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Abstract—This paper summarizes and compares approaches to 

solving the knapsack problem and its known application in capital 
budgeting. The first approach uses deterministic methods and can be 
applied to small-size tasks with a single constraint. We can also 
apply commercial software systems such as the GAMS modelling 
system. However, because of NP-completeness of the problem, more 
complex problem instances must be solved by means of heuristic 
techniques to achieve an approximation of the exact solution in a 
reasonable amount of time. We show the problem representation and 
parameter settings for a genetic algorithm framework.  

 
Keywords—Capital budgeting, knapsack problem, GAMS, 

heuristic method, genetic algorithm.  

I. INTRODUCTION 
N practice, we must often solve a problem of the following 
type: Suppose we wish to invest $200. We have identified 

seven investment opportunities. Investment 1 requires $40 and 
has a present value (a time-discounted value) of $10; 
investment 2 requires $50 and has a value of 15; and so on as 
shown in Table I. The question is: Into which investments 
should we place our money so as to maximise our total 
present value? 

 
TABLE I 

INPUT DATA 

investment 1 2 3 4 5 6 7 

requirement 40 50 20 60 40 70 40 
present value 10 15 3 16 11 20 9 

 
Let us denote by C the sum in question (it represents a 

constraint), by wi the investment requirements, and by vi the 
current values of these investments. If we consider a general 
case of n investments, then, formally written, we solve the 
following problem: 
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where  xi  ∈ {0,1},  i = 1,2, ... , n. 
The binary decision variables xi specify whether or not the 

investment i is realized. 
Evidently, the formulated capital budgeting problem is one 

of the applications of the well-known combinatorial 
optimisation problem, the 0-1 knapsack problem where the 
sum of money corresponds to the knapsack capacity, 
investment represent the items to be packed into the knapsack, 
their requirements relate to the items capacities (weights) and 
the current investment values to the item values (prices). 

In practice, we may face a choice among projects that 
require investments of different amounts in each of several 
periods (with possibly different budgets Cj available in each 
periods) [17], with the return being realized over the life of 
the project. In this case, assuming n projects and m periods, 
we can model the problem as follows: 
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where  xi ∈{0,1}, i = 1,2, ... , n  and 
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This task corresponds to the m-dimensional knapsack 
problem (Multi-Knapsack Problem).  

Both of these knapsack problems are NP-hard [7] and may 
only be solved for instances with a low number of inputs. 

The knapsack problem and capital budgeting have 
numerous applications. In addition to capital markets, it may 
also be employed in areas such as information technologies 
[4], resource-constrained project scheduling [16], auditing 
[10] and health care [6]. 

In [8] and [12], fuzzy simulation-based genetic algorithms 
for solving capital budgeting problem in an uncertain 
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economic environment are proposed. 
In the following sections, we will restrict our considerations 

to the deterministic case and show possible ways of solving it 
with respect to its size. 

II. DETERMINISTIC METHODS 
There are many deterministic techniques to solve the 

problem under investigation. These include: 
• Rude-force approach is the simplest way based on 

generating all possible choices of investments and 
determining the optimal solution among them. This 
strategy is obviously not efficient, as its time complexity is 
O(2n ). 

• Dynamic programming approach is based on Bellman’s 
principle of optimality. It can be used in a special case of 
the requirements and the investment capacity (sum of 
money in our example) being integers.  

• Branch-and-bound method is the most efficient tool 
among these deterministic methods as it is based on a 
restriction of the search tree growth. Avoiding much 
enumeration depends on the precise upper bounds (the 
lower the upper bounds, the faster the finding of the 
solution is).  

Let us solve the Knapsack Problem with capacity C=15 for 
the data from Table II. 

 
TABLE II 

KNAPSACK PROBLEM WITH TEN ITEMS 

i 1 2 3 4 5 6 7 8 9 10 
vi 18 20 17 19 25 21 27 23 25 24 
wi 1 3 7 4 8 9 6 10 2 5 

 
Let us denote fk(y) as maximal possible value using only 

first k items when the capacity limit is y.  
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 Evidently, the maximal value of a knapsack with capacity 0 
is 0, and the maximal value of any knapsack is 0 if we have no 
objects to put in it. That means: 
 nkf k ≤≤= 0,0)0(  (5)   
 Cyyf ≤≤= 0,0)(0  (6)  
  
General case  fk(y): 
a’) If the k-th item is not a part of the maximal value of a 
knapsack, then )()( 1 yfyf kk −= . 
b’) If the k-th item is a part of the maximal value of a 
knapsack, then ))()( 1 kkkk vwyfyf +−= −  
 ⇒  { }))(),(max)( 11 kkkkk vwyfyfyf +−= −−  (7) 
Since it is not possible to put into the knapsack the item of 
weight wk that would exceed the remaining capacity y, (7) 
implies fk(y) = fk−1(y) for y < wk .   

Summarising all the cases, we get: 
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If we increase the capacity of the knapsack and the set of 
objects that can be used to fill the knapsack and when y=C and 
k=n, then Fn(C) corresponds to the maximum value of a 
knapsack with the full capacity, using all of the objects. 

This algorithm can easily be implemented without recursive 
calls and thus there are no requirements for dynamic memory 
allocation when the program is running.  

Computations by formulas (5), (6) and (8) may be 
expressed by the following statements: 
 

for k := 0 to n do 
 f[k,0] := 0; 
for y := 0 to C do 
 f[0, y] := 0; 
 
for k := 1 to n do 
 for y := 0 to C do 
 if  y < w[k] 
 then f[k, y] := f[k−1, y] 
 else if f[k−1, y] > f[k−1, y−w[k]] + v[k] 
  then f[k, y] := f[k−1, y]; 
  else  f[k, y] := f[k−1, y−w[k]] + v[k]; 
 
Trace-back in DP approach (determination which items 
were put into the knapsack) 

0 We begin with the value fn(C), which, in matrix F with 
rows 0,1, ... , n and columns 0,1, ... , C is in the bottom 
right position. 

1 This value is compared with the value which is in the 
previous row and in the same column. There are two 
possibilities: 

2a Compared values are equal, then the last item (given by 
the row index of the investigated element in matrix F) is 
not included into the knapsack, it derives from a’) and  
fk(y) = fk−1(y) for y < wk in b’) 

2b Compared values differ, then we put the last item into the 
knapsack determining the remaining capacity and examine 
the value in the previous row and in the column that 
corresponds to the remaining capacity. If row 0 was 
reached, we finish, otherwise skip to Step 1.  

For this procedure, it is true that none of the items in the 
trace back step are duplicated, i.e., each item may be included 
in the knapsack at most once. The trace-back can be expressed 
as follows: 

for i := 1 to n do 
 x[i] := 0; 
k := n; y := C; 
while k > 0 do 
 begin if f[k, y] <> f[k−1, y] 
  then begin x[k] := 1; y := y−w[k] 
 end 
  else k := k −1 
 end; 
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From the previous explanations, the following assertion 
may be derived.  
Theorem 1 The previous algorithm for integer capacity C 
runs in O(nC) time. 
Proof. Time complexity is given by the dominant part 
represented by two nested cycles to evaluate matrix 
f[0..n,0..C], the time complexity of the trace-back step is only 
O(n).  
 

The main drawback of the dynamic programming approach 
for solving the knapsack problem is that the time complexity 
depends not only on the number of items but also on the 
capacity C of the knapsack. In the next paragraph, we will 
show that this dependence does not occur in solving the 
problem by a branch-and-bound method.  

Next disadvantage of the DP approach is that the number of 
columns in matrix F for fk(y) values and the corresponding 
allocation of memory increases out of proportion for a high 
value of integer capacity C. If C is not integer, then the DP 
approach even cannot be applied at all. 
 

TABLE III 
DYNAMIC PROGRAMMING COMPUTATION 

k\ 
y

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

2 0 18 18 20 38 38 38 38 38 38 38 38 38 38 38 38

3 0 18 18 20 38 38 38 38 38 38 38 55 55 55 55 55

4 0 18 18 20 38 38 38 39 57 57 57 57 57 57 57 74

5 0 18 18 20 38 38 38 39 57 57 57 57 63 63 63 74

6 0 18 18 20 38 38 38 39 57 57 57 57 63 63 63 74

7 0 18 18 20 38 38 38 45 57 57 65 65 65 55 84 84

8 0 18 18 20 38 38 38 45 57 57 65 65 65 55 84 84

9 0 18 25 43 43 45 63 63 63 70 82 82 90 90 90 91

10 0 18 25 43 43 45 63 63 67 70 82 87 90 90 94 106

 
As to time complexity of the algorithm, it is evident that, 

for the computation of a new matrix line, we only need to 
know the values of the previous row. Therefore, it is possible 
to work only with a two-row matrix. At the end of the 
computation of a new line, we mark its values as old and 
compute from them the next values. By these strategy, we 
save the memory size for (n−1)*(C+1) matrix elements. On 
the other hand, we lose time by moving the values from the 
new to the old results. However, we can avoid this easily, by 
defining a flag in the subroutine which will keep a track of 
where the old solution is currently located and where the 
newly computed values are stored. Of course, when using this 
strategy, we must adapt the procedure so that it can save the 
information on which items are put into the knapsack. 

If we apply the DP approach to the data from Table II and 
capacity C=15, then, from formulas (5), (6) and (8), we will 

get the following matrix f[0..n,0..C] (see Table III) and we 
will use the trace-back step (marked by arrows) for 
determining the solution. 

For the knapsack, items 10, 9, 4, 2 and 1 are selected and 
their total values is 24+25+19+20+18 = 106. 

Finding the solution may be faster when we use the branch- 
and-bound method [11], [16], which restricts the growth of the 
search tree. Depending on the precision of the upper bounds, 
much enumeration may be avoided (the lower the upper 
bounds, the faster the finding of the solution). Let the items be 
numbered so that 
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i.e. the unit values of the items form a nonincreasing 
sequence. Using QuickSort, HeapSort, or MergeSort, time 
complexity of this step is O(n log2n). 

After this modification, we get the data as shown by Table 
IV. 
  

TABLE IV 
REORDERED DATA FOR BRANCH AND BOUND METHOD 

i 1 2 3 4 5 6 7 8 9 10 
vi 18 25 20 24 19 27 25 17 21 23 
wi 1 2 3 5 4 6 8 7 9 10 

vi/wi 18 12.5 6.66 4.8 4.75 4.5 3.12 2.42 2.33 2.3 
 

We place items in the knapsack along this non-increasing 
sequence. Let x1, x2, … , xp be fixed values of 0 or 1 and 

{ }| , , {0,1}, 1, ,k j j jM M x j pξ ξ= ∈ = ∈ =x x …     (10) 

where M is a set of feasible solutions. If 
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then the upper bound for Mk can be determined as follows: 
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The computation for the input data from Table IV is shown 
in Fig. 1. 

For the solution of the task with multiple constraints, we 
must generalise the approaches mentioned above. 

The combinatorial approach can be applied without any 
changes, but using the branch-and-bound method, we must 
redefine the upper bound. For its evaluation, we use the 
following formula 

 { }1( ) min ( ), , ( )m
B k B k B kU M U M U M= …  (13) 

where the auxiliary bounds ( ), 1, ,i
B kU M i m= …  correspond 

to the given constraints and are determined as in the 0-1 
knapsack problem. Before the evaluation of these auxiliary 
bounds, the other variables must be sorted again in the 
descending order of the values vj/wi j. Evidently, the run time 
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will increase substantially. 
Solving multiperiod capital budgeting by dynamic 

programming is quite inefficient and, therefore, we will not 
deal with it. 

 
Fig. 1 Knapsack problem and its solution using a branch-and-bound 

method 

III. SOLVING CAPITAL BUDGETING PROBLEM USING 
COMMERCIAL SYSTEMS 

For small instances of the problem, we can use the solver 
nested in Microsoft Excel, which  can be applied to simple 
tasks of linear and integer programming. However, it fails for 
tasks with a higher number of inputs where, to a certain 
extent, more sophisticated software tools may be used such 
GAMS, LINDO, and LINGO.   

The impetus for the development of GAMS, (General 
Algebraic Modelling System) [3], arose out of the frustrating 
experiences of an economic modelling group at the World 
Bank.  

We illustrate GAMS for the input data from row W(I). For 
lack of space, we only mention that GAMS statements and 
objects are written here in capitals, comments are in small-
case letters. 

It can be seen that the programme is very close to the 
mathematical model. 

$OFFSYMXREF 
$OFFUELXREF 
* section defining index sets 

SETS 
  I index  /1*7/; 
* input data section 
PARAMETERS 
  W(I) requirements 
     /1 400, 2 500, 3 200, 4 600, 5 400, 6 700, 7 400/ 
  Z(I) present values 
      /1 100, 2 150, 3 30, 4 160, 5 110, 6 200, 7 90/; 
SCALAR C investment limit (sum of money) /2000/; 
*variable section (decision variables and objective function) 
VARIABLES 
X(I) decision variable specifying whether or not  
*to realize investment i. 

  CN total requirements 
  CZ objective function (total present value); 
BINARY VARIABLE X; 
*equation section 
EQUATIONS 
  CONSTRAINT  budget constraints 
  TOTREQ total requirements  
  TOTPRESENT objective function (total present value); 
  CONSTRAINT .. SUM(I,W(I)*X(I)) =L= C; 
  TOTREQ .. SUM(I,W(I)*X(I)) =E= CN; 
  TOTPRESENT .. SUM(I,Z(I)*X(I)) =E= CZ; 
*choosing a model, running the solver, and  
*displaying the results 
MODEL INVEST /ALL/; 
SOLVE INVEST USING MIP MAXIMIZING CZ; 
DISPLAY CZ.L, CW.L, X.L; 

However, GAMS and Excel are not effective in solving 
very complex multiperiod capital budgeting problems. In this 
case, we choose heuristic techniques.  

IV. HEURISTICS   
Heuristic [15] is a technique which seeks goal (i.e. near 

optimal) solutions at a reasonable computational cost without 
being able to guarantee either feasibility or optimality, or even 
in many cases, to state how close to optimality a particular 
feasible solution is. 

Nowadays many heuristic approaches are used such as  
repeated local search [2], simulated annealing [2], genetic 
algorithms [13], [14], tabu-search [9] and neural networks. 
All these approaches are reviewed in [15]. 

Let us deal with the genetic algorithms now. 
A GA program framework can be as follows: 

generate an initial population; 
evaluate fitness of individuals in the population; 
repeat select parents from the population; 
 recombine parents to produce children; 
 evaluate fitness of the children; 
 replace some or all of the population by the children 
until a satisfactory solution has been found; 
 

In the following paragraphs we briefly summarize GA 
settings to our scheduling problem. 

Individuals in the population (chromosomes) are 
represented as binary strings of length n, where a value of 0 
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or 1 at the i-th bit (gene) implies that xi=0 or 1 in the solution, 
respectively. 

The population size N is chosen by Alander's experimental 
work [1] between n and 2n. 

An initial population consists of N feasible solutions and it 
is obtained by generating random strings of 0's and 1's in the 
following way: First, all bits in all strings are set to 0, and 
then, for each of the strings, randomly selected bits are set to 1 
until the solutions (represented by strings) are feasible. 

The fitness function corresponds to the objective function to 
be maximised: 

 ∑
=

=
n

i
ii xvf

1
)(x  (14) 

Pairs of chromosomes (parents) are selected for 
recombination by the binary tournament selection method, 
which selects a parent by randomly choosing 2 individuals 
from the population and selecting the most fit one. 

The recombination is provided by the uniform crossover 
operator. That means that each gene in the child solution is 
created by copying the corresponding gene from one or the 
other parent, chosen by a binary random number generator. If 
the random number is 0, the gene is copied from the first 
parent; if it is 1, the gene is copied from the second parent. 
After crossover, the mutation operation is applied to each 
child. It works by inverting each bit in the solution with a 
small probability. We use a mutation rate of 5/n as a lower 
bound on the optimal mutation rate. It is equivalent to 
mutating five randomly chosen bits per string. 

If we perform the crossover or mutation operations as 
described above, then the generated children can violate 
certain capacity constraints. We can assign penalties to these 
children that prevent infeasible individuals from entering the 
population. 

A more constructive approach uses a repair operator that 
modifies the structure of an infeasible individual so that the 
solution becomes feasible. Its pseudo-Pascal code for the 
multi-knapsack problem is shown by the following algorithm. 
We assume that variables are sorted and renumbered in the 
descending order of  their pseudo-utility ratios ui = vi/wj i [5]. 
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 for  i := n downto  1  do 
 if (xi = 1) and (Wj > Cj ;  for any j ∈ J) 
 then  begin xi := 0; 
 Wj : = Wj  − wji ,  ∀j∈J 
  end; 

 

Once a new feasible child solution has been generated, the 
child will replace a randomly chosen solution. We use a 
steady-state replacement technique based on eliminating the 
individual with the lowest fitness value. 

Since the optimal solution values for most problems are not 
known, the termination of a GA is usually controlled by 
specifying a maximum number of generations tmax. We choose 
tmax ≤ 5000. 

V. CONCLUSION 
In the previous paragraphs, several approaches to capital 

budgeting, based on solving knapsack problem, were 
discussed. It was shown that, for small instances, deterministic 
methods such as the branch-and-bound method and, in a 
special case, the dynamic programming approach may also be 
used to obtain better results than heuristic methods. On the 
contrary, the branch-and-bound method and dynamic-
programming approach are not efficient in multiperiod capital 
budgeting with many periods and investments because of the 
exponentially growing time in branch-and-bound method 
calculations and high memory requirements for static arrays in 
the dynamic-programming approach. 

In these cases, we choose heuristic techniques. The genetic 
algorithm has been found to work efficiently. It provides good 
results in a reasonable amount of time for hundreds of items 
and tens of capacity constraints.  

In the future, we will implement other heuristics and 
consider uncertain economic influences. 
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