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Abstract—This paper study about using of nonparametric 
models for Gross National Product data in Turkey and Stanford heart 
transplant data. It is discussed two nonparametric techniques called 
smoothing spline and kernel regression. The main goal is to compare 
the techniques used for prediction of the nonparametric regression 
models. According to the results of numerical studies, it is concluded 
that smoothing spline regression estimators are better than those of 
the kernel regression.  

Keywords—Kernel regression, Nonparametric models, 
Prediction, Smoothing spline. 

I.  INTRODUCTION 

T is considered the following nonparametric regression 
model 

1( ) , ... ni i iy f x a x x bε= + < < < < ,     (1) 

where 2[ , ]f C a b∈  is an unknown smooth function, 1( )n
i iy =  

are observation values of the response variable y , 1( )n
i ix =  are 

observation values of the predictor variable x  and 1( )n
i iε =  are 

normal distributed random errors with zero mean and common 
variance 2σ  .  
     The basic aim of the nonparametric regression is to 
estimate unknown function 2[ , ]f C a b∈  (of all functions f  
with continuous first and second derivatives) in model (1). In 
parametric regression of the form  ( )y f x ε= +  , where f  
is some known, smooth function, the modeler must determine 
the appropriate form of f . In nonparametric regression, f  is 
some unknown, smooth function and is unspecified by the 
modeler. A data-driven technique determines the shape of the 
curve. This chapter describes two different estimation 
techniques of nonparametric regression model: Smoothing 
spline regression and Kernel regression.  

Estimations of the model (1) using smoothing spline 
regression and kernel regression are discussed in sections 2 
and 3. Section 4 shows the some of the performance criteria 
associated with the models. Numerical studies are conducted 
in section 5 for two real data, whereas conclusion is offered in 
section 6. 

II.  SMOOTHING SPLINE REGRESSION 

Smoothing spline estimate of the f  function arises as a 
solution to the following minimization problem: Find 

2ˆ [ , ]f C a b∈  that minimizes the penalized residual sum of 
squares 

{ } { }2 2( )( ) ( )
b

a

n

i i
i=1

f xS f = y - f  x + λ dx′′∑ ∫             (2) 

for pre-specified value 0λ > . The first term in equation (2) 
denotes the residual sum of the squares and it penalizes the 
lack of fit. The second term which is weighted by λ  denotes 
the roughness penalty and it imposes a penalty on roughness. 
In other words, it penalizes the curvature of the function f . 
The λ  in (2) is known as the smoothing parameter. As λ  
varies from 0 to +∞, the solution varies from interpolation to a 
linear model. As λ → +∞ , the roughness penalty dominates 
in (2) and the spline estimate is forced to be a constant. As 

0λ → , the roughness penalty disappears in (2) and the 
spline estimate interpolates the data. Thus, the smoothing 
parameter λ  plays a key role in controlling the trade-off 
between the goodness of fit represented by 

{ }2( )
n

i i
i=1

y - f  x∑ and smoothnees of the estimate measured 

by { }2( )
b

a

f x dx′′∫ . 

In this paper, it is used R  and Plus−S  programs for 
choice of the smoothing parameter. They choose the 
smoothing parameter, using either ordinary or generalized 
cross validation (see, [1], or supply an alternative argument, 
df , which specifies the degrees of freedom for smooth.  

The solution based on smoothing spline for minimum 
problem in the equation (2) is known as a “natural cubic 
spline” with knots at 1,..., nx x . From this point of view, a 
special structured spline interpolation which depends on a 
chosen value λ  becomes a suitable approach of function f  in 
model 1. Let 1( ( ),..., ( ))nf x f x=f  be the vector of values of 
function f  at the knot points 1,..., nx x . The smoothing spline 

estimate λ̂f  of this vector or the fitted values for data 
T= ( ,..., )1 ny yy  are given by  
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f f y=             (3) 

where f̂λ  is a natural cubic spline with knots at 1,..., nx x  for 
a fixed smoothing parameter 0λ > , and Sλ  is a well-known 
positive-definite (symmetrical) smoother matrix which 
depends on λ  and the knot points 1,..., nx x , but not on y . 
For general references about smoothing spline, see [2], [3] and 
[4]. 

III.  KERNEL REGRESSION 

The main philosophy of nonparametric regression is to 
estimate the regression function f  using a weighted average 
of the raw data where the weights are a function of distance in 
the x -space. In particular, the weights are a decreasing 
function of distance. A weighting scheme of this type is 
proposed by Nadaraya -Watson (1964) in which the weight 
associated with observations jy , for prediction at ix is given 
by: 

11

( )

( )

i j

ij nn
i j

jj

x x
K

h K uw
x x K uK

h ==

−⎛ ⎞
⎜ ⎟
⎝ ⎠= =

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑
                    (4) 

where ( )K u  is a decreasing function of u , and 0h >  is 
called the bandwidth or smoothing parameter. ( )K u , the 
kernel function, may be taken to be a probability density 
function such as a Gaussian. The kernel function should be 
symmetric (see [7] and [8] ). The kernel estimate of the 
function f in model (1) at the any point ix  is expressed as 

1

ˆˆ ( )
n

i i ij j j
j

y f x w y w
=

′= = =∑ y ,  1, 2, ...,i n=                   (5) 

Each of the n data points is assigned a distinct weight 
, 1, 2,...,ijw j n=  for any point of fit ix  In matrix notation, 

equation (5) is given by 

f̂ = Wy                       (6) 

where 

1 11 1

1

1

. . .
. . . .

. .
. . . .

. . .
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i in

n n nn

w w
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i

w

W = w

w

 

and ( )1,...,i i inw w′ =w  The matrix W  is denoted as the 
kernel hat matrix or kernel smoother matrix. Similarly to 
ordinary least square (OLS) where the hat matrix is used for 
transform the 'sjy  to the ˆ 'siy , the kernel "hat" matrix is 

used for transform the 'sjy  to the ˆ 'siy . Kernel predictions 

at an any point, ix , may be obtained by using equation (5), 

replacing the " "i  by "1" . Then kernel prediction at any point 

1x  can be written as following: 

     ( )

1

1 1 11 1

.
ˆ ( ) ,..., .

.
n

n

y

f x w w

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w y =                         (7) 

As mentioned above, similarly to smoothing spline 
estimation in equation (3), the kernel estimation of the 
nonparametric regression that expressed in (1) is given by  

1 11 1 1

11 1

( ) . . .
. . . .

ˆ . . . .
. . . .

( ) . . .
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n n nn nn n n n

f x w w y
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

f =              (8) 

A.  Selection of Kernel Function 

The predictions of the kernel regession comes from the fact 
that the estimated regression function at ix  is obtained by 

taking a weighted average of the jy  values where the weights 

ijw  are produced by the kernel function, ( )K u . It is 
concluded that the selection of smoothing parameter 
(bandwidth) is much more important than the selection of 
kernel function for the performance of the kernel regression 
estimator (see [9] and [1] ). The kernel function, ( )K u  is 
typically chosen to be nonnegative, symmetric about zero, 
continuous and twice differentiable. Some alternative popular 
kernel functions are given in the Table I. 

 
TABLE I 

ALTERNATIVE KERNEL FUNCTIONS 
Kernel  Explict Form  
Gaussian 
Kernel  

21( ) exp( ), [ , ]
2

K u u u
π

= − ∈ −∞ ∞  

Uniform 
Kernel  

1( ) , [ 1,1]
2

K u u= ∈ −  

Triangular (1 ), [ 1,1]u u− ∈ −  
Epanechnikv 23 (1 ) , [ 1,1]

4
u u− ∈ −  
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Quartic 2 21 5 (1 ) , [ 1,1]
1 6

u u− ∈ −  

Triweight 2 33 5 (1 ) , [ 1,1]
3 2

u u− ∈ −  

 
Since the selection of kernel function is not critical for the 

performance of the kernel regression estimator, it will be used 
the simplified Gaussian kernel. The kernel mentioned here is 
given by 

( )
2

21 1 exp
2 2

( ) exp i jx x
u

h
K u

π π

⎛ ⎞−⎛ ⎞
⎜ ⎟= − = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                        (9)   

In this case, Nadarya –Watson (1964) kernel estimation at 
any point ix  may be obtained by 
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                    (10) 

 
As mentioned section 2, it is used R  and Plus−S  
programs to perform kernel regression. They use the 
" "ksmooth function. The some kernels available in 
" "ksmooth  are shown in Table I. It is recommended that 
“normal kernel” because it is simple to calculate. In practice, 
selection of h  (bandwidth) is usually done by trial and error, 
or this procedure can be done by selection criteria such as 
cross validation and generalized cross validation [10]. 

  IV.  PERFORMANCE CRITERIA OF THE MODELS 

The performance of the model is related with how close are 
the prediction values for test data and the observed values. 
Three different prediction consistency criteria are used in 
order to compare the performances of obtained smoothing 
spline and kernel regression. These are mean square error 
(MSE) (or root mean square error (RMSE)), mean absolute 
error (MAE) and mean absolute percentage error (MAPE) 
respectively. These criteria are defined as follows: 

• 2
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V.  NUMERICAL STUDIES 

     In this section it is presented two examples, the one is gross 
national product at Fixed (1987) Prices in Turkey (Quarterly, 
YTL Thousand) (see, www.tcmb.gov.tr). Data related to 
variables used in this study consists of Quarterly time series 

which starts January, 1987 and ends December 2005, 
comprising = 76 n  observations. The other one is heart 
transplant data. These data have been taken from [11], and it 
contains survival times of patients on the waiting list for the 
Stanford heart transplant program. The variables mentioned 
here are defined as follows:  

gsyh : Gross National Product (YTL Thousand)   
time: Data quarterly from January 1987Q1 up to December 

2005Q4  
Age :   Age of the patients 
SurvivalTime: Survival Times in days of patients 

A.  Empirical Results 

Fig. 1 Plots of the covariates for gross national product data. 

 
First of all, it is discussed that prediction of a non-

parametric regression model using both smoothing spline and 

 

 
a) Smoothing spline regression curve 

 

 
b) Kernel regression curve 
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Kernel regression for gross national product data. Results 
obtained with these models are given in Fig. 1 and their some 
of the performance criteria are also given the following Table 
II.  

TABLE II 
PERFORMANCE VALUES OF THE MODELS FOR GROSS NATIONAL PRODUCT 

DATA 
Techniques Performance 

Criteria Spline Regression Kernel Regression 
MSE 1,76391E+12 2,39958E+13 
RMSE 8,81954E+11 1,19979E+13 
MAE 608277,872 2447521 
MAPE 8,989789 22,11507 

According to Table II, it is shown that performance criteria 
values obtained by smoothing spline regression are smaller 
than results of the Kernel regression. Hence, it can be say that 
smoothing spline regression is better than kernel regression for 
prediction of these models.  

Figs. 1 (a) and (b) show the estimates (solid) and 
observations for smoothing spline and kernel regression, 
respectively for gross national product data in Turkey. The 
time variable in nonparametric model can be only displayed 
graphically, because it can’t be expressed as parametric. As 
shown Figs. 1 (a) and (b), shape of the effects of time on gsyh 
is appears as a curve. Each plotted curve (regression curve) in 
these figures (a-b) is a contribution of a term to nonparametric 
predictor. These curves are closely following the real 
observations. This situation indicates that estimated values are 
very good. However, estimated values in Fig. 1(a) are better 
than Fig. 1(b), because the curve in Fig. 1(a) is very closely 
following the real observations.  

Secondly, It is discussed that prediction of nonparametric 
regression model using the same techniques for Stanford heart 
transplant data. Prediction results obtained by these models are 
given in Fig. 2 and their some of the performance criteria 
values are also given the Table III.  

 
TABLE III 

PERFORMANCE VALUES OF THE MODELS FOR STANFORD HEART TRANSPLANT 
DATA 

Techniques  
Performance 
Criteria 

Spline 
Regression 

Kernel Regression 

MSE 174123,8 266454,9 
RMSE 87061,9 133227,4 
MAE 315,0 378,8 
MAPE 1679,4 1494,8 

 

According to Table III, it is shown that most of the 
performance criteria values obtained by smoothing spline 
regression are again smaller than results of the Kernel 
regression. Hence, it can be say that smoothing spline 
regression is better than kernel regression for prediction 
Survival Times in days of patients.  

Figs. 2 (a) and (b) show the estimates (solid) and 
observations for smoothing spline and kernel regression, 
respectively for Stanford heart transplant data. Nonparametric 
model mentioned here relates Survival Time in days to Age. 

As shown the plots produced by spline and kernel regression 
models, Fig. 2 indicates a curvature in the relationship 
between Age and survival time. Effect on Survival time in 
days of age in spline fit is rather moderate, while the effect in 
kernel fit is rather bumpy. For this reason, it is advisable to 
use smoothing spline regression.  

 

 
(a) Smoothing spline regression curve 

 
(b) Kernel regression curve 

Fig. 2 Plots of the covariates for Stanford heart transplant data 

VI.  CONCLUSION 

In this paper, it has been discussed four nonparametric 
models based on smoothing spline and kernel regression. It is 
concluded that prediction of the two real data by these models. 
Results obtained with smoothing spline models have been 
compared to kernel regression models. In brief, from a closer 
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inspection of the empirical results, the following observations 
were made:  

• According to MSE, RMSE, MAE and MAPE values for 
gross national product data, the nonparametric model 
based on smoothing spline has indicated a good 
performance;  

• The estimates obtained by smoothing spline have also 
indicated a good result in terms of graphically for gross 
national product data; 

• The nonparametric model based on smoothing spline has 
also indicated a good performance according to MSE, 
RMSE and MAE values for Stanford heart transplant 
data;  

• The nonparametric model based on kernel regression has 
indicated a good performance according to only MAPE 
value for Stanford heart transplant data ; 

These results emphasize that estimates based on smoothing 
spline technique is better than the kernel regression.  
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