
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

14

 

 

  
Abstract—A multi-block algorithm and its implementation in 

two-dimensional finite element numerical model CCHE2D are 
presented. In addition to a conventional Lagrangian Interpolation 
Method (LIM), a novel interpolation method, called Consistent 
Interpolation Method (CIM), is proposed for more accurate 
information transfer across the interfaces. The consistent interpolation 
solves the governing equations over the auxiliary elements constructed 
around the interpolation nodes using the same numerical scheme used 
for the internal computational nodes. With the CIM, the momentum 
conservation can be maintained as well as the mass conservation. An 
imbalance correction scheme is used to enforce the conservation laws 
(mass and momentum) across the interfaces. Comparisons of the LIM 
and the CIM are made using several flow simulation examples.  It is 
shown that the proposed CIM is physically more accurate and 
produces satisfactory results efficiently 
 

Keywords—Multi-block Algorithm; Conservation; Interpolation; 
Numerical model; Flow simulation.  

I. INTRODUCTION 
UMERICAL simulation of flows in complex geometries 
remains a challenge in the Computational Fluid Dynamics 

(CFD). One difficulty lies in the discretization of the physical 
domain with a computational mesh, while another is to conduct 
the simulations efficiently and accurately. The resulting mesh 
generated using single-block method in these cases is often 
highly deformed with large blanked areas. The multi-block 
method, an approach which divides a complicated domain into 
several sub-domains (blocks) with simpler shapes, can alleviate 
the above difficulties significantly. It has been applied widely 
and successfully in CFD. Benek et al. [1], Hessinius and Rai 
[13], Rai [23, 24] and Wang [31] applied it to the Euler 
equations; Gresho and Sani [10], Furukawa et al. [9], Klopfer 
and Molvik [18], Steger [29], Wright and Shyy [34], Henshaw 
[12], Sheng et al. [27], Sinha et al. [28] and Brakkee [3] 
succeeded in applying it to the Navier-Stokes equations; Chen 
and Chen [5], and Chen and Liu [6] studied the turbulent flow 
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around a ship using the multi-block algorithm; Meakin [19], 
and Meakin and Street [20] applied it to the simulation of the 
environmental flow; Sheng [27] used this method to study the 
turbulent flow about the appended submarine configurations; 
Tu and Fuchs [30] simulated the unsteady flow in an internal 
combustion machine; and, Francisco and Sabadell [8] 
developed a multi-block method to study the elastic wave 
propagation problems.  

The use of the multi-block approach introduces new 
boundaries inside the solution domain: the inter-block 
boundaries. Accordingly, a multi-block mesh consists of two 
kinds of nodes: the computational nodes that discretize the 
governing equations, and the interpolation nodes located on the 
inter-block boundaries. The variables at the interpolation nodes 
are interpolated from the computational nodes of the 
neighboring blocks. A multi-block algorithm is basically 
composed of two main parts: (1) an interpolation method to 
transfer information between neighboring blocks; and (2) a 
conservation strategy to enforce the conservation laws across 
the interfaces.  

Conventionally, the information transfer between the 
neighboring blocks is fulfilled by the Lagrangian Interpolation 
Method (LIM), in which an interpolation stencil is constructed. 
For examples, Meakin [19] used a tri-quadratic LIM, Perng and 
Street [22] used a bilinear LIM, Tu and Fuchs [30] constructed 
a 444 ×× interpolation stencil, and Zang and Street [36] used 
a bi-quadratic LIM, etc.  Unless the conservation constraints 
are involved in the derivation, the LIM is non-conservative.  

It has been generally accepted that the global mass 
conservation is critical for the convergence as well as the 
accuracy of the incompressible flow. In order to reduce the 
error introduced by the non-conservative interpolations, a 
conservation strategy must be applied. Meakin [19] proposed 
an imbalance correction scheme (IC) to enforce the mass 
conservation. That is, the amount of the mass residual in a 
given block is subtracted and redistributed along the 
inter-block boundary. In addition to mass, the IC can be applied 
to the other conservative quantities as well. Compared to the 
mass conservation, the momentum conservation across the 
interfaces has not been considered so important that it would 
influence the convergence of the computation. Therefore, it is 
often ignored in the study of the multi-block algorithm. Caruso 
[4] stated that it is nearly impossible and very difficult to 
conserve additional quantities, such as momentum, energy, etc. 
One major difficulty lies in the lack of the accurate evaluation 
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of those quantities at the interfaces. Moon and Liou [21] used 
the Van Leer’s [31] flux-vector splitting procedures to evaluate 
the numerical flux at the interfaces and then used a high order 
redistribution scheme with the area-weighted coefficients to 
enforce the conservation laws. Klopfer and Molvik [18] 
showed that the numerical flux must be determined by the same 
numerical scheme as used in the model; otherwise 
discrepancies or inconsistencies may occur at the interfaces.   

In the present study, a conservative multi-block algorithm is 
proposed for a two-dimensional hydrodynamic model, the 
CCHE2D model. In addition to a nine-node second-order 
quadratic LIM, a Consistent Interpolation Method (CIM) is 
developed. Using the CIM, the momentum equations are solved 
on the velocity interpolation nodes along the block interfaces in 
the same way as the internal velocity computational nodes; 
while the continuity equation is solved on the pressure 
computational nodes within the overlapping zone. With the IC 
scheme, the CIM is capable of maintaining both the momentum 
conservation and the mass conservation along the interfaces. 
Several test examples show that the proposed multi-block 
algorithm can yield good results with high efficiency.  

  

II. NUMERICAL MODEL  
The present multi-block algorithm is applied to a 

two-dimensional hydrodynamic and sediment transport model 
for unsteady open channel flows over loose bed, CCHE2D 
model. Here a brief introduction of the CCHE2D model is 
presented and its details can be found in Jia and Wang [14~16]. 

A. Governing Equations 
The depth integrated two-dimensional equations solved in 

CCHE2D model are as follows. 
 

Continuity Equation: 
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Momentum Equations: 
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where u and v are the depth-integrated velocity components in 
the x and y directions respectively; g is the gravitational 
acceleration; Z is the water surface elevation; ρ  is water 
density; h is the local water depth; fCor is the Coriolis parameter; 

bxτ and byτ are shear stresses on the bed surface, 

and yxxyxx τττ ,,  and yyτ  are the depth integrated Reynolds 

stresses, which are approximated based on Boussinesq’s 
assumption: 
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where the eddy viscosity tν  is calculated by two eddy 
viscosity models, the depth-integrated parabolic model and the 
depth-integrated mixing-length model, in this version of 
CCHE2D model. 

B. Discretized Equations 
The numerical method used in CCHE2D model is called the 

Efficient Element Method (EEM). A partially staggered 
structured mesh system is used to solve the governing 
equations (Jia et al. [17]). The velocity components are solved 
at the collocation nodes, while the pressure 
(water-surface-correction) is solved at the centers of the cells. 
A quadratic interpolation function for nine-node element is 
constructed to discretize the momentum equations, while the 
continuity equation solved at the staggered nodes requires a 
bilinear interpolation function and a quadratic interpolation 
function (see Figure 1). 
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Fig.1 The nine-node element and the four-node element in a 

partially staggered mesh 
 

The compact forms of the explicit discretization of the 
continuity equation and the momentum equations are simply 
listed as follows, 
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where 'Z  is the correction of water surface elevation, tΔ  is 
the time step, n  is the time level, Q  is the divergence term 

and FS  is the source term, the convective terms uC  and vC  
are the discretized advection terms on the left side of Equations 
(2) and (3); uFM  and vFM  are the discretized momentum 
forcing terms (the pressure gradient, the Reynolds stresses, the 
shear stresses and the Coriolis force term) on the right side of 
Equations (2) and (3).  
 A pressure correction method is used to couple the 
velocity and the pressure field. The velocity is corrected by the 
pressure (water surface) correction term to enforce mass 
conservation as follows: 
 

'*1 Zgtuu n ∇⋅⋅Δ−=+ rr
                                                               (7a) 

nn ZZZ −= +1'                                                                           (7b) 
where *ur  is provisional velocity and Z is water surface 
elevation. 

III. MULTI-BLOCK ALGORITHM 
The treatment of the inter-block boundaries is the key to the 

success of a multi-block algorithm. It has to address two 
important issues: the information transfer and the conservation 
strategy.  

A. Multi-block Mesh System 
As shown in Figure 2, the present multi-block algorithm is 
based on a simple overlapping mesh system, in which an 
overlapping zone and two interfaces lay between two 
neighboring blocks. In this system the mesh lines can be 
discontinuous across the interfaces, the distributions of the 
mesh lines of the two neighboring blocks are independent of 
each other. 
 

Block 1 Block 2

Overlapping zone

Interfaces

A2

B2 B1

A1

 
Fig. 2 A Two-block Mesh 

B. Information Transfer 
The LIM is often used to transfer information across the 

interfaces. It is based on the assumed distributions for the 
variables to be interpolated and the interpolated results vary 
with the spatial distribution of the interface and mesh. It is 
therefore not necessarily consistent to the numerical solutions. 
As a result, the LIM is non-conservative, if no additional 
conservation condition or constraint is enforced in the 
derivation of the scheme. To remedy this, a new interpolation 
method, the Consistent Interpolation Method (CIM), is 
proposed in this study.  To make them consistent with the 
internal computational nodes, the interpolation nodes should be 
treated in the same way as those computational nodes. That is, 
the governing equation should also be solved at the 
interpolation nodes using the same numerical method as that 
for computational nodes. To achieve this, auxiliary elements 
are constructed around the interpolation nodes.  

In the present study, the CIM is used for the momentum 
equations. As can be seen (Figures 3 and 4), the auxiliary 
elements (A and B) are composed of velocity interpolation 
nodes, velocity computational nodes, pressure computational 
nodes, velocity auxiliary nodes, and pressure auxiliary nodes. 
For example, in element A, nodes NW, N, and NE are velocity 
computational nodes; W, P, E are velocity interpolation nodes; 
and SW, S, and SE are velocity auxiliary nodes. The auxiliary 
elements are beyond the blocked mesh system and constructed 
by extending the mesh lines at the interfaces into the 
neighboring block.  

Applying the momentum equations to the constructed 
element, one can obtain the consistent interpolation for the 

velocity on the interpolation node 'P  as follows: 
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which has the same form as Equation (6). 
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Fig. 3 Consistent interpolation: a two-block mesh 
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Fig. 4 Consistent interpolation: auxiliary elements 

 
 In Equation (8), the convective terms and the momentum 
forcing terms contain the information from the auxiliary 
velocity nodes and the auxiliary pressure nodes, which are 
obtained by the LIM. 

C. Conservation Strategy  
The LIM is in general non-conservative. As for the CIM, 
governing equations are discretized and solved at the 
interpolation nodes. It inherits the physical characteristics of 
the governing equations. However, it is non-conservative either 
due to the fact that the solutions on the auxiliary nodes are 
interpolated with the LIM. In order to reduce the error of the 
non-conservative interpolation, a conservation strategy must be 
applied. Meakin [19] proposed an imbalance correction scheme 
(IC) to redistribute the mass residual along the inter-block 
boundary to enforce the mass conservation, while Moon and 
Liou [21] redistributed the total amount instead of the residual 
(or discrepancy) using an area-weighted scheme. In this study, 
the IC scheme is adopted to maintain the conservation laws. In 
a two-block mesh as shown in Figure 2, for any quantity q (i.e., 

',, Zvu ) across the interfaces, the IC scheme for block 1 can 
be described as follows.  

qj
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where the subscript “ j,1 ” denotes the local value of q at node 
j  of block 1; the superscript “C” denotes the corrected value; 

D denotes the interface or the overlapping zone; and jw  is the 

local distribution weight.  
 To evaluate the distribution weight, it is assumed that the 
introduced local error is proportional to the local value, so is the 
correction. With this assumption, Zang and Street [36] used the 
following formula to distribute the residual.  
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D. Mass Conservation  
In Figure 2, along the interface A1-B1, the local flux of block 1 
can be corrected using the IC scheme.  
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where l  denotes the interface A1-B1 of block 1 and block2. 
 Similarly, according to IC scheme and Equation (5), the local 
water-surface-correction 'Z of block 1 within the overlapping 
zone can be corrected by the following equation. 
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where jA  is the local cell area.   

 For the LIM, Equations (10) and (11) are essential to 
maintain the mass conservation across the interfaces. 

E. Momentum Conservation  
Compared to the mass conservation, the momentum 
conservation across interfaces is more difficult to preserve. To 
maintain the momentum conservation, first of all, an accurate 
estimation method of the momentum flux at the interface is 
needed. According to the studies of Klopfer and Molvik [18], in 
order to avoid the discrepancies or inconsistencies at the 
interfaces, the numerical flux should be determined by the same 
numerical scheme as used in the model. Moon and Liou [21] 
used the Van Leer’s [31] flux-vector splitting procedures to 
evaluate the numerical flux at the interfaces. In the current 
study, with the CIM, preserving the momentum conservation 
can be enforced easily.  
 The discretization of the momentum equation (6) can be 
rewritten as follows: 
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where )( AhV = is cell volume, Vρ is the mass of the cell; ua  

and va  are the total accelerations in the x and y direction,  
respectively. 
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  According to Equations (9) and (12), the momentum 
discrepancies in the x and y direction along the interface A1-B1 
can be distributed as follows. 
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(13d) 
Equation (13) is used to correct local velocity to enforce 
momentum conservation along the interfaces. Since the 
discrepancies or residuals in Equations (11) and (13) are caused 
by the auxiliary nodes whose solutions are obtained by the 
LIM, these two equations are capable of removing the errors 
from the auxiliary nodes. For the pressure nodes within the 
overlapping zone, Equation (5) (discretized continuity equation 
for the computational pressure nodes) and Equation (11) (IC 
for mass conservation) are solved; while for the velocity 
interpolation nodes along the interfaces, Equations (8) and (13) 
are solved, which are comparable to Equation (6) (discretized 
momentum equations for the computational velocity nodes).  
Equation (7) is also applied to the velocity interpolation nodes 
along the interfaces. The above solution procedure for the 
interpolation nodes along the interfaces is therefore consistent 
with that of other computational nodes. It is conservative both 
in mass and momentum. 

F. Comparisons of LIM and CIM  
The LIM has been widely and successfully applied in the 

study of the multi-block algorithm [1-13, 18-24, 27-34 and 36]. 
It is simple and easy to implement, but it is only based on the 
assumed spatial distribution without considering the flow 
physics. 
As for the CIM, since it solves the governing equations over the 
auxiliary elements, it is more complicated and needs more 
computational efforts. However, the CIM is based on the 
governing equations which are derived according to the 
conservation laws. With the help of the IC method (Equations 
(11) and (13)), the CIM can inherit the physical characteristic 
(i.e., conservation) of the numerical method used for the 
computational nodes. 

IV. EXAMPLES AND DISCUSSIONS 
This section presents the validation of the present multi-block 
algorithm and its implementation to the explicit version of 
CCHE2D model, in which two zero-equation eddy viscosity 
models are available. For illustration purposes, the following 
domains are considered as “geometrically complex”: a straight 
channel, a straight channel with a spur dike, a bifurcation 
channel, and a sudden-expansion channel. The mixing length 
turbulence closure model is used for all examples.  

 Note that turbulent flows are complicated, and many 
factors play important roles in the accuracy of numerical 
simulations, such as the numerical scheme, mesh resolution, 
turbulence closure schemes etc. The multi-block algorithm is 
only a special technique to enhance the capability and 
efficiency of the numerical models to handle the geometrically 
complex domains. It cannot replace or compensate for the other 
important factors, especially the turbulence closure schemes. 

A. Straight Channel  
A simulation of a steady subcritical flow in a straight channel 

is used to validate the correctness of the connectivity at the 
interfaces.  This straight channel is 3.3m long and 0.5m wide 
with a flat bed. The Manning resistant coefficient is 0.011. The 
water surface elevation of 0.055m is imposed at the 
downstream end, while a discharge of 0.01m3/s is imposed on 
the upstream end of the channel. As shown in Figure 5, the 
whole channel is decomposed into three blocks with mesh sizes 
are 20×10, 29×30, and 20×20.   

The flow structure in this channel is quite simple: the free 
surface elevation changes linearly from upstream to 
downstream. Figure 6 shows a smooth and consistent water 
level profile across the interfaces. As can be seen, the 
simulation results correctly reflect this simple flow structure as 
expected. 

water level

Interface 1 Interface 2

Block 1 Block 2 Block 3

 
Fig. 5 Mesh and layout of a straight channel 
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Fig. 6 Water level profiles in the longitudinal direction 

B. Straight Channel with a Spur Dike 
The second test case is a straight flume with a spur dike based 
on the experiment conducted by Rajaratnam and Nwachukwu 
[25].  The flume is 0.914m wide, 37m long and 0.76m deep. 
The experimental run A1 is simulated here. The flume bed and 
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walls are smooth and the Manning’s coefficient is 0.011. The 
spur dike is an aluminum plate with a thickness of 3mm and a 
projection length b  of 0.152m. The simulated reach is 6m 
long.  A discharge of 0.0453 m3/s is imposed at the upstream 
end of the channel, while a water surface elevation of 0.189 m 
is specified at the downstream of the channel. 

The spur dike has significant influences on the flow patterns 
around it. It causes a recirculation zone downstream with a 
length of about 12b.  Two regions of the disturbed flow, a 
deflected flow region and a shear layer, can be identified. 

In order to investigate the efficiency improved by local mesh 
refinement, a single-block coarse mesh (43×9), a single-block 
fine mesh (77×20) and a two-block mesh (43×9+37×14) in 
which the CIM is used, are generated, as shown in Figure 7. In 
the two-block mesh, the resolution of block 1 (main channel) is 
the same as that of the single-block coarse mesh, while block 2 
(dike zone) has the same mesh resolution as single-block fine 
mesh. Figure 8 compares the measured and simulated velocities 
at the cross sections: bx 2= , b4 , b6 , and b8  ( b  is the 
length of the dike). Without sufficient mesh resolution, the 
single block coarse mesh predicted the circulation zone with 
larger errors. The use of the two-block mesh improves results 
significantly. The best results are obtained using the 
single-block fine mesh, as expected. The results obtained with 
two-block mesh which uses considerably less mesh nodes are 
quite close to those obtained with the single-block fine mesh. 
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Fig. 7 Straight Channel with Spur Dike 
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(b) at x = 4b 
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(c) at x = 6b 
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(d) at x = 8b 

Fig. 8 Velocity Profiles 
 

The comparison of the LIM and the CIM is also investigated 
based on another two-block mesh (54×13+58×17), as shown 
in Figure 9. Figure 10 and Figure 11 show the local water 
surface distribution and the velocity pattern within the 
circulation zone of the dike, respectively.  As can be seen, the 
flow variables (free water surface elevation and flow velocity) 
are distributed smoothly and consistently across the interfaces. 
The comparisons of the measured and simulated velocities are 
plotted in Figure 12. Obviously the CIM yields more accurate 
results.  
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Fig. 9 A Two-block Fine Mesh 
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Fig. 10 Local water surface distribution 
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(b) Lagrangian Interpolation 
Fig. 11 Local velocity pattern 
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Velocity (m/s)

D
is

ta
nc

e
fro

m
R

ig
ht

W
al

l(
m

)

-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured x=6b
Consistent interpolation at x=6b
Lagrangian interpolation at x=6b

 
(c) at x = 6b 
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(d) at x = 8b 

Fig. 12 Velocity Profiles 
 

 Figure 13 shows the mass conservation along the channel. 
For both methods, the mass error is less than 1%, which proved 
that the present multi-block algorithm is mass conservative. As 
can be seen, the CIM performed better in mass conservation 
due to the fact that it is conservative both in mass and 
momentum using the IC method. 
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Fig. 13 Mass error along the channel 

C. Bifurcation Channel with  90 Degree Angle 
 The numerical simulation of a divergent open channel flow 
is based on the experiment performed by Shettar and Murphy 
[26]. The main channel is 6m long with a 3m-long branch 
channel set at a right angle (900). The width and depth of both 
the main and the branch channel are 0.3m and 0.25m, 
respectively. The channel bed is finished with smooth cement 
plaster. The simulated reach of the main channel is 1.2m long 
and that of the branch channel is 0.9m long. The Manning’s 
coefficient is 0.011, and a discharge of 0.005673m3/s is applied 
at the upstream end of the main channel. The water surface 
elevation of 0.055m and 0.045m are imposed at the 
downstream of the main channel and the branch channel, 
respectively. At the junction, the water detaches from the 
corner with a circulation zone developed along the wall. 
Accordingly, the free water surface drops at the junction and 
then recovers at downstream of the main channel.  
 As shown in Figure 14, the effects of the mesh resolution is 
investigated based on a single block mesh (59 × 91) and a 
two-block mesh (59 × 25+67 × 25) which decomposed the 
solution domain into the main channel and the branch channel. 
Their mesh resolutions are the same except a slight difference 
in the distribution of mesh lines in x direction in the branch 
channel.  The local distribution of water surface elevation and 
the velocity pattern are displayed in Figure 15 and Figure 16, 
respectively. As can be seen, the enforcement of the mass 
conservation across the interfaces successfully removed the 
inconsistency created by the interpolation. Figure 17 and 
Figure 18 show the comparisons of the water level profiles in 
the main channel (at y = 0.0m and y = 0.3m) and the branch 
channel (at x = 0.45m and x = 0.75m). Almost no difference can 
be identified between these two cases. It is shown that the 
proposed multi-block algorithm is quite stable. With the same 
mesh resolution, the two-block mesh is able to reproduce the 
results of the single block mesh.   
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(c) Two-block Mesh 

Fig. 14 Single-block Mesh and Tow-block Mesh 
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(b) Two-block Mesh 

Fig. 15 Local water surface distribution 
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(b) Two-block Mesh 

Fig. 16 Local velocity pattern 
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Fig. 17 Water surface profile in the main channel 
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Fig. 18 Water surface profile in the branch channel 
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 A four-block mesh (80 × 30+15 × 25+15 × 25+20 × 25) is 
used to compare the CIM and the LIM, as shown in Figure 19.  
Figure 20 and Figure 21 show the measured and simulated 
velocity profiles in the main channel (at x = 0.45m, 0.60m, 
0.75m and 1.05m) and the branch channel (at y = 0.495m, 
0.795m and 1.095m), respectively. In the main channel, there is 
no significant difference between the CIM and the LIM; while 
in the branch channel, the CIM performed better. 
 

Y = 1.095 m

Y = 0.795 m

Y = 0.495 m

X = 0.45 m X = 0.6 m X = 0.75 m X = 1.05 m

Inlet Outlet

Outlet

 
Fig. 19 Four-block Mesh 
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Fig. 20 Velocity profiles in the main channel 
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Fig. 21 Velocity profiles in the branch channel 

 

D. Sudden-Expansion Channel 
The flow simulation in a sudden-expansion flume is based on 
the experiment measured by Xie [35]. The flume is made of 
concrete bed and walls, with a bed slope of 1/1000, a length of 
18m and a width of 1.2m. The sudden expansion width HΔ  is 
0.6m wide. One experiment with the flow discharge of 
0.01815m3/s, the approach velocity of 0.3m/s and the approach 
Froude number of 0.3 is simulated. As shown in Figures 22 and 
23, the flume is decomposed into two blocks with mesh sizes of 
15×91 and 20×60, respectively. Obviously, this case is more 
challenging because the interface lies in the shear layer rather 
than the expansion section.  
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Block 1
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Fig. 22 Layout of sudden-expansion channel 
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Fig. 23 A Two-block Mesh 

 
 Figure 24 compares the velocity patterns from the CIM and 
the LIM. No significant difference is found between them.  
Figure 25 shows the comparisons of the simulated and 
measured velocities at  x = 0.0m, 1.0m, 2.0m, 3.0m, 4.0m and 
5.0m. As can be seen, the overall agreement between the 
simulated results and the measured data are quite good. Due to 
the application of the zero-equation eddy viscosity model, the 
recirculation length is over-predicted compared to the 
measured data which indicated a length of 4.6m equivalent to 
7.83 HΔ . Jia et al. [17] applied the single-block version of 
CCH2D model to this case and obtained more accurate results 
with the use of ε−k  turbulence model. It is shown that 
compared to the IIM, the CIM predicted the velocity profiles in 
the shear layer more accurately. 
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(b) Lagrangian Interpolation 
Fig. 24 Local velocity pattern 
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Fig. 25 Velocity profiles 

 

V. CONCLUSIONS 
A conservative multi-block algorithm has been developed 

for two-dimensional hydrodynamic model. Both the LIM and 
the CIM are used to transfer information between neighboring 
blocks. Different from the LIM, which directly interpolates 
solutions at the interpolation nodes with assumed distribution, 
the CIM solves the momentum equations within the auxiliary 
elements constructed for the interpolation nodes. With the IC 
method, both methods are mass-conservative across the 
interfaces, but the CIM is capable of maintaining the 
momentum conservation as well. Although it needs more 
computational efforts, the CIM produces physically more 
reasonable results. Several flow simulation examples are used 
to test the multi-block algorithm presented in this paper. It is 
shown that the CIM yields more accurate results than the LIM. 
The current multi-block algorithm is capable of efficiently 
producing results whose accuracy is comparable to those 
obtained with the single-block meshes.  
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