
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

498

Abstract—This paper examines and compares several of the most

common real time methods. These methods are CORE, YSM,
MASCOT, JSD, DARTS, RTSAD, ADARTS, CODARTS, HOOD,
HRT-HOOD, ROOM, UML, UML-RT. The methods are compared
using attributes like i) usability, ii) compositionality and iii) proper
RT notations available. Finally some comparison results are given
and discussed.

Keywords—Software Engineering Methods, Method
Comparison, Real Time Analysis and Design.

I. INTRODUCTION
EAL time analysis and development is an intricate
process. This is because these systems exhibit special

behavior. Real time timing, communication and reliability
requirements are not easily explained and represented [6]. RT
development possibly involves i) software engineering, ii)
hardware engineering, iii) control engineering and iv)
communication engineering. Minor changes to specifications
could be very costly. Software programs embedded directly
into hardware controller and devices might require entire
rewriting. Hardware configuration problems exist when
software engineers do not understand why specific processors,
devices and operating systems have to be used.

Various methods and notations have been developed for the
analysis and design of RT systems. These differ from normal
methods because they focus on event driven behavior,
communication and timing issues apart from static system
properties. Methods are no guarantee that all software
development problems will be solved. But they attempt to
structure the analysis & development of RT systems applying
design techniques and rules.

Methods and methodologies like CORE, YSM, MASCOT,
JSD, DARTS, RTSAD are based on a data driven approach.
Principles from traditional structured analysis and design are
used [5], [8]. Methods like ADARTS, CODARTS, HOOD,
HRT-HOOD, ROOM, UML, UML-RT use object oriented
notations [1], [5], [9]–[10]. Initial object oriented methods

A. Spiteri Staines is an assistant lecturer at the Department of Computer

Information Systems, Faculty of Science, University of Malta, Msida, MSD
2080, Malta (phone: 00356-21373402; fax: 21312110; e-mail:
toni_staines@yahoo.com, tony.spiteri-staines@um.edu.mt).

lack the dynamic modeling principles found in the UML. The
focus was more on static behavior and structural aspects.

Software design methods are different from software
notations used for modeling or representing a system. A
proper design method should focus on the software
development lifecycle process. Software notations focus on
very specific aspects of the design process. Some of these
methods have been used for quite some time whilst others like
the UML are quite modern.

II. EXPLANATION OF SOME OF THE METHODS

A. Controlled Requirements Expression
The CORE method [5], [14]–[15] was designed in the UK

for the requirements analysis phase and intended for the
avionics industry. Core uses the following steps i) problem
definition ii) define requirement viewpoints, iii) record
viewpoints actions and data, iv) define the viewpoints iv)
develop detailed models for each viewpoint and v) combine
the single viewpoints into a composite model. CORE is
suitable for the informal process of gathering the systems
requirements expressed using informal notations like block
diagrams and viewpoint diagrams. This approach could be
used in conjunction with object oriented analysis. Control
loops are available for use in the final diagram. CORE is
basically a systematic expression of the requirements that are
needed for real time analysis and design. The focus is mainly
on requirements rather than design.

The main limitations of CORE are that: i) timing,
concurrency and synchronization issues are not properly
explained ii) it is unsuitable for architectural design iii) it is
rigidly focused on several steps.

B. Jackson System Design
JSD [5] is different from YSM and other methods. This has

been continuously improved upon from the original idea. The
main steps are i) develop a model of the system, ii) produce a
system specification, iii) implement as an executable design.
The model tries to understand all possible events that will
occur listing objects entities, actions, features, action order
and updating mechanisms.

The model is used to build network diagram or
specification. Using transformation rules the network diagram
is systematically converted into a system implementation. This
is known as transformation from specification to

A Comparison of Software Analysis and Design
Methods for Real Time Systems

Anthony Spiteri Staines

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

499

implementation. The end result is having structured program
charts or specifications that are easily implemented. It is
possible to find CASE tools that produce source code from
detailed program structure charts and program statements.
Some possible problems with this approach is i) it has to be
rigorously followed to the end to get results ii) it is difficult to
combine with other approaches.

C. Real Time Structured Analysis and Design, Yourdon
Structured Method and Design Approach for Real Time

RTSAD, DARTS and YSM (Hately-Pirbhai) explained in
[3]–[5] include extensions to DFDs [7]–[8]. These add details
for event flows and control transformations like discrete,
continuous, triggered, enable/disable etc. These methods also
use state transition diagrams.

In a RTSAD approach [3]–[4] the following steps are
normally carried out. i) The system context diagram is
developed, ii) data flow/control flow decomposition is
performed, iii) control transformations or control
specifications are built, iv) process specifications are defined
and v) the data dictionary is developed. This approach
decomposes a system into many sub components. Some
resulting diagrams are data flow/control diagrams and state
transition diagrams supported by mini-specifications.

The YSM described in [5] and [8] is based on the classic
DFDs and structured methods used for traditional data design.
It has been adapted and combined with many diagrams for RT
design. It has been developed and refined over the years and
many modern CASE tools can be used to support the notation.
YSM starts off from a high-level and decomposes the system
into lower levels ending up with complete program
specifications. Two embedded design Methodologies have
been derived from YSM. These are Ward-Mellor, Hatley-
Pirbhai. This method can being used in conjunction with
diagrams like PEM(Processor Environment Model) which is
a hardware based design to help decide on the hardware
configuration. There is also the SEM (Software-Environment
Model). There are many different data driven methods that
make use of the principles in YSM and add other diagrams.
The PEM model and SEM are important because as pointed
out RT systems are highly dependant on the available
hardware which is normally ignored. YSM also uses DFDs,
STDs, E-R diagrams, textual specifications, structure charts
etc. for design purposes. DFDs can be combined with STDs to
represent both continuous and discrete actions. The behavioral
model consists of DFDs, STDs & ERDs together with textual
support describing the requirements but having no
implementation details. The PEM covers the physical
processors deciding which processor should do which work
and HCI details. The COM involves translating the SEM units
into structure charts and refining them so that this can be
translated into program code.

The DARTS method [4] has the following steps i) develop
system specification using RTSAD notations, ii) structure the
system into concurrent tasks, iii) define task interfaces, iv)
design each task. For steps ii-iv task architecture diagrams and

structure charts are obtained from the control flow diagrams in
step i. This is similar to some of the steps in the YSM.

The main idea is to model the system control flows
correctly and develop it further. It is possible to derive
program code from the decomposed system models and task
architecture diagrams.

Some advantages of these methods are i) highly structured
data analysis is used. Limitations are i) they are unsuitable for
prototyping. ii) steps must be followed sequentially for
successful implementation iii) It is possible to take a long time
to implement the complete system.

D. Modular Approach to Software Construction,
Operation and Test

MASCOT [5], [13] was first issued in 1970s by the Royal
Signals and Radar Establishment UK and successive versions
MASCOT 3 exist. It is mainly used for avionics and in the
military field. It is a highly modular rigorous approach based
on hierarchical decomposition to lower levels. MASCOT is
based on processes or activities in a system and aims at
designing complex interactive real time applications in a
highly structured approach. MASCOT focuses on
communication between different components and enforces
that a specification must be complete at every level.
Interfacing between modules is extremely well represented,
thus even concurrency and synchronization can be dealt with.
The main steps are i) describe the overall internal functions of
the system, together with its external connections. This is
known as the network diagram. ii) The network is
decomposed into lower-level components, iii) the structure of
single thread processes is transformed. iv) components are
coded in terms of algorithms and data structures. There are the
following rules i) processes cannot send data directly to other
processes ii) communication between different components
can only take place through channels or windows. iii)
Intercommunication data areas must be used for data
exchange, information storage and communication. Some
limitations of Mascot are i) it does not directly support
requirements analysis and goes directly into building a model
ii) it is not widely supported via many case tools, iii) it is not
suitable for prototyping or rapid application development, iv)
it is expensive to apply.

E. Ada based Design Approach for Real Time
ADARTS [4] is a modified version of DARTS mainly

intended for use with the ADA language. The structured
design step from DARTS is replaced with information hiding
module structuring step. It can be considered to be similar to
DARTS but with some improvements as regards information
hiding, abstraction and decomposition.

F. Concurrent Design Approach for Real Time
CODARTS includes many improvements from DARTS [4].

CODARTS classifies message passing into several types not
normally found in other methods. The diagrams used are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

500

similar to control flow diagrams. Special symbols are included
for different types of message communication e.g. loosely-
coupled message communication, tightly-coupled message.
Available diagrams are task architecture diagrams, software
architecture diagrams and STDs. These are easily
implemented in ADA. Some limitations of CODARTS are i)
Designed mainly for the ADA language. ii) Notations used are
not well understood iii) complex to use iv) uses a limited
number of views.

G. Real Time Object Oriented Modeling
ROOM is an object oriented method that uses ROOMchart

diagrams based on an ‘actor’ concept. ROOMcharts are
similar to the UML statechart diagrams. The ROOM method
is more oriented towards the actual implementation and
physical design. It has a limited number of diagrams for the
initial requirements engineering. A limitation of ROOM is that
it requires a particular CASE tool called ‘Objectime’. It is
possible to generate C++ code from diagrams. The actor
initiates a sequence of events. Ports are used for
communication, threads control behavior. Limitations of
ROOM are: i) tied with one particular CASE tool called
‘ObjecTime’ ii) a limited number of diagrams showing only
certain views are available.

H. Hierarchical Object Oriented Design
HOOD is one of the first object oriented design methods. It

is mainly aimed at using ADA. It can be useful for
prototyping. The idea is to identify objects in a parent to child
relationship and their operations. A graphical system
description is produced in a control/ dataflow diagram. This
explains the flow of information between a set of objects.
Diagrams can be decomposed to the required levels. The Top-
Level Object is normally an active object using the lower-
level. Rules for passive objects and active objects exist.
Limitations of HOOD are: i) does not distinguish Data Flows
between Objects from Event Signals ii) is not so simple and
straightforward to use iii) only one main diagrammatic type is
used. HRT-HOOD implements some improvements over
HOOD.

I. Unified Modeling Language
The UML [1]–[2], [9]–[11] can be considered to be a

repository of notations existing in methods like ROOM,
HOOD, YSM, MASCOT, etc. The name ‘unified’ implies a
unification of modeling constructs. E.g. UML state diagrams
are simplified STDs, communication diagrams are found
elsewhere as interaction diagrams, sequence diagrams are
derived from MSC (Message sequence charts). It contains
notations that are lacking in other methodologies and tries to
standardize them and it is set to improve upon previous
notations. It is well supported by a variety of CASE tools
when compared to other methods and can be used by anyone
without formal knowledge. The main system views can be
categorized into i) static ii) behavioral. The UML as outlined

in [1] is not a proper software development method and can be
combined with almost any development method. Diagrams
and notations used are Informal. It is possible to use the OCL
(Object Constraint Language) to formalize the diagrams used.
When a class uses operations by a second class a control flow
is set up. The UML does not distinguish between the spatial
distribution of objects and the logical object distribution. Code
generation can be done from some UML diagrams like a class
diagram. There are projects like the ECLIPSE open source
tool that supports many UML constructs. There is a lack of
standardization amongst the UML CASE tools and UML
versions giving rise to confusion about which notations should
be used. Some CASE tools providers have created their own
notations that differ from those in the UML. Some limitations
of the UML are: i) studies show that maintaining UML
diagrams can become a complex process ii) UML lacks formal
verification iii) the same thing can be modeled in several
different ways, all could be correct. So there is a lack of
consistency.

In UML the focus is on modeling a system rather than on
managing the software development process. This implies
that the UML should be used in a framework like the USDP
(Unified Software Development Process) created by the OMG
or COMET (Concurrent Object Modeling architectural design
method) [11].

J. Unified Modeling Language – Real Time
UML-RT [17] is based on extensions to the UML

specifically aimed at RT. The most important ‘new’ notations
are mainly capsules, ports, connectors and protocols. UML-
RT implements some ideas from HOOD, ROOM and
MASCOT adding them to the normal UML notations. E.g. the
idea of capsule diagrams embedding child objects is similar to
HOOD Parent-Child object relationships. The idea of active
and passive ports already exists in ROOM. The idea of using
capsules to model complex objects that are usually spatially
distributed is similar to that of MASCOT where components /
devices are connected using windows, ports and IDAs. Some
limitations of UML-RT are i) not widely used and supported.
UML-RT includes all the modeling capabilities of ROOM.

III. METHOD COMPARISON
The methods have been compared using three fundamental

issues and data from [1]–[17]. These are i) usability, ii)
compositionality and iii) Proper RT notations available. Some
other issues are presented in [7], [10].

A. Usability
Usability explains the ease of use of the method, CASE tool

support. This is important because methods that are easy to
use are preferred to those that are more complex. Certain
notations are better to describe activities. Other notations are
more suitable for explaining communication between
components.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

501

B. Compositionality
Compositionality describes how the notations in the method

fit together. It also describes the overall structural
composition. This is important because this structure will be
used to construct the final system. This is based on the number
of diagrams / notations used. The more notations there are the
more difficult it becomes to keep consistency. There is
recursion which in this case implies the existence of
techniques to refine the final design, this involves abstraction
and information hiding. There is the possibility to obtain full
specifications from recursion or decomposition. This is known
as graphical to textual conversion. There is the issue of
cross-references between notations. Poor cross-references
could imply a problem. Good cross-references imply good
consistency between the method’s notations.

C. Proper Real Time Notations Available
Proper real time notations imply how well a method

describes issues like concurrency, synchronization, event
handling and message communication. Real time systems
depend on triggers and communication issues. Support for
communication constructs includes support for concurrency,
synchronization, mutual exclusion, signaling, communication
control, ports and abstraction. Special notations have to be
used distinguish real time event types. Resource management
support refers to processing loops, scheduling, activity
management, control management and performance
management for the composite system.

D. Ranking Score
These methods have been compared using detailed

observations and experience. To compare the methods a score
from 1 to 4 was given for the relevant attribute. The score is as
follows 1-poor, 2-average, 3-good, 4-very good and 5-
excellent.

TABLE I

USABILITY SCORE

Method Ease of use
Clarity of

Diagrams/
notations

CASE tool support

CORE 3 4 4
JSD 3 4 4
YSM 3 4 4

RTSAD 2 3 3
DARTS 2 3 3

ADARTS 2 3 3
CoDarts 2 3 3

MASCOT 1 2 1
HOOD 3 3 3
ROOM 2 3 3
UML 5 4 5

UML-RT 3 3 2

The usability explains how easy the method is.

TABLE II
COMPOSITIONALITY SCORE

METHOD Diagram
Consistency Recursion

Support for
Graphical to

Textual
Conversion

Cross-
references

CORE 3 3 2 4
JSD 4 4 4 4
YSM 3 3 3 4

RTSAD 4 3 3 4
DARTS 4 3 4 4

ADARTS 4 4 4 4
CoDarts 4 4 4 4

MASCOT 4 4 4 4
HOOD 3 2 2 2
ROOM 4 3 4 3
UML 1 1 2 1

UML-RT 3 3 3 2

Compositionality is based on identifying how the notations, diagrams,
references and textual descriptions properly fit together.

TABLE III

PROPER REAL-TIME NOTATIONS SCORE

METHOD Message
Comm.

Support
for RT

Resource
Management

Support
for

Timing
Requirements

Support
for Special

Event
Types

CORE 1 1 1 4
JSD 3 3 2 4
YSM 1 2 1 4

RTSAD 3 2 2 4
DARTS 3 3 2 4

ADARTS 3 4 2 4
CoDarts 4 4 2 4

MASCOT 4 4 2 4
HOOD 2 3 2 2
ROOM 3 4 4 3
UML 2 1 1 1

UML-RT 3 2 2 2
Proper real time notations refers to how well does the method support
constructs that identify and classify real time behavior.

IV. RESULTS
The usability results indicate that UML is the best usable

method followed by CORE, JSD and YSM.
The compositionality results indicate that methods like

MASCOT, CODARTS, RTSAD have better compositionality.
This is because of good cross-referencing between notations.
There is also the fact that these methods support proper
graphical to textual conversion in detail. This is not so with
the UML.

The comparison of the real time notations, indicate that
some RT methods seem to have better notations and
compositionality than others. This is possible because these
methods and its notations have been refined over a number of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

502

years. These results just give an indication of some attributes.
It is possible to derive other combinations if there are certain
requirements.

0
2
4
6
8

10
12
14
16
18

CORE
JS

D
YSM

RTSAD

DARTS

ADARTS

CODARTS

MASCOT

HOOD

ROOM
UML

UML-R
T

R
an

ki
ng

 S
co

re

USABILITY COMPOSITIONALITY PROPER RT NOTATIONS
Fig. 1 Usability, Compositionality and Proper RT Notations Score

V. CONCLUSION
The final conclusion is that there is no single method that is

overall the best method on all attributes. It is evident that the
UML and modern methods cannot solve certain issues tackled
by data driven methods that were designed precisely for real
time. The UML is a more general language that tries to cover
many different types of systems and scenarios at the expense
of certain detail. Solutions to this could be to extend UML via
stereotypes. Another advantage of UML is that some UML
diagrams are applied in a MDA approach and used to create
PIM [6]. The UML has the advantage of gaining widespread
use and a lot of work is being done to improve UML
continuously. UML does not have proper control flow
diagrams similar to those found in YSM and CODARTS.
These are important for designing command and control and
embedded system tasks. UML instead uses activity diagrams
or communication diagrams. Activity diagrams are more
adequate for business analysis, communication diagrams lack
some detail and need modification on the other hand control
flow diagrams are oriented to task management, reactive
behavior and control. This could indicate that UML is more
oriented towards building soft- real time systems like those
used in e-commerce, agent architectures, workflow systems,
etc. The UML has given the initiative to create other modeling
concepts and methods like AGILE and FMCs(Fundamental
modeling concepts).

Methods like JSD, YSM, DARTS, ADARTS, MASCOT
CODARTS, HOOD and ROOM have been directly designed
for hard real time systems like avionics, cruise control, etc.
These are quite rigorously demanding and require the use of
specific constructs and possibly even languages. MASCOT,
ROOM and UML-RT whilst being suitable for describing
complex RT systems, unfortunately lack widespread support
of many CASE tools and require time to master.

A practical approach is suggested. It does not make sense to
restrict use to a single method. This is that when using one
particular method one should possibly also consider using
notations from another method as is required by the nature of

the problem. Depending on the nature of the system being
modeled a method should be selected. Some methods are more
suitable for business workflow systems. Others are more
suitable for hard event-driven real time systems like those
used in avionics and control systems.

REFERENCES
[1] S. Bennett, J. Skelton, K. Lunn, UML. Schaums Outline 2nd ed., New

York: McGraw-Hill, 2005, pp. 5–18.
[2] P. Roques, UML in Practice. UK: Wiley, 2005, ch. 1. & ch. 2.
[3] R. Williams, Real-Time Systems Development. UK: ELSEVIER, 2006,

ch. 11.
[4] H. Gomaa, Software Design Methods for Concurrent and Real-Time

Systems. Addison-Wesley, 1996, pp.137-294.
[5] J.E. Cooling, Software Design for Real-Time Systems. London:

Chapman & Hall, 1995, ch. 10.
[6] J.W.S. Liu, Real-Time Systems. NJ: Pretence Hall, 2000, ch. 1.
[7] D.C. McDermid, Software Engineering for Information Systems. GB:

McGraw-Hill, 1990, ch.1. ,ch. 2.,ch.6. & ch.10.
[8] S.Goldsmith, A practical guide to Real-Time Systems Development.

Hetrfordshire: Pretence Hall, 1993, ch. 1.
[9] S.R. Schach, Introduction to Object-Oriented Analysis and Design with

UML and the Unified Process. NY: McGraw-Hill, 2004, ch.3. & ch. 11.
[10] I. Graham, Object-Oriented Methods Principles & Practice. ED: Pearson

Education, 2001, ch.6.
[11] H. Gomaa, Designing Concurrent, Distributed, and Real-Time

Applications with UML. IN:Addison-Wesley, 2001, ch. 2.
[12] D. Bennett, Designing Hard Software The Essential Tasks. Greenwich:

Manning, 1997, pp. 25-100.
[13] The Official Handbook of MASCOT, Joint IECCA and MUF Committee,

1987.
[14] G.P. Mullery, “CORE - A Method for Controlled Requirement

Specification”, Proceedings of the 4th international conference on
Software engineering, Munich Germany 1979 , pp.126 – 135.

[15] CORE Controlled Requirements Expression, System Designers plc, Fleet
Hampshire, GU13 8 PD, UK document no.1986/0786/500/PR/0518,
1986.

[16] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented
Modeling. Wiley, 2005, ch.1. & ch. 2.

[17] M. Antonsson, P. Hansson, “Modeling of Real-Time Systems in UML
with Rational Rose and Rose Real-Time based on RUP”, Ericsson
Mobile Data Design.., AB (ERV) Gothenburg, Sweden, M.S thesis open
rep. ERV/G-01:071 Uen,2001.

