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A Comparison of Some Splines-Based Methods for
the One-dimensional Heat Equation

Joan Goh,Ahmad Abd. Majid and Ahmad Izani Md. Ismail

Abstract—In this paper, collocation based cubic B-spline and
extended cubic uniform B-spline method are considered for
solving one-dimensional heat equation with a nonlocal initial
condition. Finite difference and θ-weighted scheme is used for
time and space discretization respectively. The stability of the
method is analyzed by the Von Neumann method. Accuracy of
the methods is illustrated with an example. The numerical results
are obtained and compared with the analytical solutions.

Index Terms—Heat equation, Collocation based, Cubic B-
spline, Extended cubic uniform B-spline.

I. INTRODUCTION

HEAT equation is a simple second-order partial
differential equation that describes the variation

temperature in a given region over a period of time. In this
work, suppose the heat flows through a thin rod which is
perfectly insulated along its length except at the two ends,
its position in the rod is denoted as x where 0 ≤ x ≤ 1 and
the length of the rod is represented as L, as illustrated in Fig. 1.�
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Fig. 1: Heat flows through an insulated rod at position x.

Let U(x, t) represents the temperature at the point x in the
rod at time t. Then, the partial differential equation which is
used to model the one-dimensional temperature evolution can
be written as

Ut = αUxx, 0 ≤ x ≤ 1, t > 0 (1)

where the positive constant α represents the thermal diffusivity
of the rod. This varies depending on the thermal conductivity
of the material composing the rod, density and the specific
heat of the rod. The higher thermal diffusivity, the faster the
substance adjusts its temperature to that of its surrounding.
Here, the initial temperature distribution of the rod is given as

U(x, 0) = f(x), x ∈ [0, 1] (2)
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and the heat flows at the end of rod, x = 1 is in the condition
of

∂U

∂x
(1, t) = g(t), t ∈ (0, T ] (3)

with the nonlocal boundary condition
∫ b

0

U(x, t)dx = m(t), 0 ≤ b ≤ 1, t > 0 (4)

Here, f(x), g(t), m(t) are known functions and b is a constant.
If b = 1, eq. (4) leads to∫ 1

0

U(x, t)dx = m(t) (5)

and it can be differentiated to give

m′(t)=
d

dt
m(t) =

d

dt

∫ 1

0

U(x, t)dx =
∫ 1

0

Utdx

=
∫ 1

0

αUxxdx = αUx(1, t) − αUx(0, t) (6)

which can be rewritten as

Ux(1, t) − Ux(0, t) =
m′

α
(7)

This only holds if U and m are differentiable.

Heat equation mainly in one-dimension had been studied
by many authors as in references therein [1], [8], [10], [11].
An comparative study between the traditional separation of
variables method and Adomian method for heat equation had
been examined by Gorguis and Benny Chan [5]. Dehghan [4]
considered the use of second-order finite difference scheme to
solve the two-dimensional heat equation. After that, Mohebbi
and Dehghan [8] presented a fourth-order compact finite
difference approximation and cubic C1-spline collocation
method for the solution with fourth-order accuracy in both
space and time variables, O(h4, k4). In literature [7], Kumar
concluded that spline gives a simple and practical method to
solve the boundary problems compared to finite difference
method.

On the other hand, an extension of B-spline function,
namely extended cubic uniform B-spline had been proposed
by Han and Liu in literature [6]. The advantage of using
extended B-spline is that it possesses a free parameter, λ,
to control the shape parameter. This, thus, provides the
motivation for our work on investigating the accuracy and the
efficiency between cubic B-spline and extended cubic uniform
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B-splines for solving the one-dimensional heat equation.

In this paper, one-dimensional heat equation would be
solved by collocation method of cubic B-spline and extended
cubic uniform B-spline . For the numerical procedure,
θ-weighted scheme would be applied to the space derivative
at two adjacent time levels while forward finite difference
approach would be used for discretizing the derivative of time.
Then, B-spline functions would be applied to the resulting
linear system and the approximations could be obtained
by solving the system through Thomas algorithm. For the
stability analysis, Von Neumann approach would be used
to prove the unconditionally stable property of the method.
Last but not least, numerical results would be presented to
demonstrate the efficiency of the method.

II. CUBIC B-SPLINE METHOD

Definition: Consider a partition π of [a,b] is equally di-
vided by the knots xi into n subinterval [xi, xi+1], where
i = 0, 1, ..., n− 1, which means a = x0 < x1 < ... < xn = b
on [a,b]. Let S3(π) be the space of twice continuously
differentiable piecewise third-degree cubic polynomials on
π and suppose the cubic B-spline basis is the basis for
S3(π). Therefore, the cubic B-spline function is defined by
the relationship [3]

B3,i(x) =
1

6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− xi)3, x ∈ [xi, xi+1]

h3

+3h2(x− xi+1)
+3h(x− xi+1)2

−3(x− xi+1)3, x ∈ [xi+1, xi+2]

h3

+3h2(xi+3 − x)
+3h(xi+3 − x)2

−3(xi+3 − x)3, x ∈ [xi+2, xi+3]

(xi+4 − x)3, x ∈ [xi+3, xi+4]

(8)

III. EXTENDED CUBIC UNIFORM B-SPLINE METHOD

Definition: Suppose λ ∈ R, then the blending function of
extended cubic uniform B-spline with degree 4 is defined as
follows [12]:

Eb3,i(x) =
1

24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1 − λ)(x− xi)3

+3λ(x− xi)4, x ∈ [xi, xi+1]

(4 − λ)h4

+12h3(x− xi+1)
+6h2(2 + λ)(x− xi+1)2

−12h(x− xi+1)3

−3λ(x− xi+1)4, x ∈ [xi+1, xi+2]

(4 − λ)h4

+12h3(xi+3 − x)
+6h2(2 + λ)(xi+3 − x)2

−12h(xi+3 − x)3

−3λ(xi+3 − x)4, x ∈ [xi+2, xi+3]

4h(1 − λ)(xi+4 − x)3

+3λ(xi+4 − x)4, x ∈ [xi+3, xi+4]
(9)

where x is variable, λ is a parameter, and −8 � λ � 1.

It should be noted that when λ = 0, the basis function will
be reduced to the basis function of cubic uniform B-spline.
Also, it can be found that extended cubic uniform B-spline
possesses the same properties as B-spline, such as convex full
property, symmetry, and geometric invariability [12].

IV. COLLOCATION METHOD

Assumed that the approximation Uk
i to the exact solution

U(x, t) at the point (xi, tk) is expressed as [9]

Uk
i =

n−1∑
j=−3

Ck
j B3,j(x) (10)

where Ck
j are time dependent quantities to be determined

and B3,j(x) are cubic B-spline functions. For the variation
of Uk

i over the subinterval [xi, xi+1], the approximation can
be simplified into

Uk
i =

i−1∑
j=i−3

Ck
j B3,j(x) (11)

The approximations of the solutions of eq. (1) at the point
(xi, tk+1) can be obtained by applying the θ-weighted scheme
(0 ≤ θ ≤ 1) to the space derivative at two adjacent time levels
to get the equation [2]

(Ut)k
i +(1−θ)

(
−α(Uxx)k

i

)
+θ

(
−α(Uxx)k+1

i

)
= 0 (12)

where the superscripts k and k+ 1 are successive time levels
and k = 0, 1, 2, .... Rewrite the equation

(Ut)k
i − α(1 − θ)(Uxx)k

i − αθ(Uxx)k+1
i = 0 (13)
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Now, discretizing the time derivative by a first order accurate
forward difference scheme and rearrange the equation to obtain

Uk+1
i − αθΔt(Uxx)k+1

i = Uk
i + α(1− θ)Δt(Uxx)k

i (14)

where Δt is the time step. Note that when θ = 0, the system
gives an explicit scheme, θ = 1 gives a fully implicit scheme
and θ = 0.5 gives a mixed scheme of Crank-Nicolson. Here,
Crank-Nicolson approach is used. Hence, eq. (14) takes the
form

Uk+1
i − 0.5αΔt(Uxx)k+1

i = Uk
i + 0.5αΔt(Uxx)k

i (15)

for i = 0, 1, ..., n at each level of time. Therefore, a linear
system of order (n + 1) is obtained with (n + 3) unknowns
Ck = (Ck

−3, C
k
−2, ..., C

k
n−1) at the level time t = tk. To solve

the system, two additional linear equations are needed. Thus,
eq. (11) is applied to the derivative of the boundary conditions
(3) and (7) to obtain

Ux(1, tk+1)=g(tk+1), (16a)

Ux(1, tk+1)−Ux(0, tk+1) =
m′(tk+1)

α

or Ux(0, tk+1)=Ux(1, tk+1) −
m′(tk+1)

α

=g(tk+1) −
m′(tk+1)

α
(16b)

Above eqs. (15) and (16a)–(16b) leads to a (n+ 3)× (n+ 3)
tridiagonal matrix system, which can be solved by the Thomas
algorithm. Once the initial vector C0 have been calculated
from the initial conditions, the approximation solution Uk

i at
each level of time tk, can be determined by the vector Ck

which is found by solving the recurrence relation repeatedly.

The initial vector C0 can be obtained from the initial
condition and boundary values of the derivatives of the initial
condition as the following expressions:

1) Ux(xi, 0) = f ′(xi), i = 0
2) U(xi, 0) = f(xi), i = 0, 1, ..., n
3) Ux(xi, 0) = f ′(xi), i = n.

This yields a (n + 3) × (n + 3) matrix system where the
solution can be found by Thomas algorithms.

V. STABILITY ANALYSIS

Von Neumann stability method is applied for analyzing the
stability of the proposed scheme. Consider the trial solution
(one Fourier mode out of the full solution) at a given point
xm

Ck
m = δk exp(iηmh) (17)

where i =
√
−1and η is the mode number. By substituting the

eq. (11) into (14) and rearrange the equation, it leads to

p1C
k+1
m−3+p2C

k+1
m−2+p3C

k+1
m−1 = p4C

k
m−3+p5C

k
m−2+p6C

k
m−1

(18)

where

p1 =
1
6
− θΔtα

h2
p4 =

1
6

+
(1 − θ)Δtα

h2

p2 =
4
6

+
2θΔtα
h2

p5 =
4
6
− 2(1 − θ)Δtα

h2

p3 =
1
6
− θΔtα

h2
p6 =

1
6

+
(1 − θ)Δtα

h2

Inserting the trial solution (17) into eq. (18) and simplifying
the equation, it gives

δ =

1
3

(2 + cos ηh) − 2α (1 − θ) Δt
h2

(1 − cos ηh)

1
3

(2 + cos ηh) +
2αθΔt
h2

(1 − cos ηh)
(19)

The scheme is stable if and only if the amplification factor
|δ| ≤ 1. As θ = 0.5 is used in the proposed scheme, thus
substitute the θ value into eq. (19), it gives

δ =

1
3

(2 + cos ηh) − αΔt
h2

(1 − cos ηh)

1
3

(2 + cos ηh) +
αΔt
h2

(1 − cos ηh)
≤ 1 (20)

Therefore, it is obvious to notice that the equation always
gives |δ| ≤ 1 and this had been proved that the presented
numerical scheme for the one-dimensional heat equation is
unconditionally stable.

VI. NUMERICAL RESULT

In this section, an example of one-dimensional heat equation
problem which is discussed in the literature [1], is examined by
the cubic B-spline and also extended cubic uniform B-spline
collocation method. Consider the following heat equation

Ut = αUxx 0 ≤ x ≤ 1, t ≥ 0

subject to the conditions

U(x, 0) = cos
(π

2
x
)

∂U

∂x
(1, t) = −π

2
exp

(
−π

2

4
t

)

and the nonlocal condition∫ b

0

U(x, t)dx =
2
π

exp
(
−π

2

4
t

)

Here, α = 1 and b = 1 is considered. The exact solution of
the problem is known to be

U(x, t) = exp
(
−π

2

4
t

)
cos

(π
2
x
)

Table I shows the approximations and the exact solutions at
the chosen point, xi when final time T = 1. Numerical results
obtained from the extended cubic uniform B-spline is depicted
in Figure 2.
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TABLE I: Numerical results for B-Spline and extended B-Spline
when h = Δt = 0.05 and λ = −0.0036

xi Exact yBi yEbi

0 0.08480497 0.083746074 0.08481692
0.05 0.08454355 0.083484881 0.08455549
0.1 0.08376088 0.082702908 0.08377282

0.15 0.08246180 0.081404968 0.08247373
0.2 0.08065432 0.079599049 0.08066624
0.3 0.07556178 0.074510789 0.07557365
0.4 0.06860866 0.067563197 0.06862048
0.5 0.05996617 0.058927041 0.05997792
0.6 0.04984711 0.048814596 0.04985880
0.7 0.03850065 0.037474418 0.03851228
0.8 0.02620618 0.025185245 0.02621775
0.9 0.01326642 0.012249168 0.01327797
1 0.00000000 -0.001015944 0.00001153
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Fig. 2: Space-time graph with h = Δt = 0.05 and λ = −0.0036.

VII. CONCLUSION

Numerical methods for solving one-dimensional heat
equation with a nonclassical parabolic initial condition had
been described in the previous section. These two methods
had been tested on an example and the obtained as well
as the exact solutions are tabulated. The results show that
extended cubic uniform B-spline collocation method with an
appropriate λ value would give a better results for solving
one-dimensional heat equation than the cubic B-spline
collocation method.
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