
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

193

Abstract—Investigating language acquisition is one of the most 
challenging problems in the area of studying language. Syllable 
learning as a level of language acquisition has a considerable 
significance since it plays an important role in language acquisition.  
Because of impossibility of studying language acquisition directly 
with children, especially in its developmental phases, computer 
models will be useful in examining language acquisition. In this 
paper a computer model of early language learning for syllable 
learning is proposed. It is guided by a conceptual model of syllable 
learning which is named Directions Into Velocities of Articulators
model (DIVA). The computer model uses simple associational and 
reinforcement learning rules within neural network architecture 
which are inspired by neuroscience. Our simulation results verify the 
ability of the proposed computer model in producing phonemes 
during babbling and early speech. Also, it provides a framework for 
examining the neural basis of language learning and communication 
disorders. 

Keywords—Brain modeling, computer models, language 
acquisition, reinforcement learning. 

I. INTRODUCTION

XPLANATION of language is one of the most important 
subjects when brain functions are to be investigated [1]. 

In contrast to great advances in cognitive science, our 
knowledge of human brain interactions during processing, 
learning and acquiring language has little improvement over 
the last 50 years [2]. This happened due to unavailability of 
animal models which allow more detailed studies of language 
processing using invasive but informative techniques [3]. At 
this juncture, computer models and simulations provide more 
adequate understanding of both structures and causes-and-
effects which are involved in a specific task. Computer 
models also yields to further advances in computer science 
specifically in the connectionist branch of Artificial 
Intelligence [4].  

In the field of language acquisition, computational 
approaches and computer simulations can be advantageous by 
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providing a framework in order to achieve more adequate 
investigation into validity of proposed theorems. Moreover, 
using computer models help researchers to study different 
phases of learning, especially initial and developmental states, 
which are very difficult to be carried out with a child [2]. 

In this paper, a computer model of language acquisition 
using only simple associational and reinforcement learning 
rules is outlined. Associative neural networks are regarded as 
standard models for Hebbian Cell Assemblies which have 
been argued to support a variety of different cognitive tasks. 
In the field of language acquisition, cell assembly concept 
demonstrated its ability in sharpening our knowledge about 
the cortical interactions underlying language acquisition [5].

Language acquisition occurs in two stages. First, in sensory 
phase, a sensory template is formed by listening to and 
memorizing tutor’s speech. Then, in sensorymotor phase, the 
infant tries to produce the same syllable as his tutor by 
reinforcing utterances which are sufficiently similar to 
memorized templates. The child uses his own auditory and 
somatosensory feedbacks to investigate the similarity. 
Repeated production of the sounds results in tuning 
feedforward connections that ultimately diminish the 
feedback-based reinforcement signals. This assumption is 
motivated by Directions Into Velocities of Articulators model 
(DIVA) which is a neural network model of speech 
production [6]. DIVA as a conceptual model provides a 
framework for interactions between feedforward control 
system and auditory and somatosensory control systems. 
Feedforward control system includes premotor and primary 
motor cortex along with cerebellum. Auditory and 
somatosensory control systems include both sensory and 
motor cortical areas [6]. 

 To implement the proposed computer model we assume 
that the sensory learning is completed and concentrate only on 
the sensorymotor phase of learning. The results obtained from 
preliminary experiments show that the computer model is 
reasonably valid. It starts with random activation in premotor 
cortex and ends up producing exact syllables. An important 
feature of the proposed computer model which distinguishes it 
from other computer models is the use of Hebbian cell 
assembly concept and reinforcement learning within neural 
network architecture which are inspired by neuroscience as 
well as its congruity with DIVA model. Moreover, other 
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implementations of DIVA do not focus on cortical interactions 
during syllable learning. Furthermore, our proposed computer 
model has the capability to achieve more precise insight into 
language acquisition process in both healthy and brain 
damaged subjects.  

This paper is organized as follows. DIVA model and 
conceptual approaches are introduced in Section II. The 
proposed method to simulate the computer model is explained 
in Section III. Results of proposed computer method are 
presented in Section IV. Final conclusions are then expressed 
in Section V. 

II. DIVA MODEL AND APPROACH

The DIVA model has been developed based on various 
neuroanatomical and neurophysiological studies [6]. This 
model is schematized in Fig. 1. Each block represents a group 
of neurons in human brain. In this model, projections from 
premotor cortex to primary cortex correspond to feedforward 
control of the speech articulators. Efference copy projections 
are from premotor cortex to auditory cortical area in the 
superior temporal gyrus as well as orosensory area in the 
supramarginal gyrus. These efference copy projections 
generate internal prediction of auditory and somatosensory 
feedbacks corresponding to each syllable. In this model, 
comparison between efference copy projections to the 
auditory cortical area and supramarginal gyrus and the 
auditory and somatosensoy feedbacks, results in error signals 
which are mapped onto the cerebellum. Eventually, based on 
these error signals, a reinforcement signal is transmitted by the 
cerebellum to modulate intrinsic plastic connections within 
primary cortex, as well as the projection from premotor 
cortex. These projections through the cerebellum to motor 
cortex form components of the DIVA mapping [6], [7]. 

Besides the assumptions used in the DIVA model, some 
additional functional ones are also applied in our model. To 
start with, in order to decrease the interfering effects of 
delayed auditory and somatosensory feedbacks on syllable 
learning, two strategies are proposed. First, the auditory and 
somatosensory feedbacks are set significantly weaker than 
efference copy signals. The second strategy is based on 
adaptation mechanism which produces delayed, negative 
images of auditory and orosensory activities in the superior 
temporal gyrus and supramarginal gyrus, in order to decrease 
delayed feedbacks interfering effects. Then it was assumed 
that the associational learning is asymmetric which means 
presynaptic activities are followed by postsynaptic activities 
[8]. 

In summary, the production of utterance starts with random 
activities in premotor cortex which are triggered by premotor 
drives and ends up producing stereotyped patterns of activity 
in primary cortex. The source of premotor drive is considered 
to be effects of basal ganglia modulation of motor cortical 
commands [9]. 

Fig. 1 Conceptual model architecture

III. METHODS

In this paper, five neural populations are considered which 
contain several cell assemblies, corresponding to language 
related areas in brain. Their interactions are based on the 
mentioned conceptual model in section II. Each syllable 
produced by proposed computer model is a combination of 50 
vocal features, while each primary cortex assembly represents 
motor related aspects of one feature, and each auditory or 
orosensory assembly represents sensory related aspects of one 
feature. Premotor cortex population consists of 250 
assemblies. The cerebellum contains 5 assemblies 
corresponding to tutor syllables. The tutor speech consists of 5 
syllables (indexed by letters A-E) and each syllable is encoded 
by an individual set of assemblies [8].   

The output of each neural unit represents the activity rate 
within a corresponding cell assembly. The activity of each 
neural unit is encoded by the average of neural firing rates 
over each syllable. Neural firing rates are assumed to be 
constant in the course of premotor drives for each neural 
population except for superior temporal gyrus and 
supramarginal gyrus and zero during the gap between 
syllables. In the superior temporal gyrus and supramarginal 
gyrus each syllable is divided into four time stages based on 
the combination of efference copy, auditory and 
somatosensory feedback inputs received during that syllable. 
So that during the early part of each syllable, efference copy, 
which relates to the current syllable, and delayed auditory and 
somatosensory feedbacks from the previous syllable are 
received. During the middle part of each syllable only 
efference copy is received; and during the late part of each 
syllable, efference copy and auditory and somatosensory 
feedbacks that correspond to the same syllable are received. 
Finally, during the gap part of each syllable, only auditory and 
somatosensory feedbacks are received. The activities that are 
passed on to the cerebellum are calculated from the average 
activity in the superior temporal gyrus and supramarginal 
gyrus during the early and middle part of each syllable [8]. 

To simulate the proposed model, simple associational and 
reinforcement learning rules are used. The associational 
learning rule is based on analogies with NMDA receptor 
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dependent long term potentiation (LTP). The synaptic strength 
change is calculated as follows: 

(reinforcement × plasticity trace × postsynaptic activity – 
threshold) × presynaptic activity =         (1) 

[R (t-tpre) apost(t) – Thre] apre(tpre).
where, apre(t) and apost(t) represent the activity level of the pre 
and postsynaptic assemblies at time t.  denotes plasticity 
trace that is proportional to the amount of the NMDA-receptor 
binding and determines the time window for neural plasticity. 
Multiplying plasticity trace by postsynaptic activity results in 
plasticity signal, (t-tpre) apost(t), proportional to postsynaptic 
calcium concentration. Furthermore, cerebellum is assumed to 
transmit a reinforcement signal ‘R’ which modulates the 
plasticity signal in all primary cortex assemblies. Moreover, 
Plasticity signals above a threshold value ’Thre’ increase 
synaptic strength  while signals below ‘Thre’ leads to long 
term depression. This threshold value is related to the average 
of activity in the postsynaptic assembly [8].  

Among all neural populations, only primary cortex includes 
intrinsic excitatory connections. Also, each population 
includes a single inhibitory assembly which is connected to all 
assemblies in the corresponding population. This inhibition 
leads to a competition among excitatory assemblies. In 
addition to these local circuit mechanisms, two homeostatic 
mechanisms are considered. The first is normalization of 
synaptic strength while presynaptic normalization is applied 
before postsynaptic ones. The second mechanism is inhibitory 
plasticity which makes inhibitory connection strengths 
relevant to excitatory assembly activities [8].  

For all neural population connections except the intrinsic 
primary cortex connections, initial connection strengths are 
based on single-projection strategy, in which each presynaptic 
assembly connects to a single postsynaptic assembly. This 
ensures the independence between any two assembly inputs in 
the postsynaptic populations. For intrinsic primary cortex 
connections to avoid correlations arising from multisynaptic 
pathways, a “uniform” strategy is used, in which each 
presynaptic assembly connects to all postsynaptic assemblies 
with the same strength. In addition, a zero mean Gaussian 
noise with a standard deviation equal to 10% of the strength of 
the nonzero synapses is added to all plastic connections during 
the initialization phase. One should notice that all negative 
strengths are set to zero after adding the noise [8]. 

IV. RESULTS

To evaluate the validity of the proposed model, simulation 
of each syllable involves numerous iterations of three 
subroutines: 1) calculating activity patterns corresponding to a 
single syllable 2) applying the synaptic plasticity rule, and 
finally 3) updating the homeostatic mechanisms in the model. 
These steps are repeated for 30000 syllables. 

Cerebellum conducts syllable learning by transmitting a 
reinforcement signal to modulate plasticity in all primary 
cortex assemblies. The results of reinforcement based syllable 
learning and also initial phase of learning are shown in Fig. 2 
and Fig. 3. 

Initially, primary cortex connectivity is nearly uniform 
while the activity pattern of sensory related areas and also 
primary cortex are random. Note that self connections 
(diagonal entries) are set to zero in order to prevent self 
correlations.  

The progress of reinforcement learning results in similar 
patterns of connectivity for assemblies encoding the same 
tutor syllable. Thus the pattern of intrinsic primary cortex 
connections starts to show blocks of strong connections along 
the diagonal due to assemblies encoding the same tutor 
syllable are arranged next to each other. This pattern of 
intrinsic primary cortex connectivity gives rise to the 
production of primary cortex activity matched to the tutor 
template. The progress of reinforcement learning also leads to 
configuration of correlated pattern of activity in sensory 
related areas. Also, syllables are produced in a random 
sequence since premotor cortex is driven by the random 
premotor drive. 

Fig. 2 Initial phase. A) Auditory area activity. B) Orosensory area 
activity. C) Intrinsic primary cortex connections. D) Primary cortex 

activity.  
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Fig. 3 After learning phase. A) Auditory area activity. B) Orosensory 
area activity. C) Intrinsic primary cortex connections. D) Primary 

cortex activity. 

V. CONCLUSIONS

In this paper, a computer model of sensorymotor language 
acquisition using simple associational and reinforcement 
learning rules is outlined. This model is guided by a 
conceptual neural model of speech motor control, DIVA.  

In proposed computer model, first, initially random 
premotor activities in premotor cortex are associated with 
auditory and somatosensory feedbacks using simple Hebbian 
learning. This step yields to efference copy signals. Then, 
efference copy signals in cooperation with auditory and 
somatosensory feedbacks result in indicator signals which are 
mapped through the cerebellum. Based on comparison 
between these indicator signals and stored templates, a 
reinforcement signal is transmitted by the cerebellum. This 
reinforcement signal modulates intrinsic plastic connections 
within primary cortex as well as the projection from premotor 
cortex. Finally, stereotyped sequences of primary cortex 
activities as well as sensory activities in sensory related areas 
are produced. In summary, the proposed computer model 
starts with random activation in premotor cortex and ends up 
producing exact syllables. The results, which are obtained 
from computer simulations, show that the computer model is 
reasonably valid. 

The proposed computer model may be a starting point for 
further investigations into language acquisitions. Also, Speech 
disorders can be simulated by damage to neural units of the 
model that correspond to language related areas in the brain 
[9]. Furthermore, this model has great potential for studying 
other acquisition theories. 
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