
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1996

Abstract—The traditional software product and process metrics

are neither suitable nor sufficient in measuring the complexity of

software components, which ultimately is necessary for quality and

productivity improvement within organizations adopting CBSE.

Researchers have proposed a wide range of complexity metrics for

software systems. However, these metrics are not sufficient for

components and component-based system and are restricted to the

module-oriented systems and object-oriented systems. In this

proposed study it is proposed to find the complexity of the JavaBean

Software Components as a reflection of its quality and the component

can be adopted accordingly to make it more reusable. The proposed

metric involves only the design issues of the component and does not

consider the packaging and the deployment complexity. In this way,

the software components could be kept in certain limit which in turn

help in enhancing the quality and productivity.

Keywords—JavaBean Components, Complexity, Metrics,

Validation.

I. INTRODUCTION

software component is a system element offering a

predefined service or event, and able to communicate

with other components. Clemens Szyperski [1] and David

Messerschmitt give the following five criteria for what a

software component shall be to fulfil the definition:

• Multiple-use

• Non-context-specific

• Composable with other components

• Encapsulated i.e., non-investigable through its interfaces

• A unit of independent deployment and versioning.

A simpler definition can be: A component is an object

written to a specification. It does not matter what the

specification is: COM, Enterprise JavaBeans, etc., as long as

the object adheres to the specification. It is only by adhering to

the specification that the object becomes a component and

gains features such as reusability.

When a component is to be accessed or shared across

execution contexts or network links, techniques such as

Parvinder S. Sandhu is Professor with Computer Science &

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-

Technology, Sahauran, Distt. Mohali, Punjab-140104, India (phone: +91-

98555-32004; e-mail: parvinder.sandhu@gmail.com).

Sandeep Khimta is Lecturer with Computer Science & Engineering

Department, Rayat & Bahra Institute of Engineering & Bio-Technology,

Sahauran, Distt. Mohali , Punjab, India

Amanpreet Singh Brar is Asstt. Professor & Head (Computer Science &

Engineering Department), Guru Nanak Dev Engg. College, Ludhiana, Punjab,

India.

serialization or marshalling are often employed to deliver the

component to its destination. Reusability is an important

characteristic of a high quality software component. A

software component should be designed and implemented so

that it can be reused in many different programs.

Benefits of Component-based development include:

• Lower cost of development and shorter delivery

schedules

• Better reliability and reduced maintenance costs

• Lets developers focus on their business requirements and

core competencies, rather than re-solving the same technical

problems over and over

• Provides extensibility because components can be

assembled into many different configurations to provide

unique variants of a system as needed. (This is especially

common today for industries such as cellular technology,

consumer electronics, and automotive systems)

• Components that use different languages and technologies

can be mixed and matched

• Higher level models make complex systems easier to

understand: component based development is the best

technique for managing complexity of systems as they increase

in size and scope.

Measuring the complexity of software is helpful during

analyzing, testing, and maintaining the system. This

measurement could direct the process of improvement and

reengineering work. A complexity measure could also be used

as a predictor of the effort that is needed to maintain the

system. In component-based systems, functionalities are not

performed within one component. Components communicate

and share information in order to provide system

functionalities. So to measure the complexity of component-

based systems we require metrics that consider component’s

interfaces and component’s relations apart from its internal

codes. It is clear from the study of the existing literature that

researchers have proposed a wide range of complexity metrics

for software systems.

The traditional software product and process metrics are

neither suitable nor sufficient in measuring the complexity of

software components, which ultimately is necessary for quality

and productivity improvement within organisations adopting

CBSE. Researchers have proposed a wide range of

complexity metrics for software systems [2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15]. In this proposed study it is proposed to

find the complexity of the JavaBean Software Components as

A Complexity Measure for JavaBean based

Software Components

Sandeep Khimta, Parvinder S. Sandhu, and Amanpreet Singh Brar

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1997

a reflection of its quality and the component can be adopted

accordingly to make it more reusable. In this way, the software

components could be kept simple which in turn help in

enhancing the quality and productivity.

II. PROPOSED COMPLEXITY METRIC

We assume that the complexity of a component depends

closely on what contributes to develop components. Strictly, in

an object-oriented context, component may consist of classes

(base class and derived classes), which in turn may involve

various methods, attributes and interfaces. So, four elements

are taken into consideration to propose the new metric.

 The first element, V(Componentx) is the Variable Factor

that tells complexity of the variables defined in the component.

Variables may consist of member variables of a class having

scope for the entire class and the parameters, which are local

to a particular method. This may be defined as shown in the

following equation:

 Where n1, n2 and n3 are the total number of simple,

medium and complex variables in the Componentx. Here,

wsimplei , wmediumj and wcomplexk are the corresponding

weight value of the simple, medium and complex variables

variable respectively. Variables are categorized into three

categories; primitive, user defined and structured.

 Primitive variables are the variables, which are of primitive

data type such as int, float, char, double, long etc.

 User defined variables having derived data types such as

string, date etc.

 Structured variables having complex nature like link list,

stack, queue etc.

 These variables are put into three categories called simple,

medium and complex which may have different weight values

as a contribution towards the overall complexity of the class.

The second element, I(Componentx) is the Interface Factor

that tells complexity of the interface methods used in the

components.

 Interfaces are the access points of component, through

which a component can request a service declared in an

interface of the service providing component. Mathematically,

I(Componentx) is defined as sum of complexity of the interface

methods of the class. The complexity of interface methods

depends on its nature. The nature of the interface methods are

determined on the basis of their arguments and return types.

Arguments and return types can have any of the three data

types discussed earlier (primitive, user defined and structured).

The weight values can be assigned to these methods by

considering the total number of methods in each category. The

different category methods have different value of weight.

Weight of the method also depends on the number of methods

in that category. If the number of methods are more then the

weight value assigned will also increase. Now, Mathematically

the Interface Factor, I(Componentx), can be written as:

∑∑∑
===

++=
3

1

1

1

1

1

)(
m

k

m

j

m

i
x wwwComponent complexmediumsimple

I
kji

 Where m1, m2 and m3 are the total number of interface

methods of simple, medium and complex nature respectively.

Here, wsimplei , wmediumj and wcomplexk are the

corresponding weight value of the simple, medium and

complex nature of interface methods respectively.

 Third element, C(Componentx) is the Coupling Factor that

tells rate of coupling of the methods in the component and

defined in terms of ratio of number of other methods called in

the methods of the component and total number of declared

methods in the component.

D

O
C component

x
=)(

 Where O is total number of other methods being called in

the methods of the Componentx and D is the total number of

declared methods in the Componentx.

 Fourth element, CC(Componentx) is cyclometric complexity

of the methods of the Componentx.

 The complexity measure approach taken is to measure and

control the number of paths through a program. This approach,

however, immediately raises the following nasty problem:

"Any program with a backward branch potentially has an

infinite number of paths." It is possible to define a set of

algebraic expressions that give the total number of possible

paths through a (structured) program, using the total number of

paths has been found to be impractical. Because of this the

complexity measure developed here is defied in terms of basic

paths-that when taken in combination will generate every

possible path [3]. The conditional constructs are calculated to

express the cyclometric complexity of a Method of a class.

 Therefore the complexity of the component is sum of all the

four elements defined above:

)()()()()(CCCCC xxxxx
CCCIVComplexity +++=

 Classes contained in a component are derived into base

class and derived classes. Base classes are imported classes

from other reused library or packages. Derived classes are

identified classes during component design in a domain. For

the experimentation, this inheritance is restricted only upto one

level. Classes can be categorized on the basis of methods and

attributes used in the class. The weight values to these classes

are assigned on the basis of total number of methods and

variables used in that class.

III. RESULTS & DISCUSSION

 To get the values of the above metrics, an experiment is

conducted on twenty JavaBean components collected from the

open source repositories and results of the calculated

complexity is given in Table I where TV stands for Total

Variables, TDM stands for Total Declared Methods, TIM

stands for the total Interface Methods in the component.

∑∑∑
===

++=
3

1

2

1

1

1

)(
n

k

n

j

n

i
x wwwComponent complexmediumsimple

V
kji

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1998

 TABLE I

COMPLEXITY RESULTS OF THE EXAMPLE COMPONENTS

TV TDM TIM
V

(Cx)
I (Cx) C(Cx)

CC

(Cx)

Complexity

(Cx)

1 2 2 0 0.5 1.5 0 2

3 4 4 0 1 1 0 2

3 4 4 0 1 1 0 2

8 6 6 2.9 1.5 2.16 0 6.5667

12 10 9 4.98 2.1 2.3 1 10.38

12 11 10 5.34 2.5 2.18 3 13.022

22 16 15 9.58 4.2 2.18 7 22.967

21 16 15 9.48 4.44 2.12 8 24.045

25 23 22 10.7 6.34 2.08 8 27.207

1 2 2 0 0.5 1 0 1.5

3 3 3 0 0.9 1 0 1.9

3 3 3 0 0.9 1 0 1.9

8 5 5 2.9 1.4 2 0 6.3

12 9 8 4.98 2 2.44 1 10.424

12 10 9 5.34 2.4 2.3 3 13.04

21 14 13 9.06 3.58 2.28 7 21.926

20 14 13 8.96 3.82 2.21 8 22.994

24 21 20 10.2 5.6 2.09 8 25.895

2 4 4 0 1 1.25 0 2.25

3 7 7 0 1.6 1.42 1 4.0286

TABLE II

COMPARATIVE RESULTS OF RCC & PROPOSED METRIC

Component

No.
Complexity(Ci) RCC (Ci)

1 2 0

2 2 2

3 2 2

4 6.5667 2.5

5 10.38 1.5

6 13.022 1.5

7 22.967 1.1667

8 24.045 1

9 27.207 0.875

10 1.5 0

11 1.9 2

12 1.9 2

13 6.3 2

14 10.424 1.5

15 13.04 1.5

16 21.926 1

17 22.994 0.85714

18 25.895 0.85714

19 2.25 4

20 4.0286 0

These weight values are used to compute the proposed

complexity metric defined in the last section. The

implementation of the complexity metric calculation is

performed in the MATLAB 7.4 that make use of the regular

expression to parse the code to generate the essential

information needed for the mathematical formulae of the

proposed complexity metric. Table I gives the value of the

complexity metrics on these components along with the other

information such as: Total Variables, Total Interface Methods,

Total Declared methods, Variable Factor, Interface Factor,

Coupling Factor and Cyclometric Complexity Factor of the

proposed metric.

 To validate the proposed metric, a metric called Rate of

Component Customizability (RCC) defined by Washizaki et.

al. [10] is used. Metric RCC(C) is the percentage of writable

properties in all attributes in a class of a component. The same

JavaBean components are used to get the value of this metric

and the result obtained is given in Table II.

 A correlation analysis was carried out for complexity metric

Complexity(Ci) and Rate of Component Customizability

RCC(Ci)by using the Karl Pearson Coefficient of Correlation.

The correlation coefficient between Complexity(Ci) and

RCC(Ci) is -0.301, which shows a negative correlation

between these two metrics.

IV. CONCLUSION

 The result shows that there exists inversely proportional

relation between the Rate of Component Customizability and

newly proposed complexity metric. When we interpret it

means that high complexity leads to the low customizability

thus results in high maintainability. The proposed metric seems

to be logical and fits into the empirical evaluation. But, the

above empirical evaluation is restricted to only one level of

inheritance; it ignores the complexity involved due to the

multi-level inheritance; it involves only the design issues of the

component and does not consider the packaging and the

deployment complexity. So, in future the metric can be

extended and more dimensions can be added in more

comprehensive complexity measure of JavaBean components.

REFERENCES

[1] Clemens Szyperski, Component Software: Beyond Object-Oriented

Programming. 2nd ed. Addison-Wesley Professional, Boston 2002.

[2] Sedigh Ali, S Gafoor, A. Paul, Raymond A., "Software Engineering

Metrics for COTS-based Systems", IEEE Computer, May 2001. pp 44-

50

[3] T. McCabe, "A Software Complexity Measure", IEEE Trans. Software

Engineering SE-2 (4), 1976, 308-320.

[4] D. Kafura, S. Henry, "Software Quality Metrics Based on

Interconnectivity", Journal of Systems and Software, June 1981, pp 121-

131

[5] H. Li, "Object-oriented metrics that predict maintainability", Journal of

Systems and Software 1993, Volume 23 Issue 2, pg: 111-122

[6] Chidamber, Shyam and Kemerer, Chris, "A metrics Suite for Object-

oriented Design", IEEE Transactions on Software Engineering, June

1994, pp. 476-492

[7] Nasib S. Gill, P. S. Grover: "Few important considerations for deriving

interface complexity metric for component-based systems", ACM

SIGSOFT Software Engineering Notes, March 2004 Volume 29 Issue 2

[8] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS Components”,

6th International Workshop on Quantitative Approaches in Object-

Oriented Software Engineering (QAOOSE'2002), Málaga, Spain. (2002)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1999

[9] M. Bertoa, A. Vallecillo, “Usability metrics for software components”,

QAOOSE 2004, Oslo. (2004)

[10] N. S. Gill, P. S. Grover, "Component-Based Measurement: Few Useful

Guidelines." ACM SIGSOFT Software Engineering Notes 28(6) (2003).

[11] R. Dumke, A. Schmietendorf, "Possibilities of the Description and

Evaluation of Software Components." Metrics News 5(1) (2000).

[12] M. A. Boxall, S. Araban, “Interface Metrics for Reusability Analysis of

Components”, Australian Software Engineering Conference

(ASWEC'2004), Melbourne, Australia. (2004)

[13] H. Washizaki, H. Yamamoto, Y. A. Fukazawa, “Metrics Suite for

Measuring Reusability of Software Components”, Metrics'2003. (2003)

[14] M. Goulão, F. B. Abreu, “Independent Validation of a Component

Metrics Suite”, IX Jornadas de Ingeniería del Software y Bases de

Datos, Málaga, Spain. (2004)

[15] Arun Sharma, P S Grover, Rajesh Kumar, "Classification of component

metrics", International Conference on Software Engineering Research

and Practices (SERP) June 2005.

