect.
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The paper is organized as follows: Section II presents

structure. Section III then focuses on the main results: the

numerical example in Section IV. In Section V, we employ the

Section VI we briefly sum up our conclusions.
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A. Matrix Fraction Description

A p × m multivariable linear system may be described by

a matrix transfer function G(s) expressed as a matrix fraction

description as follows:

G(s) = Nr(s)D
−1

r (s) or G(s) = D−1

l (s)Nl(s) (1)

Where Nr, Dr, Nl, Dl are matrix polynomials.

1) Matrix Polynomials: We will consider r-degree, mth

order monic matrix polynomials of the form

D(λ) = Imλr + D1λ
r−1 + · · · + Dr−1λ + Dr (2)

Where λ is a complex number and Di ∈ Rm×m.

For an m × m complex matrix X we define the following

structures.

A right polynomial matrix is given by:

DR(X) = D0X
r + D1X

r−1 + · · · + Dr−1X + Dr (3)

A left polynomial matrix is given by:

DL(X) = XrD0 + Xr−1D1 + · · · + XDr−1 + Dr (4)

2) Latent Roots and Latent Vectors: A latent root λi of

D(λ) is a complex number satisfying detD(λ) = 0; A

right latent vector vi ∈ Rm×1 associated with λi satisfies

D(λi)vi = θ while a left latent vector wi ∈ R1×m is a row

vector satisfying wiD(λi) = θ, where θ denotes the zero row

or column vector.

3) Block Roots: A right block root or right solvent of D(λ)
is an m × m matrix R such that:

Rr + D1R
r−1 + · · · + Dr−1R + Dr = 0m (5)

Whilst a left block root or left solvent is an m×m matrix

L satisfying:

Lr + Lr−1D1 + · · · + LDr−1 + Dr = 0m (6)

B. State Space Description

Let an m-inputs p-outputs system be described by a state

space equation in general form:

{

ẋ = Ax + Bu

y = Cx
(7)

Where the state matrix A is n × n, the input matrix B is

n × m, and the output matrix C is p × n and all are real

matrices.

1) Eigenvalue/Eigenvector: A complex λ is an eigenvalue

of the square n×n matrix A if there exists a nonzero column

vector x in Cn such that Ax = xλ and the vector x is the

corresponding right eigenvector. By duality we can define a

left eigenvector as a nonzero row vector y in Cn such that

yA = λy.

The eigenstructure of the n × n state matrix A is defined

by the n eigenpairs (λi , xi) or (λi, yi) for i=1 to n.

2) Block Controller Form:

Definition 1: A system as described by (7) is said block

controllable if:

• the number of states is a multiple of the number of inputs:
n
m

= r is an integer

• and it is controllable, i.e. the controllability matrix

C =
(

B AB · · · Ar−1B
)

is non-singular.

Remark 1: The integer r is the controllability index.

If the system is block controllable then it can be transformed

into a block controller form using the following similarity

transformation:

Xc = TcX where Tc =











Tc1

Tc1A
...

Tc1A
r−1











and

Tc1 =
(

0m · · · 0m Im

) (

B AB · · · Ar−1B
)

−1

(8)

to obtain

{

Ẋc = AcXc + Bcu

y = CcXc

where Ac = TcAT−1

c , Bc = TcB and Cc = CT−1

c







































































Ac =















0m Im 0m · · · 0m

0m 0m Im · · · 0m

...
...

...
. . .

...

0m 0m 0m · · · Im

−Ar −Ar−1 −Ar−2 · · · −A1















;

Bc =















0m

0m

...

0m

Im















; Cc =
(

Cr Cr−1 · · · C2 C1

)

(9)

3) Block Observer Form:

Definition 2: A system as described by (7) is said block

observable if:

• the number of states is a multiple of the number of

outputs, i.e. n
p

= r is an integer

• and it is observable, i.e. the observability matrix

O =











C

CA
...

CAr−1











is non-singular.

Remark 2: the integer r is the observability index

If the system is block observable it can be transformed

into a block observer form using the following similarity

transformation Xo = ToX

where To =
(

To1 ATo1 · · · Ar−1To1

)

and

To1 =











C

CA
...

CAr−1











−1 









0p

...

0p

Ip











(10)

to obtain

{

Ẋo = AoXo + Bou

y = CoXo
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where Ao = T−1

o ATo, Bo = T−1

o B and Co = CTo







































































Ao =















0p 0p · · · 0p −Ar

Ip 0p · · · 0p −Ar−1

0p Ip · · · 0p −Ar−2

...
...

. . .
...

...

0p 0p · · · Ip −A1















;

Bo =















Br

Br−1

Br−2

...

B1















;Co =
(

0p 0p · · · 0p Ip

)

(11)

4) Conversion from SSD to MFD: From the block

controller form we can derive the transfer function in right

MFD by:

T (s) = Nr(s)D
−1

r (s) (12)

with Nr(s) = C1s
r−1 + C2s

r−2 + · · · + Cr−1s + Cr

and Dr = Imsr + A1s
r−1 + · · · + Ar−1s + Ar

And from the block observer form we can derive the transfer

function in left MFD by:

T (s) = D−1

l (s)Nl(s) (13)

with Dl = Imsr + A1s
r−1 + · · · + Ar−1s + Ar

and Nl(s) = B1s
r−1 + B2s

r−2 + · · · + Br−1s + Br

III. MAIN RESULTS

The link between latent vectors and eigenvectors of a block

controller (observer) form is presented first, then the link for

a general matrix, and finally the use of it to solve the PEP.

A. Relation between latent vectors and eigenvectors of the

block controller SSD

For an appropriate system, let(λi, vi) be the right

eigenstructure of the block controller SSD state matrix Ac,

hence Acvi = λivi, and let (λi, vi) be a latent pair of

the matrix Dr(λ) of the corresponding right MFD, hence

Dr(λi)vi = 0m.

Theorem 1: The latent vector vi is obtained from the

eigenvector vi by using the following equation:

vi = vi1 (14)

where vi1 is composed of the first m components of vi.

Proof

Dr(λi)vi = 0m ⇒
[

Imλr
i + A1λ

r−1

i + · · · + Ar−1λi + Ar

]

vi = 0m

So vi satisfies

λr
i vi + λr−1

i A1vi + · · · + λiAr−1vi + Arvi = 0m (15)

On the other hand Acvi = λivi leads to:














0m Im 0m · · · 0m

0m 0m Im · · · 0m

...
...

...
. . .

...

0m 0m 0m · · · Im

−Ar −Ar−1 −Ar−2 · · · −A1





























vi1

vi2

...

vir−1

vir















= λi















vi1

vi2

...

vir−1

vir















(16)

Where vij with j=1 to r are the block elements of the

eigenvector vi of dimension m. Hence the following set of

equations may be obtained:


























vi2 = λivi1

vi3 = λivi2 = λ2

i vi1

...

vir = λivir−1 = λr−1

i vi1

−Arvi1 − Ar−1vi2 − · · · − A1vir = λivir

(17)

The last equation can be rewritten as:

−Arvi1 − λiAr−1vi1 − · · · − λr−1

i A1vi1 = λr
i vi1

or

λr
i vi1 + λr−1

i A1vi1 + · · · + λiAr−1vi1 + Arvi1 = 0m (18)

Comparing (15) and (18), we conclude that vi = vi1 or

vi =
(

Im 0m · · · 0m

)











vi1

vi2

...

vir











(19)

QED.

So the latent vector vi of Dr(λ) is constituted from the first

m components of the eigenvector of Ac corresponding to the

same latent root/eigenvalue λi.

Conversely we can state the consequent result as a corollary.

Corollary 1: The eigenvector vi of Ac can be constructed

from the latent vector vi using

vi =















vi

λivi

λ2

i vi

...

λr−1

i vi















(20)

Proof The result is obtained from (17) and the fact that

vi = vi1.

B. Relation between latent vectors and eigenvectors of the

block observer SSD

By duality we can show the relationship between left

eigenvectors and left latent vectors.
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For the same system as in precedent section, let(λi, wi) be

an eigenvalue and its corresponding left eigenvector of the

state matrix Ao, hence wiAo = λiwi, and let (λi, wi) be a

latent pair of Dl(λ) of the corresponding left MFD, hence

wiDl(λi) = 0p.

Theorem 2: The latent vector wi is obtained from the

eigenvector wi by using the following equation:

wi = wi1 (21)

where wi1 is composed of the first p components of the

eigenvector wi

Proof

wiDl(λi) = 0p ⇒ wi[Ipλ
r
i + A1λ

r−1

i + · · · + Ar−1λi +
Ar] = 0p.

So wi satisfies

λr
i wi + λr−1

i wiA1 + · · · + λiwiAr−1 + wiAr = 0p (22)

On the other hand wiAo = λiwi leads to:














wi1

wi2

wi3

...

wir















T 













0p 0p · · · 0p −Ar

Ip 0p · · · 0p −Ar−1

0p IP · · · 0p −Ar−2

...
...

. . .
...

...

0p 0p · · · Ip −A1















= λi















wi1

wi2

wi3

...

wir















T (23)

Where wij with j=1 to r are the block elements of the

eigenvector wi of dimension p. Hence the following set of

equations may be obtained:


























wi2 = λiwi1

wi3 = λiwi2 = λ2

i wi1

...

wir = λiwir−1 = λr−1

i wi1

−wi1Ar − wi2Ar−1 − · · · − wirA1 = λiwir

(24)

The last equation can be rewritten as:

−wi1Ar − λiwi1Ar−1 − · · · − λr−1

i wi1A1 = λr
i wi1

or

λr
i wi1 + λr−1

i wi1A1 + · · ·+ λiwi1Ar−1 + wi1Ar = 0p (25)

Comparing (22) and (25), we conclude that wi = wi1 or

wi =
(

wi1 wi2 · · · wir

)











Ip

0p

...

0p











(26)

QED.

So the latent vector wi of Dl(λ) is composed of the first p

components of the eigenvector wi of Ao corresponding to the

same latent root/eigenvalue λi.

Conversely, we can state a consequent result as a corollary.

Corollary 2: the eigenvector wi of Ao can be constructed

from the latent vector wi as:

wi =
(

wi λiwi · · · λr−1

i wi

)

(27)

Proof The result is straight forward from the fact that wi =
wi1 and from (24).

C. Relationship between latent vectors and eigenvectors of a

general SSD

If (λi, xi) is an eigenvalue and right eigenvector of the

general state matrix A, and let (λi, vi) be a right latent pair

of the matrix Dr(λ) of the corresponding right MFD then the

following theorem states the relationship:

Theorem 3: The latent vector vi can be obtained from the

eigenvector xi by using the following equation:

vi = Tc1xi (28)

where Tc1 is given by (8)

Proof : Recalling that the block controller SSD (9) is

generated from a general SSD via the similarity transformation

Ac = TcAT−1

c , we have AcTc = TcA. If (λi, xi) is a right

eigenpair of the general state matrix A, then Axi = λixi.

Hence AcTcxi = TcAxi = λiTcxi. Thus (λi, Tcxi) is an

eigenpair of Ac and

vi = Tcxi (29)

It follows from (19) that:

vi =
(

Im 0m · · · 0m

)

Tcxi.

Since Tc =











Tc1

Tc1A
...

Tc1A
r−1











Then we have:

vi = Tc1xi =











0m

...

0m

Im











T 









B

AB
...

Ar−1B











−T

xi (30)

QED.

The reverse identity, determining eigenvectors from latent

vectors is established in a corollary:

Corollary 3: The eigenvector xi is obtained from its

corresponding latent vector vi by using the following equation:

xi = T−1

c











vi

λivi

...

λr−1

i vi











(31)

Proof : From vi = Tcxi we have xi = T−1

c vi Then using

(20) we obtain the precedent result.

We now establish the dual results:

If (λi, yi) is an eigenvalue and left eigenvector of the general

state matrix A, and let (λi, wi) be a left latent pair of the matrix

Dr(λ) of the corresponding left MFD then the following

theorem states the relationship:
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Theorem 4: The latent vector wi can be obtained from the

eigenvector yi by using the following equation:

wi = yiTo1 (32)

where To1 is given by (10)

Proof : From Ao = T−1

o ATo we have ATo = ToAo. If

(λi, yi) is a left eigenpair (eigenvalue and left eigenvector) of

the general state matrix A, then yiA = λiyi.

Hence yiATo = yiToAo = λiyiTo. Thus (λi, yiTo) is an

eigenpair of Ao and

wi = yiTo (33)

It also follows that wi = yiTo











Ip

0p

...

0p











Since To =
(

To1 ATo1 · · · Ar−1To1

)

we have:

wi = yiTo1 = yi











C

CA
...

CAr−1











−1 









0p

...

0p

Ip











(34)

QED.

Again, the reverse identity, determining eigenvectors from

latent vectors is given by the following corollary:

Corollary 4: The eigenvector yi is obtained from its

corresponding latent vector wi by using the following

equation:

yi =
(

wi λiwi · · · λr−1

i wi

)

T−1

o (35)

Proof : From wi = yiTo we have yi = wiT
−1

o and using

(27) we obtain the precedent result.

To summarize:

- If we have the eigenstructure of a system: (λi, xi) or

(λi, yi) then we can determine the latent vectors vi using (30)

or wi using (34)

- If we have the latent structure of a system: (λi, vi) or

(λi, wi) then we can determine the eigenvectors of A: xi using

(31) or yi using (35)

IV. NUMERICAL EXAMPLE

Consider a general SSD of a system:






























Ẋ =









0 1 −1 1
0 1 1 −1
0 0 2 1
0 0 0 −1









X +









1 0
0 1
1 0
0 1









u

y =

(

0 1 0 1
1 0 1 0

)

x

A. Obtaining latent vectors from eigenvectors using the block

controller form

Using Tc1 =

(

−0.25 0.25 0.25 −0.25
0.25 0.75 −0.25 −0.75

)

we

obtain the following block controller form:































Ẋc =









0 0 1 0
0 0 0 1
−1 −1 2 1
1 1 1 0









Xc +









0 0
0 0
1 0
0 1









u

y =

(

−1 −1 0 2
−3 1 2 0

)

x

Then the corresponding right MFD is:














Dr(s) = I2s
2 +

(

−2 −1
−1 0

)

s +

(

1 1
−1 −1

)

Nr(s) =

(

0 2
2 0

)

s +

(

−1 −1
−3 1

)

We can check that:

- The latent roots are: 0,1,-1 and 2 with corresponding latent

vectors:

vi :

{ (

1
−1

) (

0
1

) (

1
−2

) (

1
1

) }

- Eigenvalues of A: λi = {0, 1,−1, 2}
- Right eigenvectors xi are the columns of V =









1 1 6 0
0 0 −2 1
0 0 1 1
0 0 −3 0









- The latent vectors vi can be obtained from the eigenvectors

of A using (30):

v1 = Tc1x1 = Tc1









1
0
0
0









=

(

−0.25
0.25

)

;

v2 = Tc1x2 = Tc1









1
1
0
0









=

(

0
1

)

;

v2 = Tc1x2 = Tc1









6
−2
1
−3









=

(

−1
2

)

;

v4 = Tc1x4 = Tc1









0
1
1
0









=

(

0.5
0.5

)

;

It can be verified that vi’s are indeed latent vectors of Dr(s).

B. Obtaining eigenvectors from latent vectors using block

observer form

Using To =









−0.25 −0.75 −0.25 −0.75
0.25 −0.25 0.75 0.25
0.25 0.75 0.25 1.75
−0.25 0.25 0.25 −0.25









we

obtain the following block observer form:






























Ẋo =









0 0 −2 0
0 0 −2 1
1 0 0.5 2.5
0 0 1.5 1.5









Xo +









−4 −2
−2 0
0 2
2 0









u

y =

(

0 0 1 0
0 0 0 1

)

x

Then the corresponding left MFD is:














Dl(s) = I2s
2 +

(

−0.5 −2.5
−1.5 −1.5

)

s +

(

2 0
2 0

)

Nl(s) =

(

0 2
2 0

)

s +

(

−4 −2
−2 0

)
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We can check the following:

- For the same set of eigenvalues λi = {0, 1,−1, 2} the

left eigenvectors of the system are given by the rows of W =

V −1 =









1 −1 1 3
0 1 −1 −1
0 0 0 1
0 0 3 1









- The left latent vectors of the system are:wi =














(

−1 1
)

(

1 −5
)

(

1 −1
)

(

−1 −5
)















- The left eigenvectors yi of A are obtained using (35) where

wi =
(

wi λiwi

)

:

w1 =
(

−1 1
)

⇒ w1 =
(

−1 1 0 0
)

⇒ y1 =
(

1 −1 1 3
)

w2 =
(

1 −5
)

⇒ w2 =
(

1 −5 1 −5
)

⇒ y2 =
(

0 4 −4 −4
)

w3 =
(

1 −1
)

⇒ w3 =
(

1 −1 −1 1
)

⇒ y3 =
(

0 0 0 −4
)

w4 =
(

−1 −5
)

⇒ w4 =
(

−1 −5 −2 −10
)

⇒
y4 =

(

0 0 −6 −2
)

It can be verified that the yi’s are the left eigenvectors of

the matrix A.

C. Comments

The important identities of (30), (31), (34), and (35)

open up some interesting possibilities. The link between an

SSD eigenstructure and that of an MFD opens the way

for a direct way of combining traditional eigenstructure

assignment objectives with polynomial methods, moving

beyond traditional fixed state or output feedback gains, but

enabling dynamic compensators to be incorporated into the

controller structure is a very natural way. We have developed

an approach that allows us to design dynamic compensators

and pre-compensators that place block poles and block

zeros. This enables latent structure and, hence, eigenstructure

assignment possible, not only for poles but for zeros as

well. The approach can therefore be used to improve the

behaviour of MIMO systems and resolving control problems

such as: sensitivity, robustness, decoupling, and disturbance

rejection. The employment of dynamic compensation affords

additional degrees of freedom in the design process, enabling

a designer to achieve closer matches to a closed loop time

domain specification than otherwise afforded using simple gain

output feedback of conventional eigenstructure assignment.

In the meantime, our more immediate contribution is to the

polynomial eigenvalue problem (PEP). We now share our

results on this.

V. POLYNOMIAL EIGENVALUE PROBLEM

A. Introduction

Let an rth degree nxn regular matrix polynomial be given

by:

P (λ) = Prλ
r + Pr−1λ

r

−1 + ... + P1λ + P0 (36)

where Pi are nxn real matrices and either P0 or Pr is non

singular. If it is the case then P (λ) can be rewritten such that

P0 = In and P (λ) will be monic.

The Polynomial eigenvalue problem (PEP) consists of

computing the eigenvalues and eigenvectors of a polynomial

matrix (called in this paper latent values and latent roots)

To solve the PEP, in ([15]), matrices in companion forms

(Controller) are proposed to determine the eigenvalues of a

matrix polynomial but without referring to eigenvectors either

right or left.

The idea here is to construct from the polynomial matrix a

block controller form or a block observer form matrix and then

compute the eigenvalues and right or left eigenvectors of these

”normal” matrices. Then using the relationship established

between these eigenvectors and latent vectors, we can directly

obtain the latent values and vectors, either right or left, of the

polynomial matrix.

B. Algorithm

Let an rth degree nth order monic matrix polynomial be

rewritten as:

P (λ) = Inλr + Pr−1λ
r

−1 + ... + P1λ + P0 (37)

step1: Construct the block controller form state matrix Ac as

in (9):

Ac =















0n In 0n · · · 0n

0n 0n In · · · 0n

...
...

... · · ·
...

0n 0n 0n · · · In

−P0 −P1 −P2 · · · −Pr−1















or the block observer form state matrix Ao as in (11):

Ao =















0n 0n · · · −P0

In 0n · · · −P1

0n In · · · −P2

...
... · · ·

...

0n · · · In −Pr−1















step2: Compute the eigenvalues and right (left) eigenvectors of

the block controller (observer) matrix which gives the

eigenvalues of P (λ).
step3: Using(14) or (21) compute the right or the left latent

vectors.

C. Illustrative Example

Consider P (λ) = I2λ
3 + P2λ

2 + P1λ + P0 where:

P2 =

(

0 1
0 5

)

P1 =

(

−1 5
0 6

)

P0 =

(

0 4
0 0

)

1) Right Latent Structure: The latent roots are

{0, 1,−1,−2,−3} with 0 being a double root.

The right latent vectors corresponding to these latent roots

are respectively:
{(

1
0

)

,

(

1
0

)

,

(

1
0

)

,

(

1
−3

)

,

(

1
−12

)}
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Remark 3: using the MATLAB function

polyeig(P0,P1,P2,P3) (P3 is equal to I2) we obtain

the following:

latent values=

















0
1.0000
0.0000
−1.0000
−3.0000
−2.0000

















latent row vectors=

















−1.0000 0
1.0000 −0.0000
−1.0000 −0.0000
−1.0000 −0.0000
−0.0830 0.9965
0.3162 −0.9487

















These all have the correct directions.

2) Left Latent Structure: The left latent vectors associated

with the precedent latent roots are:
{(

0 1
)

,
(

−6 5
)

,
(

1 0
)

,
(

0 1
)

,
(

0 1
)}

Remark 4: by using the same MATLAB function

polyeig(P0’,P1’,P2’,P3’) to compute the left

latent vectors we obtain the following:

latent values=

















−3.0000
−2.0000
0.0000
−0.0000
−1.0000
1.0000

















latent row vectors=

















−0.0000 −1.0000
−0.0000 1.0000
0.0000 −1.0000
0.0000 1.0000
−1.0000 0.0000
0.7682 −0.6402

















Again all these have the correct directions.

3) Latent Roots and Right Latent Vectors: First we

construct the block controller form of this Polynomial matrix:

Ac =





02 I2 02

02 02 I2

−P0 −P1 −P2





Its eigenvalues and right eigenvectors are the following

(computed using MATLAB by using the function eig(Ac)):

eigenvalues=
















0 0 0 0 0 0
0 −1.0000 0 0 0 0
0 0 0 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 −2.0000 0
0 0 0 0 0 −3.0000

















eigenvectors=
















1.0 0.5774 1.0 −0.5774 −0.0690 −0.0087
0 −0.0 −0.0 0 0.2070 0.1045
0 −0.5774 −0.0 −0.5774 0.1380 0.0261
0 0 0 0 −0.4140 −0.3134
0 0.5774 0 −0.5774 −0.2760 −0.0783
0 0 0 0 0.8281 0.9402

















The latent values are the eigenvalues. The right latent

vectors are computed using (14):

latent row vectors =

















1.0000 0
0.5774 −0.0000
1.0000 −0.0000
−0.5774 0.0000
−0.0690 0.2070
−0.0087 0.1045

















It is easy to verify that the right latent vectors directions are

correct, through appropriate scaling.

4) Latent Roots and Left Latent Vectors: The

block observer form of P (λ) is the following:

Ao =





02 02 −P0

I2 02 −P1

02 I2 −P2





Its eigenvalues and left eigenvectors are computed by using

the function eig(Ao.’) of MATLAB:

eigenvalues=
















0 0 0 0 0 0
0 0 0 0 0 0
0 0 −3.0000 0 0 0
0 0 0 −2.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 −1.0000

















eigenvectors=
















0 −0.0 0 0 0.4435 −0.5774
1.0 −1.0 −0.1048 −0.2182 −0.3696 0
0 0 0 0 0.4435 0.5774
0 0 0.3145 0.4364 −0.3696 0
0 0 0 0 0.4435 −0.5774
0 −0.0 −0.9435 −0.8729 −0.3696 0

















The latent values are the eigenvalues. The left latent vectors

are computed using (21):

latent vectors =

















0 1.0000
−0.0000 −1.0000
0.0000 −0.1048
0.0000 −0.2182
0.4435 −0.3696
−0.5774 0

















Again, it is easy to verify that the left latent vectors

directions are correct, through appropriate scaling.

VI. CONCLUSION

The importance of both MFD and SSD in control

theory is well known. The MFD provides a very natural

way of expressing desired zero/pole positions, whereas the

eigenstructure of the SSD is a natural way of describing a

desired multivariable system time response. At the onset of

this work, we privately postulated that, if we could establish

the structural links between them, then we would be able to

combine design methodologies and get the benefits of both

descriptions.

In this paper we have achieved this very important initial

result and have been able to utilize it in proposing a new

algorithm for solving the polynomial eigenvalue problem

for any regular matrix polynomial. The proposed algorithm

is easier and requires less computing time and memory

to determine the eigenvalues and eigenvectors of block

controller/observer form state matrix than pencil matrix (see

[15]). The proposed method is similar to the one used by the
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Control system tool box of Matlab, but the latter uses two

matrices.

Our current efforts to combine polynomial methods and

eigenstructure assignment methods support our belief.
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