
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

685

Abstract—This paper summarizes and compares approaches to

solving the knapsack problem and its known application in capital
budgeting. The first approach uses deterministic methods and can be
applied to small-size tasks with a single constraint. We can also
apply commercial software systems such as the GAMS modelling
system. However, because of NP-completeness of the problem, more
complex problem instances must be solved by means of heuristic
techniques to achieve an approximation of the exact solution in a
reasonable amount of time. We show the problem representation and
parameter settings for a genetic algorithm framework.

Keywords—Capital budgeting, knapsack problem, GAMS,

heuristic method, genetic algorithm.

I. INTRODUCTION
N practice, we must often solve a problem of the following
type: Suppose we wish to invest $200. We have identified

seven investment opportunities. Investment 1 requires $40 and
has a present value (a time-discounted value) of $10;
investment 2 requires $50 and has a value of 15; and so on as
shown in Table I. The question is: Into which investments
should we place our money so as to maximise our total
present value?

TABLE I

INPUT DATA

investment 1 2 3 4 5 6 7

requirement 40 50 20 60 40 70 40
present value 10 15 3 16 11 20 9

Let us denote by C the sum in question (it represents a

constraint), by wi the investment requirements, and by vi the
current values of these investments. If we consider a general
case of n investments, then, formally written, we solve the
following problem:

Manuscript received August 31, 2008. This work was supported in part by

the Ministry of Education, Youth and Sports of the Czech Republic under
research plan MSM 0021630518 "Simulation Modelling of Mechatronic
Systems".

Jindřiška Šedová works in the Department of Law, Faculty of Economics
and Administration, Masaryk University of Brno, Lipová 41a, 657 90 Brno,
Czech Republic (phone: +420-5-49497663, e-mail: jsedova@econ.muni.cz).

Miloš Šeda works in the Institute of Automation and Computer Science,
Faculty of Mechanical Engineering, Brno University of Technology,
Technická 2896/2, CZ 616 69 Brno, Czech Republic (phone: +420-54114
3332; fax: +420-54114 2330; e-mail: seda@fme.vutbr.cz).

Maximise

∑
=

n

i
ii xv

1

subject to

∑
=

≤
n

i
ii Cxw

1
,

where xi ∈ {0,1}, i = 1,2, ... , n.
The binary decision variables xi specify whether or not the

investment i is realized.
Evidently, the formulated capital budgeting problem is one

of the applications of the well-known combinatorial
optimisation problem, the 0-1 knapsack problem where the
sum of money corresponds to the knapsack capacity,
investment represent the items to be packed into the knapsack,
their requirements relate to the items capacities (weights) and
the current investment values to the item values (prices).

In practice, we may face a choice among projects that
require investments of different amounts in each of several
periods (with possibly different budgets Cj available in each
periods) [17], with the return being realized over the life of
the project. In this case, assuming n projects and m periods,
we can model the problem as follows:

Maximise

 v xi i
i

n

=
∑

1

 (1)

subject to

 ∑
=

=≤
n

i
jii mjCxw

1
,...,1, , (2)

where xi ∈{0,1}, i = 1,2, ... , n and

⎩
⎨
⎧

=
 otherwise,0

 projectin invest weif,1 i
xi (3)

This task corresponds to the m-dimensional knapsack
problem (Multi-Knapsack Problem).

Both of these knapsack problems are NP-hard [7] and may
only be solved for instances with a low number of inputs.

The knapsack problem and capital budgeting have
numerous applications. In addition to capital markets, it may
also be employed in areas such as information technologies
[4], resource-constrained project scheduling [16], auditing
[10] and health care [6].

In [8] and [12], fuzzy simulation-based genetic algorithms
for solving capital budgeting problem in an uncertain

A Comparison of Exact and Heuristic
Approaches to Capital Budgeting

Jindřiška Šedová, and Miloš Šeda

I

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

686

economic environment are proposed.
In the following sections, we will restrict our considerations

to the deterministic case and show possible ways of solving it
with respect to its size.

II. DETERMINISTIC METHODS
There are many deterministic techniques to solve the

problem under investigation. These include:
• Rude-force approach is the simplest way based on

generating all possible choices of investments and
determining the optimal solution among them. This
strategy is obviously not efficient, as its time complexity is
O(2n).

• Dynamic programming approach is based on Bellman’s
principle of optimality. It can be used in a special case of
the requirements and the investment capacity (sum of
money in our example) being integers.

• Branch-and-bound method is the most efficient tool
among these deterministic methods as it is based on a
restriction of the search tree growth. Avoiding much
enumeration depends on the precise upper bounds (the
lower the upper bounds, the faster the finding of the
solution is).

Let us solve the Knapsack Problem with capacity C=15 for
the data from Table II.

TABLE II

KNAPSACK PROBLEM WITH TEN ITEMS

i 1 2 3 4 5 6 7 8 9 10
vi 18 20 17 19 25 21 27 23 25 24
wi 1 3 7 4 8 9 6 10 2 5

Let us denote fk(y) as maximal possible value using only

first k items when the capacity limit is y.

}Cynkki

xyxwxvyf
n

i
iii

n

i
iii

≤≤≤≤=

⎪⎩

⎪
⎨
⎧

∈≤= ∑∑
==

0,0,,...,1

},1,0{,max)(
11 (4)

 Evidently, the maximal value of a knapsack with capacity 0
is 0, and the maximal value of any knapsack is 0 if we have no
objects to put in it. That means:
 nkf k ≤≤= 0,0)0((5)
 Cyyf ≤≤= 0,0)(0 (6)

General case fk(y):
a’) If the k-th item is not a part of the maximal value of a
knapsack, then)()(1 yfyf kk −= .
b’) If the k-th item is a part of the maximal value of a
knapsack, then))()(1 kkkk vwyfyf +−= −
 ⇒ { }))(),(max)(11 kkkkk vwyfyfyf +−= −− (7)
Since it is not possible to put into the knapsack the item of
weight wk that would exceed the remaining capacity y, (7)
implies fk(y) = fk−1(y) for y < wk .

Summarising all the cases, we get:

{ }
⎭
⎬
⎫

⎩
⎨
⎧

<
≥+−

=
−

−−

kk

kkkkk
k wyyf

wyvwyfyf
yf

if),(
if,))(),(max

)(
1

11 (8)

If we increase the capacity of the knapsack and the set of
objects that can be used to fill the knapsack and when y=C and
k=n, then Fn(C) corresponds to the maximum value of a
knapsack with the full capacity, using all of the objects.

This algorithm can easily be implemented without recursive
calls and thus there are no requirements for dynamic memory
allocation when the program is running.

Computations by formulas (5), (6) and (8) may be
expressed by the following statements:

for k := 0 to n do
 f[k,0] := 0;
for y := 0 to C do
 f[0, y] := 0;

for k := 1 to n do
 for y := 0 to C do
 if y < w[k]
 then f[k, y] := f[k−1, y]
 else if f[k−1, y] > f[k−1, y−w[k]] + v[k]
 then f[k, y] := f[k−1, y];
 else f[k, y] := f[k−1, y−w[k]] + v[k];

Trace-back in DP approach (determination which items
were put into the knapsack)

0 We begin with the value fn(C), which, in matrix F with
rows 0,1, ... , n and columns 0,1, ... , C is in the bottom
right position.

1 This value is compared with the value which is in the
previous row and in the same column. There are two
possibilities:

2a Compared values are equal, then the last item (given by
the row index of the investigated element in matrix F) is
not included into the knapsack, it derives from a’) and
fk(y) = fk−1(y) for y < wk in b’)

2b Compared values differ, then we put the last item into the
knapsack determining the remaining capacity and examine
the value in the previous row and in the column that
corresponds to the remaining capacity. If row 0 was
reached, we finish, otherwise skip to Step 1.

For this procedure, it is true that none of the items in the
trace back step are duplicated, i.e., each item may be included
in the knapsack at most once. The trace-back can be expressed
as follows:

for i := 1 to n do
 x[i] := 0;
k := n; y := C;
while k > 0 do
 begin if f[k, y] <> f[k−1, y]
 then begin x[k] := 1; y := y−w[k]
 end
 else k := k −1
 end;

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

687

From the previous explanations, the following assertion
may be derived.
Theorem 1 The previous algorithm for integer capacity C
runs in O(nC) time.
Proof. Time complexity is given by the dominant part
represented by two nested cycles to evaluate matrix
f[0..n,0..C], the time complexity of the trace-back step is only
O(n).

The main drawback of the dynamic programming approach
for solving the knapsack problem is that the time complexity
depends not only on the number of items but also on the
capacity C of the knapsack. In the next paragraph, we will
show that this dependence does not occur in solving the
problem by a branch-and-bound method.

Next disadvantage of the DP approach is that the number of
columns in matrix F for fk(y) values and the corresponding
allocation of memory increases out of proportion for a high
value of integer capacity C. If C is not integer, then the DP
approach even cannot be applied at all.

TABLE III
DYNAMIC PROGRAMMING COMPUTATION

k\
y

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

2 0 18 18 20 38 38 38 38 38 38 38 38 38 38 38 38

3 0 18 18 20 38 38 38 38 38 38 38 55 55 55 55 55

4 0 18 18 20 38 38 38 39 57 57 57 57 57 57 57 74

5 0 18 18 20 38 38 38 39 57 57 57 57 63 63 63 74

6 0 18 18 20 38 38 38 39 57 57 57 57 63 63 63 74

7 0 18 18 20 38 38 38 45 57 57 65 65 65 55 84 84

8 0 18 18 20 38 38 38 45 57 57 65 65 65 55 84 84

9 0 18 25 43 43 45 63 63 63 70 82 82 90 90 90 91

10 0 18 25 43 43 45 63 63 67 70 82 87 90 90 94 106

As to time complexity of the algorithm, it is evident that,

for the computation of a new matrix line, we only need to
know the values of the previous row. Therefore, it is possible
to work only with a two-row matrix. At the end of the
computation of a new line, we mark its values as old and
compute from them the next values. By these strategy, we
save the memory size for (n−1)*(C+1) matrix elements. On
the other hand, we lose time by moving the values from the
new to the old results. However, we can avoid this easily, by
defining a flag in the subroutine which will keep a track of
where the old solution is currently located and where the
newly computed values are stored. Of course, when using this
strategy, we must adapt the procedure so that it can save the
information on which items are put into the knapsack.

If we apply the DP approach to the data from Table II and
capacity C=15, then, from formulas (5), (6) and (8), we will

get the following matrix f[0..n,0..C] (see Table III) and we
will use the trace-back step (marked by arrows) for
determining the solution.

For the knapsack, items 10, 9, 4, 2 and 1 are selected and
their total values is 24+25+19+20+18 = 106.

Finding the solution may be faster when we use the branch-
and-bound method [11], [16], which restricts the growth of the
search tree. Depending on the precision of the upper bounds,
much enumeration may be avoided (the lower the upper
bounds, the faster the finding of the solution). Let the items be
numbered so that

 ,
2

2

1

1

n

n
w
v

w
v

w
v

≥≥≥ " (9)

i.e. the unit values of the items form a nonincreasing
sequence. Using QuickSort, HeapSort, or MergeSort, time
complexity of this step is O(n log2n).

After this modification, we get the data as shown by Table
IV.

TABLE IV
REORDERED DATA FOR BRANCH AND BOUND METHOD

i 1 2 3 4 5 6 7 8 9 10
vi 18 25 20 24 19 27 25 17 21 23
wi 1 2 3 5 4 6 8 7 9 10

vi/wi 18 12.5 6.66 4.8 4.75 4.5 3.12 2.42 2.33 2.3

We place items in the knapsack along this non-increasing
sequence. Let x1, x2, … , xp be fixed values of 0 or 1 and

{ }| , , {0,1}, 1, ,k j j jM M x j pξ ξ= ∈ = ∈ =x x … (10)

where M is a set of feasible solutions. If

1

1 1 1
() () :

q p q

j j j j
j p j j p

q p q n w C w wξ
−

= + = = +
∃ < ≤ ≤ − <∑ ∑ ∑ (11)

then the upper bound for Mk can be determined as follows:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−++= ∑ ∑∑ ∑

=

−

+==

−

+=

p

j

q

pj
jjj

q

q
p

j

q

pj
jjjk wwC

w
v

vvMU
1

1

11

1

1
B)(ξξ (12)

The computation for the input data from Table IV is shown
in Fig. 1.

For the solution of the task with multiple constraints, we
must generalise the approaches mentioned above.

The combinatorial approach can be applied without any
changes, but using the branch-and-bound method, we must
redefine the upper bound. For its evaluation, we use the
following formula

 { }1() min (), , ()m
B k B k B kU M U M U M= … (13)

where the auxiliary bounds (), 1, ,i
B kU M i m= … correspond

to the given constraints and are determined as in the 0-1
knapsack problem. Before the evaluation of these auxiliary
bounds, the other variables must be sorted again in the
descending order of the values vj/wi j. Evidently, the run time

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

688

will increase substantially.
Solving multiperiod capital budgeting by dynamic

programming is quite inefficient and, therefore, we will not
deal with it.

Fig. 1 Knapsack problem and its solution using a branch-and-bound

method

III. SOLVING CAPITAL BUDGETING PROBLEM USING
COMMERCIAL SYSTEMS

For small instances of the problem, we can use the solver
nested in Microsoft Excel, which can be applied to simple
tasks of linear and integer programming. However, it fails for
tasks with a higher number of inputs where, to a certain
extent, more sophisticated software tools may be used such
GAMS, LINDO, and LINGO.

The impetus for the development of GAMS, (General
Algebraic Modelling System) [3], arose out of the frustrating
experiences of an economic modelling group at the World
Bank.

We illustrate GAMS for the input data from row W(I). For
lack of space, we only mention that GAMS statements and
objects are written here in capitals, comments are in small-
case letters.

It can be seen that the programme is very close to the
mathematical model.

$OFFSYMXREF
$OFFUELXREF
* section defining index sets

SETS
 I index /1*7/;
* input data section
PARAMETERS
 W(I) requirements
 /1 400, 2 500, 3 200, 4 600, 5 400, 6 700, 7 400/
 Z(I) present values
 /1 100, 2 150, 3 30, 4 160, 5 110, 6 200, 7 90/;
SCALAR C investment limit (sum of money) /2000/;
*variable section (decision variables and objective function)
VARIABLES
X(I) decision variable specifying whether or not
*to realize investment i.

 CN total requirements
 CZ objective function (total present value);
BINARY VARIABLE X;
*equation section
EQUATIONS
 CONSTRAINT budget constraints
 TOTREQ total requirements
 TOTPRESENT objective function (total present value);
 CONSTRAINT .. SUM(I,W(I)*X(I)) =L= C;
 TOTREQ .. SUM(I,W(I)*X(I)) =E= CN;
 TOTPRESENT .. SUM(I,Z(I)*X(I)) =E= CZ;
*choosing a model, running the solver, and
*displaying the results
MODEL INVEST /ALL/;
SOLVE INVEST USING MIP MAXIMIZING CZ;
DISPLAY CZ.L, CW.L, X.L;

However, GAMS and Excel are not effective in solving
very complex multiperiod capital budgeting problems. In this
case, we choose heuristic techniques.

IV. HEURISTICS
Heuristic [15] is a technique which seeks goal (i.e. near

optimal) solutions at a reasonable computational cost without
being able to guarantee either feasibility or optimality, or even
in many cases, to state how close to optimality a particular
feasible solution is.

Nowadays many heuristic approaches are used such as
repeated local search [2], simulated annealing [2], genetic
algorithms [13], [14], tabu-search [9] and neural networks.
All these approaches are reviewed in [15].

Let us deal with the genetic algorithms now.
A GA program framework can be as follows:

generate an initial population;
evaluate fitness of individuals in the population;
repeat select parents from the population;
 recombine parents to produce children;
 evaluate fitness of the children;
 replace some or all of the population by the children
until a satisfactory solution has been found;

In the following paragraphs we briefly summarize GA
settings to our scheduling problem.

Individuals in the population (chromosomes) are
represented as binary strings of length n, where a value of 0

UB = 92,5

x1=0

3

1
x1=1

2

UB = 90

x2=0

5

x2=1

4

UB = 99,5

x3=0

7

x3=1

6

UB =100

x4=0

9

x4=1

8

UB =105

x5=0

11

x5=1

10x6=0 x6=1

UB =106

UB =106

UB =106

UB =106

UB =106

1213
UB =106

UB =106
x7=0

15

x7=1

14

UB =106
x8=0

17

x8=1

16
UB =106

x9=0

19

x9=1

18 x10=0

21

x10=1

20
f(x) =106

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

689

or 1 at the i-th bit (gene) implies that xi=0 or 1 in the solution,
respectively.

The population size N is chosen by Alander's experimental
work [1] between n and 2n.

An initial population consists of N feasible solutions and it
is obtained by generating random strings of 0's and 1's in the
following way: First, all bits in all strings are set to 0, and
then, for each of the strings, randomly selected bits are set to 1
until the solutions (represented by strings) are feasible.

The fitness function corresponds to the objective function to
be maximised:

 ∑
=

=
n

i
ii xvf

1
)(x (14)

Pairs of chromosomes (parents) are selected for
recombination by the binary tournament selection method,
which selects a parent by randomly choosing 2 individuals
from the population and selecting the most fit one.

The recombination is provided by the uniform crossover
operator. That means that each gene in the child solution is
created by copying the corresponding gene from one or the
other parent, chosen by a binary random number generator. If
the random number is 0, the gene is copied from the first
parent; if it is 1, the gene is copied from the second parent.
After crossover, the mutation operation is applied to each
child. It works by inverting each bit in the solution with a
small probability. We use a mutation rate of 5/n as a lower
bound on the optimal mutation rate. It is equivalent to
mutating five randomly chosen bits per string.

If we perform the crossover or mutation operations as
described above, then the generated children can violate
certain capacity constraints. We can assign penalties to these
children that prevent infeasible individuals from entering the
population.

A more constructive approach uses a repair operator that
modifies the structure of an infeasible individual so that the
solution becomes feasible. Its pseudo-Pascal code for the
multi-knapsack problem is shown by the following algorithm.
We assume that variables are sorted and renumbered in the
descending order of their pseudo-utility ratios ui = vi/wj i [5].

1

: {1, , }

: , ;
n

j ji i
i

J m

W w x j J
=

=

= ∀ ∈∑

…

 for i := n downto 1 do
 if (xi = 1) and (Wj > Cj ; for any j ∈ J)
 then begin xi := 0;
 Wj : = Wj − wji , ∀j∈J
 end;

Once a new feasible child solution has been generated, the
child will replace a randomly chosen solution. We use a
steady-state replacement technique based on eliminating the
individual with the lowest fitness value.

Since the optimal solution values for most problems are not
known, the termination of a GA is usually controlled by
specifying a maximum number of generations tmax. We choose
tmax ≤ 5000.

V. CONCLUSION
In the previous paragraphs, several approaches to capital

budgeting, based on solving knapsack problem, were
discussed. It was shown that, for small instances, deterministic
methods such as the branch-and-bound method and, in a
special case, the dynamic programming approach may also be
used to obtain better results than heuristic methods. On the
contrary, the branch-and-bound method and dynamic-
programming approach are not efficient in multiperiod capital
budgeting with many periods and investments because of the
exponentially growing time in branch-and-bound method
calculations and high memory requirements for static arrays in
the dynamic-programming approach.

In these cases, we choose heuristic techniques. The genetic
algorithm has been found to work efficiently. It provides good
results in a reasonable amount of time for hundreds of items
and tens of capacity constraints.

In the future, we will implement other heuristics and
consider uncertain economic influences.

REFERENCES
[1] J. T. Alander, “On Optimal Population Size of Genetic Algorithms,” in

Proceedings of CompEuro 92, IEEE Computer Society Press, pp. 65-70,
1992.

[2] R. Battiti and G. Tecchioli, “Local Search with Memory: Benchmarking
RTS,” Operations Research Spectrum, vol. 17, no. 2/3, pp. 67-86, 1996.

[3] A. Brooke, D. Kendrick and A. Meeraus, GAMS, release 2.25. A User’s
Guide. Danvers, Massachussetts: Boyd & Fraser Publishing Company,
1992.

[4] A. Chandra, N.M. Menon and B.K. Mishra, “Budgeting for Information
Technology,” International Journal of Accounting Information
Systems, vol. 8, issue 4, pp. 264-282, 2007.

[5] P. Chu, “A Genetic Algorithm Approach for Combinatorial Optimisation
Problems,” PhD thesis, The Management School Imperial College of
Science, Technology and Medicine, London, 1997.

[6] L. Eldenburg and R. Krishnan, “Management Accounting and Control in
Health Care: An Economics Perspective,” Handbooks of Management
Accounting Research, vol. 2, pp. 859-883, 2006.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W.H. Freeman and
Company, 1997 (19th printing).

[8] X. Huang, “Mean-variance Model for Fuzzy Capital Budgeting,”
Computers & Industrial Engineering, vol. 55, issue 1, pp. 34-47, 2008.

[9] F. Glover and M. Laguna, Tabu Search. Boston: Kluwer Academic
Publishers, 1997.

[10] D. Kim, “Capital Budgeting for New Projects: On the Role of Auditing
in Information Acquisition,” Journal of Accounting and Economics, vol.
41, issue 3, pp. 257-270, 2006.

[11] J. Klapka, J. Dvořák and P. Popela. Methods of Operational Research
(in Czech). Brno: VUTIUM, 2001.

[12] R. Liang and J. Gao, “Dependent-Chance Programming Models for
Capital Budgeting in Fuzzy Environments,” Tsinghua Science &
Technology, vol. 13, issue 1, pp. 117-120, 2008.

[13] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics.
Berlin: Springer-Verlag, 2000.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer Verlag, 1996.

[15] C.R. Reeves, Modern Heuristic Techniques for Combinatorial
Problems. Oxford: Blackwell Scientific Publications, 1993.

[16] M. Šeda, “Solving Resource-Constrained Project Scheduling Problem
As a Sequence of Multi-Knapsack Problems,” WSEAS Transactions on
Information Science and Applications, vol. 3, issue 10, pp. 1785-1791,
2006.

[17] M.A. Trick, “A Tutorial on Integer Programming”,
http://mat.gsia.cmu.edu/orclass/integer/integer.html, 1997.

