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Abstract—In wavelet regression, choosing threshold value is a 

crucial issue. A too large value cuts too many coefficients resulting 
in over smoothing. Conversely, a too small threshold value allows 
many coefficients to be included in reconstruction, giving a wiggly 
estimate which result in under smoothing. However, the proper 
choice of threshold can be considered as a careful balance of these 
principles. This paper gives a very brief introduction to some 
thresholding selection methods. These methods include: Universal, 
Sure, Ebays, Two fold cross validation and level dependent cross 
validation. A simulation study on a variety of sample sizes, test 
functions, signal-to-noise ratios is conducted to compare their 
numerical performances using three different noise structures. For 
Gaussian noise, EBayes outperforms in all cases for all used 
functions while Two fold cross validation provides the best results in 
the case of long tail noise. For large values of signal-to-noise ratios, 
level dependent cross validation works well under correlated noises 
case. As expected, increasing both sample size and level of signal to 
noise ratio, increases estimation efficiency. 
 

Keywords— wavelet regression, simulation, Threshold. 

I. INTRODUCTION 
STIMATING a regression function using wavelet 
methods is an issue that has received great attention over 
the last two decades. Many theorems and methods are 

introduced with   emphasis on problems of the choice of the 
smoothing parameter. The basic idea behind wavelet 
estimation is to get a relatively small number of wavelet 
coefficients to represent the underling regression function. A 
value called (Threshold) is used to kill or keep the wavelet 
coefficient. Hence, Estimation quality depends strongly on 
how efficient threshold value would be chosen. 

 Many different schemes have been proposed for choosing a 
threshold value begging by Donoho and Johnstone [6, 7], 
Nason[14], Barber and Nason [3], Johnstone and Silverman 
[10, 11], Oh, Kim and Lee [12], Silverman [19], Kim and 
Lee[13]. However, Abramovich et al. [2] and Vidakovic [22] 
give a review of some of these. In this paper, it would be 
given a brief description of some of the standard thresholding 
rules. 

As usual, whenever a method is created or developed, a 
series of investigations comes along with the new 
development. The main goal of this paper is to investigate and 
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compare the latest methods with previous ones. The remainder 
of this paper is organized as follows:  

Section 2 gives a brief review to wavelet regression and 
thresholding rules including soft and hard threshold. Then, a 
brief introduction to: universal, Sure, Ebays, Two fold cross 
validation and level dependent cross validation. Section 4 
examines simulations to investigate the practical performance 
of the methods mentioned above. Section 5 provides the 
conclusion of this work. 

II. WAVELET REGRESSION 

Suppose a data set  1 2, ,..., ny y y  observed from the model: 
 

        ( )      , 1,2,..., 2 j
i i iy f x i = nε= + =                 (1) 

Where { }iε  are iid 2(0, )N σ , ,i

i
x

n
=  and f is the 

function to be estimated. 
Wavelet estimation of model (1) can be performed in three 

steps: first, take the discreet wavelet transform of iy . Next, a 
“soft” or a “hard” thresholding rule is used to threshold the 
coefficients. Finally the coefficients are inversely transformed 
back to the signal space to obtain the estimated  .  
 

Given a wavelet coefficient w  and threshold value λ , the 
hard threshold value of the coefficient can be written as: 
 

( , )  ( )hard w w I wη λ λ= >
 

 
while the soft threshold value is 
 

( , ) sgn( ) ( ) ( )soft w w w I wη λ λ λ= − >
 

 
where I is the usual indicator function. In other words, “hard” 
means “keep or kill” while “soft” means “shrink or kill”. 

III. THRESHOLDING SELECTION METHODS 
This section is devoted to introduce theoretical descriptions 

of some thresholding selection methods. 

A. Universal Thresholding Methods  

The universal threshold method was introduced by Donoho 
and Johnstone [6]. It is given by  
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2 log( )universal nλ σ=  

 
where n  is the total number of data points (equivalently the 

number of wavelet coefficients) and   is the standard 
deviation of noise level which almost is unknown and it is 
usually replaced by a robust estimate,σ̂  such as the median 
absolute deviation of the wavelet coefficients at the finest 
level ( log( ) 1j n= −  ) 

 
            1, 1,ˆ ( ( )j k j kmedian w median wσ − −= −               (2) 

  Using the universal threshold yields the largest thresholds 
and thus an estimate of regression function with a relatively 
high degree of smoothing. 
 

B. Sure Thresholding Method 

This method was introduced by Donoho and Johnstone [7] 
which was achieved by the principle of minimizing the Stein’ 
Unbiased Risk Estimation (SURE) for each wavelet level j .   
 

Let X ~ ( , I)pN μ  be multivariate Gaussian observations 

with mean vector μ  and diagonal covariance matrix I . 
Stein [19] showed that if: 
 

ˆ (X) X (X)gμ = +  
 

  Where ˆ (X)μ  is a particular fixed estimator of μ  and 

1( ) p
i ig g ==  is a function from R p into R p  which is 

assumed to be weakly differentiable, then 
 

2ˆ (X ) { g(X) 2 . (X)}E p E gμ μμ μ− = + + ∇  

 
 
Where  

1

.
p

i
i i

g g
x=

∂
∇ =

∂∑
 

 
The insight of Donoho and Johnstone [7] was to apply 

Stein’s result in [20] using a soft threshold.  
 
 

In this case: 
      if   

( )       if     
         if     

i i

i i

i

x x

g x x

x

λ
λ λ

λ λ

⎧− ≤
⎪

= − >⎨
⎪ <⎩

 

Then:                                                   

2

1

( , ) 2.#{ : } ( )
p

J jk i i
i

SURE w p i x xλ λ λ
=

= − ≤ + ∧∑  

is an unbiased estimate of the risk. This means:   
 

( )ˆ (X) ( , )E E SURE xλ
μ μμ μ λ− =  

 
   So the SURE threshold can be written as:                                  
 
 

, 0 2log
arg min( , )j sure J jkn

w
λ

λ λ
≤ ≤

=  

 

C. Two fold Cross Validation 

Cross validation is a popularly used method in a wild range 
of statistical procedure; see for example Stone [21], Silverman 
[18], Green and Silverman [9].  

Since the fast wavelet transform methods require input data 
vectors that are of length 2 jn =  , leaving out a data point 
makes the data length is no longer a power of two and thus 
classic cross validation cannot be done to estimate regression 
function. For this, Nason [14] proposed dropping half of the 
data points which whose size is still a power of two. Here is a 
description of Nason two fold crosses validation. 
  
  Let   1 2 2, ,...,o o o

ny y y  represent the odd data points and 

1 2 2, ,...,E E E
ny y y  represent the even data points. 

Let  ˆ ˆ,  o Ef f  denote the wavelet estimators based on the odd 
index points and even index points respectively. Using the 
removed odd indexed data, an interpolated version of the odd 
noise data is formed: 
 

1
2 1 2 12 2

1
1 12 2

( )   , 1, 2,... -1

( )       , =

n
i i

o
i

n
n

y y i

y

y y i

− +

−

+ =⎧
⎪= ⎨
⎪ +⎩

%  

 
For the even data noise, let: 
 

1
2 2 22 2

1
22

( )   , 2,...

( )       , =1

n
i i

E
i

n

y y i

y

y y i

− + =⎧
⎪= ⎨
⎪ +⎩

%  

 
The full cross validation estimate for the risk ( )M λ  is: 

 
2 22 2 1

, ,
ˆ ˆ( ) {( ( ) ) ( ( ) ) }E o o Ei i

j i j in nM f y f yλ λλ −= − + −∑ % %  

                        
If 

2
nλ minimizes ( )M λ  then the final threshold is given by 
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2

1/2log 2(1 )
log nn n

λ λ−= −  

 
which can be computed numerically . 
 

D. Level Dependent Cross Validation 

Various existing methods for level dependent cross 
validation have been developed by Donoho and Johnstone [7], 
Johnstone and Silverman [10]. Oh, Kim and Lee [13] 
proposed a new method for level dependent cross validation in 
which a data point is imputed rather than expelling data. A 
fast imputation method is used to obtain the CV wavelet 

estimation ˆ ( )i
if xλ

− when the ith observation is deleted. Cross 
validation estimator is given by 

                      

2

1

1( ) [ ( )]
n

i
i i

i

CV y f x
n λλ −

=

= −∑                   (3) 

Two algorithms can be used to obtain ˆ ( )i
if xλ

− :  “Leave one 

out CV” or “k-fold CV”. Suppose dataset 1{ , }n
i i ix y = . To 

apply” Leave one out algorithm” first, remove the data point 
( , )i ix y to be considered as a test dataset. This will leave 

1 2 1 1{ , ,..., , ,..., }obs i i ny y y y y y− +=  as a training dataset.  

For obsy , Mallat’s fast algorithm cannot be used since the new 
data length is no longer a power of 2. To overcome this 
limitation, Oh, Kim and Lee [13] suggested inputting a data 
point iy% using an iterative imputation procedure to get a new 

training dataset , { , }new i obs iy y y= % with length a power of 2.  

Now, for a given threshold value λ , wavelet estimate 
ˆ ( )if xλ  at every design point ix must be found and then, 

ˆ ( )i
if xλ

−  is evaluated. Finally, ( )CV λ is computed over a 

certain range for λ , thus, level dependent cross validation 

threshold λ̂  that minimize (3). 
Traditional “K-fold cross validation “can also be used to 

obtain ˆ ( )i
if xλ

− .Suppose data sets with size n . Divide the 

dataset into M blocks, where each block has n
m  size. Then, 

“leave m blocks out CV)” can be performed by dropping m  
blocks as test data. In general, leave m blocks-out with block 
size b  is as if we perform a k-fold CV with block size b  , 

where             
n

k
m b

=
×

. 

Oh, Kim and Lee [13] showed that level dependent 
thresholds according to levels are obtained by minimizing the 
level dependent cross validation: 
 

1 2 1 2( , ,..., ) arg min ( , ,..., )J JCVλ λ λ λ λ λ=  
 
Where  

 

1 2

( ) 2
1 2 , ,...,

1

1( , ,..., ) ( )
j

n
k i

J i
i

CV y f
n λ λ λλ λ λ −

=

= −∑  

 
Where 

1 2

( )
, ,..., j

k ifλ λ λ
− represents the wavelet estimate based on 

the thresholds 1 2, ,..., Jλ λ λ after removing the thk  part of the 

data. Here Jλ  represents threshold value at resolution 
level j . 

E. Ebayes Thresholding Methods 

Recently various Bayesian approaches are introduced to 
choose a threshold value. See for example Abramovich et al. 
[2], Clyde and George [4, 5]. In this paper, we are interested 
in describing the approach that introduced by Johnstone and 
Silverman [11].  

In this approach, given a single observation iX  subject to 

noise iε  we can write  

i i iX μ ε= +  

Where iX  is drawn independently from a normal 

distribution with mean iμ  and variance 2σ  and ~ (0,1)i Nε . 
An achieving a threshold value using this approach involves 
three main aspects. 
 
1) First, a Bayesian model is used for the parameters iμ . In 

this model iμ  is assumed to be zero with 

probability (1 )τ− and with probabilityτ to be drawn 
from a symmetric heavy-tailed densityγ such Laplace or 

Cauchy density. Define the prior distribution of iμ  as  
 

             0( ) (1 ) ( ) ( )prior i i if μ τ δ μ τγ μ= − +                (4) 
                                                

                                        
 

 
Here 0δ  is the Dirac function.  

 2) Given a sequence observations, the weight τ  is 
automatically chosen from the data using a marginal 
maximum likelihood approach. The marginal maximum 
likelihood estimator τ̂  of τ  maximizes the marginal log 
likelihood and it can be written as 

1

( ) log{(1 ) ( ) ( )}
n

i i
i

l X g Xτ τ τ
=

= − ∅ +∑  

Where g  denotes the convolution of the density γ  with the 
standard normal ∅ . 
 
3) After obtaining τ̂  , an estimate for iμ  is found by 

substituting τ̂ back into the prior (4) and taking the posterior 
median of μ   given i iX x= . In this case, let : 
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           ˆ ˆ ˆ( , )i ixμ μ τ=  

Where ˆ ˆ( , )ixμ τ  is the median of the posterior distribution 

of μ  given i iX x=  . However, we can use also the mean of 

the posterior distribution as an estimate for iμ  .  For any fixed 

1τ < , the posterior median will be a thresholding rule, in that 
there exists a threshold ( ) 0t τ >  such that ˆ ( , ) 0ixμ τ =  

with the constrain ( )ix t τ≤ . Hence, the estimated value τ̂  

gives an estimated threshold ˆˆ( )t tτ = . 

IV. SIMULATION 
In this section, a simulation study was conducted to 

compare the five methods: 
1) Universal: Donoho and Johnstone procedure [6]. 
2) Sure: Donoho and Johnstone procedure [7]. 
3) Two fold CV: two fold cross validation of Nason [14]. 
4) Ebayes: the empirical EBayes procedure of Johnstone and 
Silverman [11]. 

5) Level dep. CV : level dependent cross validation 
introduced  by Oh, Kim and Lim [13]. 

Four test functions were used. Heavsine, Doppler which 
introduced by Donoho Johnstone [6]. Fg1 of Fan and Gijbels 
[8],  Piecewise polynomial of Nason and Silverman [15].  
 
Three different kinds of noise were used: 
 
1) Independently distributed normal noise, 
2) Independently distributed Student’s t noise with three 
degrees of freedom. 
3) Correlated normally distributed deviates from AR (1) of lag 
1 with parameter 1/2 as in Nason [14]. All errors have zero 
mean and constant variances.  

Five levels of signal to noise ratio ( snr ) were used: 
2,5,7,9snr = and 10. Also two different sample sizes were 

chosen: 512,1024n = . For every combination of test 
function, noise structure, level to noise and sample size, 1000 
samples were generated. For each generated data sets, the five 
methods were applied to get an estimate for the test functions 
and then the mean squared error was computed. 

For addition information regarding this simulation:  mother 
wavelet 6N =  was used in every wavelet transform, Soft 
thresholding was used for every method, the formula (2) was 
used to find the variances for Universal and Ebayes, Laplace 
density with the median of posterior were used for Ebayes, all 
simulation results were carried out using the waveThresh 
package of Nason [16] in R. 

Table I, Table II and Table III report the average of the 
mean squared error under 1000 replications. Having closed 
look at these tables, the following major interpretation can be 
made: For Gaussian noises, the Ebayes method provides the 
best results in all cases without any exception. It is remarkable 
to notice that for ( 2)snr = ,  

 

Universal and Sure have the same mean squared errors 
though the equality disappears when snr  increases. Two fold 
cross validation does the best in the case of Student’s t noise 
(long tail noises t(3)).  

For Correlated noises from AR (1) of lag 1 with parameter 
1/2, we noticed that: Two fold cross validation and Ebayes 
perform badly because of the correlation structure within the 
data set. In most cases large values of snr eg. ( 9,10)snr =  
seems to make level dependent cross validation do better 
while it does poorly when snr becomes less and less.  
  For level dependent cross validation 32 blocks were left out 
with block size 4.  Coming back to Oh, Kim and Lim’ results 
[13], they left 64 blocks out with block size 2. The result was 
not similar to theirs but the same conclusion has been found.  

In this work, a different block size is used to show how 
strongly level dependent cross validation depends on the 
block sizes. However, finding a good block size for level 
dependent cross validation is left for further research. Finally, 
it was expected to notice that increasing sample size and level 
of signal to noise ratio, improves estimation efficiency of all 
used methods and this suits theoretical considerations. 
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Fig. 1 The four functions used in simulation. 
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