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A comparison of marginal and joint generalized
quasi-likelihood estimating equations based on the
Com-Poisson GLM: Application to car breakdowns

data
N. Mamode Khan and V. Jowaheer

Abstract—In this paper, we apply and compare two generalized
estimating equation approaches to the analysis of car breakdowns data
in Mauritius. Number of breakdowns experienced by a machinery is
a highly under-dispersed count random variable and its value can be
attributed to the factors related to the mechanical input and output of
that machinery. Analyzing such under-dispersed count observation as
a function of the explanatory factors has been a challenging problem.
In this paper, we aim at estimating the effects of various factors on
the number of breakdowns experienced by a passenger car based
on a study performed in Mauritius over a year. We remark that
the number of passenger car breakdowns is highly under-dispersed.
These data are therefore modelled and analyzed using Com-Poisson
regression model. We use the two types of quasi-likelihood estimation
approaches to estimate the parameters of the model: marginal and
joint generalized quasi-likelihood estimating equation approaches.
Under-dispersion parameter is estimated to be around 2.14 justifying
the appropriateness of Com-Poisson distribution in modelling under-
dispersed count responses recorded in this study.

Keywords—Breakdowns, Under-dispersion, Com-Poisson, Gener-
alized Linear Model, marginal quasi-likelihood estimation, joint
quasi-likelihood estimation.

I. INTRODUCTION

With an increase in the number of cars on the roads of
Mauritius, the number of accidents resulting from and resulting
into car breakdowns have also increased. The local road traffic
branch authority [6] has reported that 34 percent of vehicles
that contribute to serious accident crashes are cars. It has
been remarked that such cars usually consist of defective auto-
parts, defective door latches, seat belts, roofs, ignition systems
and fuel systems. According to the RAC patrols report [7] in
UK, many car owners do not have time to check their cars
regularly, do not notice anything about the state of their cars
and do not understand the specificities of their cars. In fact,
one of the causes of breakdown is that many car owners do
not understand the system of their cars. For example, car may
undergo a breakdown if the tyres’ pressure are not checked
at least weekly. It is important to make sure that a tyre must
have at least 1.6 mm of tread in a continuous band at least
as wide as three-quarters of the central tread breadth which is
important in wet or icy weather. The engine oil and the coolant
levels are also important determinants for the smooth running
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of the vehicles. The improper engine high-tension leads may
yet be another important cause of breakdown. Obviously,
these factors will contribute to car breakdowns. Moreover, we
remark that car breakdown causes a lot of traffic jam on the
roads of Mauritius especially on the motor way and during
peak hours. Breakdown of cars is thus a serious issue. In this
paper, we analyze car breakdowns data that has been collected
in the year 2008. The organization of the paper is as follows: In
section 2, we describe the main factors leading to breakdown
of cars in Mauritius in 2008. In section 3, we present the Com-
Poisson regression model that will be used to analyze the data.
In the last section, we provide the results and conclusions.

II. CAUSES OF BREAKDOWNS

Very often, the age of the car is a factor leading to major and
minor breakdowns. In fact, we note that most of the cars which
get frequent breakdowns range between 9 and 15 years. As a
car grows older, it is more prone to breakdowns despite the fact
that it might be well taken care of. The parts of the car become
worn out and due to the age of the car, its spare parts are
unavailable on the local market. As a result, the car users have
to resort to alternatives or substitutes. Together with age, the
mileage of the car can be a contributing factor in breakdowns
if regular servicing and checks are not carried out. Mileage
can be used as an indicator for servicing and checks, failing
which, breakdowns may occur. Previous breakdowns may also
be a factor leading to future and repetitive breakdowns. It has
been found that a car which has been through an accident is
more prone to breakdowns as the mechanism can be affected if
not properly repaired or replaced,. However, this may depend
on the make of the car. A recent event is the introduction
of cars that use gas in Mauritius and some mechanics are
encountering problems to repair the filtering part of such cars.
It is also remarked that sometimes the engine system of the
car and ultimately the horsepower is purposely changed but
whether the new engine can be adjusted to the system of
the car is questionable. In general the age, the mileage, the
number of accidents that the car has made and the fuel or
gas consumption of the car are the main factors that may
influence car breakdowns in Mauritius. We have interviewed
15,000 randomly selected car owners and collected data on the
number of breakdowns their cars have suffered during the year
2008 along with the information on the following explanatory
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variables: the age of the car, the mileage of the car, the number
of accidents that the car has encountered, the number of times
the car visit the mechanic and the fuel or gas consumption
(1-petrol and 0-gas). Our objective is to assess the effect of
these factors on the number of breakdowns. In fact, the mean
number of breakdowns recorded during 2008 is 1.2333 while
the variance is 0.3455. This indicates that the data is under-
dispersed. To model under-dispersed data under a regression
set-up, Jowaheer and Mamode Khan [2] have developed a
Com-Poisson regression model. In the next section, we give a
description of this model and provide the estimating equations
to estimate the regression and under-dispersion parameter

III. COM-POISSON REGRESSION MODEL

Recently, Shmueli et al. [5] proposed the Conway Maxwell
Poisson (Com Poisson) distribution to model counts which
may be equi-, over- and under- dispersed. Kadane et al. [3]
and Shmueli et al. [5] studied the basic properties of this dis-
tribution and the fitting of this distribution to over -and under -
dispersed cross sectional count data. In regression set-up, Com
Poisson generalized linear model (GLM) have been designed
by Guikema [1] and Jowaheer and Mamode Khan [2] to study
the effect of covariates on the under- and over-dispersed count
responses. Guikema [1] has used Bayesian techniques whereas
Jowaheer and Mamode Khan [2] have developed a joint quasi-
likelihood technique (JGQL) to estimate the parameters of the
model. The JGQL approach provides consistent and equally
efficient estimates as the maximum likelihood approach. The
Com Poisson regression model is given by:

f(yi) =
λyi

i

(yi!)ν

1
Z(λi, ν)

, (1)

where yi is the number of breakdowns corresponding to the
car of the ith individual and Xi is the vector of covariates
corresponding to yi. By letting β be the vector of regression
parameters such that βj is the regression effect of the jth

covariate on the breakdowns, we write

λi = exp(xT
i β) (2)

In equation (1), the parameter ν corresponds the dispersion
index. More specifically, the values ν > 1 correspond to equi-
, over- and under- dispersion. Since equation (1) does not have
closed form expressions, we use an asymptotic expression for
Z(λi, ν) proposed by Shmueli et al.[5] given by

Z(λi, ν) � exp(νλ
1
ν
i )

λ
ν−1
2ν

i (2π)
ν−1
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(3)

and reformulate the equation (1) as

f(yi) =
exp(xT

i βyi)[exp(xT
i β(ν−1

2ν ))(2π)
ν−1
2ν
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From equation (4),

E(Yi) = θi = λ
1/ν
i − ν − 1

2ν
(5)

and

V ar(Yi) =
λ

1/ν
i

ν
(6)

IV. ESTIMATION OF THE REGRESSION AND

UNDER-DISPERSION PARAMETERS

To estimate the parameters β and ν, we consider two
estimation approaches:

1) Marginal generalized quasi-likelihood estimating equa-
tion approach (MGQL)

2) Joint generalized quasi-likelihood estimating equation
approach (JGQL)

A. Marginal GQL

In this section, we develop two marginal QLEs under Com-
Poisson regression model. The first QLE is to estimate the
vector of regression parameters β based on observations yi

while the second QLE is to estimate the dispersion index ν.
The QLE to estimate β is given by

I∑
i=1

DT
i,βV

−1
i,β (yi − θi) = 0, (7)

where

Vi,β =
λ

1/ν
i

ν
. (8)

and

Di,β =
∂θi

∂βT
=
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1
ν
i

ν
xT

i (9)

is a p× 1 matrix. The QLE to estimate ν is given by
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where
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.
Vi,ν is the variance of Y 2

i and is calculated using

Vi,ν = E(Y 4
i ) − E(Y 2

i )2 (13)

where the moments are derived iteratively from the moment
generating function of yi which is given by
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following equation (14). The Newton-Raphson technique is
then applied to the two estimating equations. The iterative
equations are given as follows: At the rth iteration,

(
β̂r+1

)
=

(
β̂r

)
+[

I∑
i=1

DT
i,βVi,β

−1Di,β ]−1
r [
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(16)(
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)
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(
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)
+[
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r [
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−1(y2
i −ηi)]

(17)
where β̂r and ν̂r are the values of β̂ and ν̂r at the rth iteration.
[.]r is the value of the expression at the rth iteration. The
estimators are consistent and under mild regularity conditions,
for I → ∞, it may be shown that I

1
2 ((β̂) − (β))T has an

asymptotic normal distribution with mean 0 and covariance
matrix I[
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−1Di,ν ]−1 The algorithm
to estimate the parameters works as follows: For an
initial estimate of β and ν, we iterate equation (16) until
convergence, then use the updated β to update ν in equation
(17). We then replace the updated β and ν in equation (16)
and iterate until convergence. Having obtained the new β,
we replace in equation (17) to obtain a new ν and the cycle
continues until both values converge.

B. Joint GQL

In this section, we solve the joint quasi-likelihood equation
given by

I∑
i=1

DT
i V

−1
i (fi − μi) = 0, (18)

where fi = (yi, y
2
i )T , μi = E(fi), Vi = cov(fi), Di =

∂E(fi)
∂(βT ,ν)

. The components of equation (18) are derived by
Jowaheer and Mamode Khan [2]. For convenience, we re-
produce these formulae in the appendix. The QL estimates
of β and ν are obtained by solving equation (18) iteratively
until convergence using Newton-Raphson technique. At rth
iteration,
(
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where β̂r is the value of β̂ at the rth iteration. [.]r is the
value of the expression at the rth iteration. The estima-
tors are consistent and under mild regularity conditions, for
I → ∞, it may be shown that I

1
2 ((β̂, ν̂) − (β, ν))T has an

asymptotic normal distribution with mean 0 and covariance
matrix I[

∑I
i=1D

T
i Vi
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T
i Vi

−1(fi − μi)(fi −
μi)TVi

−1Di][
∑I

i=1D
T
i Vi

−1Di]−1 The algorithm works in
the same way as in section IV A.

V. RESULTS

The application of Com-Poisson GLM discussed in the
above section provides the following estimates

TABLE I
ESTIMATES OF THE REGRESSION AND UNDER-DISPERSION PARAMETERS

BASED UNDER JGQL AND MGQL FOR THE CAR BREAKDOWN DATA YEAR

2008

Estimates JGQL MGQL ER
Intercept 0.4732 (0.3425) 0.4692 (0.3487) 98

Age 2.2284 (0.0342) 2.2394 (0.0352) 97.1
Mileage 0.3541 (0.0222) 0.3301 (0.0228) 97.3
Accident 0.2666 (0.0886) 0.2592 (0.0893) 99.2

Visit -0.2512 (0.0623) -0.2489 (0.0625) 99
Consumption -0.2230 (0.1344) -0.2197 (0.1350) 99

ν̂ 2.4101 (0.1220) 2.4221 (0.1227) 99

VI. CONCLUSION

These results are obtained by taking small initial values of
the regression and under-dispersion parameters. The entry in
brackets represent the standard errors of each estimate. ER rep-
resents the efficiency ratio percentage of the JGQL approach
with respect to the MGQL approach. The age, mileage and
accident covariates are all positive. This is reasonable because
as age and mileage increase, we expect the cars to be fre-
quently getting breakdowns. We note that age is the covariate
that contributes to car breakdowns to a big extent. Moreover,
the positive sign in the accident covariate indicates that as
the number of accidents that the car encounters increases, the
number of breakdowns of the car will also increase. This is
obvious because upon meeting an accident, the mechanical
parts of the car are prone to damage either in short term
or long term. Further, if the car owner attends his regular
car servicing or have its car regularly checked, the number
of breakdowns will eventually decrease. The estimate of the
consumption of the fuel by vehicle is negative meaning that the
number of breakdowns is lesser among cars using petrol than
gas. This may be because, in Mauritius, the local mechanics
are not quite familiar with the recent development in car
technology. Therefore, those people who have preferred gas
as an alternative to petrol should have to change the filtering
part of their cars and in many cases, the mechanics have
not done these changes correctly. The estimate of the under-
dispersion parameter affirms that the data is under-dispersed
and dispersion parameter cannot be ignored. We note that
there is no huge difference in the estimates of the regression
and under-dispersion parameters between MGQL and JGQL
but JGQL provides slightly more efficient estimates than
MGQL,i.e, the standard errors are relative lower. Moreover, the
efficiency ratio of the two methods are close to 100 percent.
Nevertheless, both techniques can be used for estimation under
the Com-Poisson GLM.
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APPENDIX A
COMPONENTS OF JOINT GQL EQUATION (18)

Di =
(
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The covariance matrix of fi is expressed as

Vi =
(
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)

The elements in Vi are derived iteratively from the moment
generating function of yit which is given by
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