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A Comparative Study of High Order Rotated Group
Iterative Schemes on Helmholtz Equation

Norhashidah Hj. Mohd Ali, Teng Wai Ping

Abstract—In this paper, we present a high order group explicit
method in solving the two dimensional Helmholtz equation. The
presented method is derived from a nine-point fourth order finite
difference approximation formula obtained from a 45-degree rotation
of the standard grid which makes it possible for the construction of
iterative procedure with reduced complexity. The developed method
will be compared with the existing group iterative schemes available
in literature in terms of computational time, iteration counts, and
computational complexity. The comparative performances of the
methods will be discussed and reported.
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1. INTRODUCTION

HE Helmholtz equation is an equation of the elliptic type

which describes many physical phenomena in science and
engineering. Over the last few years, there has been some
considerable interest in the development of numerical
solutions for the two dimensional Helmholtz [1]-[5], [7]. A
half-sweep point iterative method was derived in solving the
equation where this method was found to converge faster than
the normal full-sweep iterative scheme [2]. The former
method uses a skewed difference formula which leads to lower
computational complexities since the iterative procedure needs
only involved nodes on half of the total grid points in the
solution domain and thus reduces the computational
complexity. The applications of group strategies were
observed in [1], [3] to solve the same equation where these
new methods were proven to have even better convergence
rates than the point scheme in [2]. All these developed
schemes are of second order accuracy and may not be accurate
enough if the mesh is not sufficiently refined. In an effort to
improve the accuracy of the solutions, Ali and Teng [4]
introduced a fourth order group iterative method in solving the
two dimensional Helmholtz by applying the nine-point
compact finite difference formula in a specific group
construction of the nodal points in the solution domain where
the method was shown to have a better rate of convergence
than the existing nine-point compact scheme. However, they
observe a slightly more CPU times in the explicit group (EG)
of O(h*) due to its larger complexity compared to second order
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EG [2]. In this work, an attempt is made to construct an
improved group scheme which will overcome this high
complexity problem while still maintaining the high accuracy
property.

In this paper, we propose another group iterative scheme
with the same order of accuracy as in [4] but with a much
improved computing efforts. The four-point EG method is
formulated by using a rotated (or skewed) compact nine-point
finite difference formula which enables the construction of
schemes that involve only half of the nodal points in the
iterative processes. The formulation of the proposed method is
presented in Section II, followed by the complexity analysis of
the scheme in Section III. Numerical experiments comparing
the proposed scheme with the existing group methods of the
same class will be presented in Section IV. Conclusions are
given in Section V.

II. GROUP ITERATIVE METHODS ON ROTATED GRID

Q=(0,Dx(0,1) with
Dirichlet conditions defined at the boundary. Many problems
related to the steady-state oscillations (e.g. mechanical,

thermal) lead to the two dimensional Helmholtz equation of
the following form

Consider the solution domain

Vaiu+kiu=f(xy), (xYy)eQ. (1)
2 2

Here, V2 :6_+6_ is the normal Laplacian, u(X,y) is
oxt  oy?

the solution, k is known as a wave number, f is assumed to be
sufficiently smooth. The solution domain is discretized
uniformly in the X and y directions with the mesh size h=1/n,

where x =ih, 'y, = jh (i,j=0,1,2,--,n). The computed

solution is denoted as Uy = u(X;,Y;). Using the second order

centered difference formula on the standard grid, (1) can be
approximated as

u.,.+u

g Uy U, U +(k2h2—4)ui’j=h2fhj )

i,j-1
which has a truncation error of O(h%). We denote the standard
grid as Q. Applying this formula to any group of four points

in the solution domain, [1] gave rise to the second order EG
scheme as:
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Ui j p(p*-2) p’ 2p p
Ui j p’ p(p*-2) p’ 2p
Uizt j1 2p p’ p(p*-2) p’
Ui j1 p’ 2p p? p(p*-2)] (3)
Uiy j+ Ui —h* i)
1 u|+2] +u|+1] 1 hz fi+1,j

2
p (p _4) u|+2 j+1 Jru|+11+2 h fi+1,j+l
2
u|—1,1+1+u|,1+2 h fi,j+1

where p=(4-k*h?). Using a Taylor series expansion, Ali

and Teng [4] derive a fourth order compact approximation to
(1) as

L‘I|+1 ]+1 |+1 j-1 u|,—1j+1 +ui—l,j—1 +
e h2 ,
(uH]j U Lj +ui‘j+] IJ 1)+(4k h _2O)U|] (4)
=3 (8f o+ o+ fa+ fl)

to come up with the EG of O(h*) where this method was
proven to solve (1) with better accuracy compared to the
second order group method introduced in [1]. Due to its larger
complexity, it was observed that this method incurred more
computational time when the grid sizes get larger compared to
the second order EG.

A. Explicit Decoupled Group O(h?)

Another type of finite difference formula that can be used to
discretize (1) is the second order rotated five-point formula
[6], which will result in

212 2
Uit jo1 F Uigr jor FUisg jer +Uisy jo +(2k h —4)Ji,j =2h"f;

®)

This type of grid is denoted as Q Jah Based on this

formula, [3] derived the explicit decoupled group (EDG) of
O(h?) where they showed that this group method outperformed
its pointwise counterpart in terms of time and iteration counts
while maintaining its second order accuracy. Because of this
promising result, a higher order accurate solutions derived
from the rotated grid Q Jah is a worthwhile path to follow.

B.EDG O(h*)

To design a higher order scheme, the Taylor series
expansion is used to obtain:

hZ h4 2
SFuU;j = Uy +?ux4 + 5o e +0(h®) = <1 +— A 02 )uxx +0(h")
Therefore,
h2 o\t
g = (1+562) 83wy, (6)

Similarly, we can obtain the formula for

2 -1
Applying the rotated formulas (6), (7) to (1), we obtain
2 -1 2 -1
(1+%62) su+(1+263) Shu+kPu=f+00H(®)

After some rearrangements, the rotated fourth-order nine-
point formula with a truncation error on the order O(h*) is
obtained as [7]

(uH—Z.j + ui_z'j + ui_j+2 + ui'j_z) + (8k2h2 - ZO)UU +
4+ kzhz)(ui+1,j+1 Tt Uipgj-1 T Ui—1j41 T ui—l,j—l) =
h2(8fi,j + firrjer + firrjor + ficrjer fi—l,j—l) 9

The computational molecule of this approximation is of the
following form:

Fig. 1 Computational molecule of approximation (9)

Based on this formula, [7] formulated the pointwise rotated
method which is solving (1) by using the multiscale multigrid
method combined with the Richardson’s extrapolation and
obtained promising results. It may be observed that the points
involved in this approximation are located on the two diagonal

lines from u(x,y), with a mesh spacing of V2 h between
points. Applying (9) to any groups of four points in the
solution domain will result in the following (4x4) system of
equations:

20 — 8k?h? —4 — h?%k? 0
—4—h2k? 20 — 8k2h? 0 ”t+1 g+
0 0 20 — 8k2h2  —4 — th2 Uive,j
0 0 —4 —h?k? 20 —8k2?h%l 1 WUij+1
Sl_Fl u1+1] 1+u1 1]+1+u1 1]1
S, —F, [ Uit2,j+2 + Ujt2,j +uy j+2
= + (4 + h2k? 10
S;—F;3 ( ) Uisz,jr1 + Uirzj-1 T Ujj ( )
S, —F, Uity jez T Uim1j + Ui-1j42
where

S1 = Ujgj H Ui jra H Ui+ U2
Sz = Uiz jer + Wigrjo1 T Uim1jr1 + Wisr a3
S3 = Ujpgj + Upprjez T U1 + Uig1j—2
Sa = Uppgjer + Wijez + U j H U j1
Fy = R?(firpjer + firnjor + fimrjer + fimrjo1 + 8fif)
F, = hz(fi+2,j+2 + fi+2,j +fi,j + fi,j+2 + 8fi+1,j+1)
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F3 = hz(fi+z,j+1 + fiszjo1 + fijo1 +fijer t 8fi+1,j)
F,= hz(fi+1,j+2 + fisrj + ficrj tficyjee + 8fi,j+1)~

The system (10) may be transformed into an explicit form
by inverting the (4x4) matrix at the left hand side of the
system which results in a decoupled form:

Ui 1 S — FI] 212 [ui+1,j—1 T U—1j+1 T ui—l,j—l]
ui+1,j+1] =B “52 —F, + (4 +R%K%) Uitz j+2 T Uiszj + Ujji2
(11)
and
Ujt1,j [53 - F3] 212 [ui+2,j+1 t U1+ ui,j—1]
= 4
[ui,j+1] B [ S,—F, + (44 h%k5) Uiyt jrz T Ui—1j + Ui—q j12
(12)
where
g = 1 20 —8h%k? 4+ h%k? ]
384 — 328h2k2 + 63h*k* | 4 + h?k? 20 — 8h2k?

Since it is derived from (8), the truncation error of this
scheme is of O(h%).

i T

Fig. 2 Groups of two types of points for the EDG 0 (h*) method
(n=9)

Fig. 2 shows the four points groups that are used in the new
method over the whole solution domain for the case n=9. The
computational molecule for the evaluation of (11) and (12) are
depicted in Figs. 3 (a) and (b) respectively. It may be observed
that the evaluation of (11) involves points of type @ only,
while (12) can be evaluated involving points of type O only.
Thus, the calculations of (11) and (12) can be carried out
independently. This independency allows us to construct a
group scheme where the iterations will involve only one type
of points; either the type ® or O. Without loss of generality,
suppose that the iterations are done on the points of type @.
After convergence is achieved, the solution at the other
remaining half of the points (of type O) will be evaluated
directly once using the standard formula (2). However, one
can also choose to use the formula in (4) for this direct
computation to further improve the accuracy of the solutions.
Referring to the computational molecule in Fig. 3 and the
solution domain in Fig. 2, it is observed that ifi=1orn -1,

or if j =1 or n — 1, the formula used in the iterations will
involve points which are outside the boundaries of the solution
domain. This situation was also encountered in the pointwise
rotated method in [7]. To overcome this problem, the rotated
five-point formula derived in [7] is used in the evaluation of u
at the boundaries.

(a) (b)
Fig. 3 The computational molecule of EDG 0(h*)

The EDG O(h*) summarized algorithm may then be
described as follows:

1. Group the points in the solutions in groups of four as
shown in Fig. 2.

2. Perform the iterations on paired points ® in each group
using (11) with preferred smoother (e.g. Multigrid, Gauss-
Seidel, Successive Over Relaxation, etc.)

3. Check the convergence. If the solutions converge,
terminate the iterations. Otherwise, repeat step 2.

4. 1If it converges, evaluate the solutions at the remaining
points O using (2).

III. COMPUTATIONAL COMPLEXITY

Based on the algorithm described in the previous section,
the computational complexity of EDG 0(h*) will be calculated
in terms of arithmetic operations (+,—,X, +) performed in an
iteration (excluding the convergence test). The execution time
required for each arithmetic operator is assumed to be the
same or almost the same. Likewise, the computational
complexity for other existing EG methods and the
conventional centered difference (CD) scheme are also
derived for comparison purposes. Assume that the solution
domain is discretized with integer n, then the number of
internal mesh points is given by m* where m=n-1. There are
two main types of internal mesh points namely, iterative
points which are points involved in the iteration process, and
direct points where solutions are computed directly from a
specific formula. If n is even, then there will be ungrouped
points near the upper/right boundaries. These types of points
will be smoothed by using (9). Table I tabulates the number of
arithmetic operations required for the group methods. Here,
the symbol [x] = min{n € Z|n = x}, where Z is the set of
integers. Similarly, |x| = max{n € Z|n < x}.
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TABLEI
OPERATION COUNTS OF THE TESTED METHODS
Arithmetic operations in After
Method each iteration convergence
+/— X/+ +/— X/+
CD 4 x m? m?
EG 4 x [mz —4x l%r] [mz —4x I%JZ]
0(h) +11 x [%JZ +5 x [%]2
EG 8 x [m2—4>< l%r] 2 X [mz —4x I%JZ]
0t 23 |2f vox |2
<ol :
m
EDG +4X([él_2 2“[7] 4x lm_ZJ
0(h?) i +([’"7] —ex[2fy [ 12
x|3 2
m2 m
5x (2] -m-2y 8x(3] ~m-2»
]31(),51) +L2><J (m-2) +2 X (m—2) Fn_zj lmTZJ
2

—2x g]z)

vax (] -2x |2y +(5

IV. NUMERICAL EXPERIMENTS

In order to compare the performances of the proposed
method, we conduct several numerical experiments in solving
model problem (1) with

f(x,y) =k —27")sin(zx)sin(zy), (x,y)eQ  (13)

The solution domain is Q=(0,1)x(0,1) with boundary
conditions u(0,y)=0,u(x,0)=0 and u(l,y)=0,u(x,1)=0.
The exact solution can be shown to be [5]

u(x, y) =sin(7x)sin(zy) (14)

The execution times (in seconds), the number of iterations
(Iter), the maximum absolute errors and the estimated order of
accuracy are measured for different grid sizes of 8, 16, 32, 64
and 128. The value of k is randomly chosen. The maximum

errors are taken as maxui(yjcurrent tter) —ui(irev'ous ) < & . The
tolerance used was ¢=10"". The programming language
C++ on HP Mini 210-1000 with Windows 7 Starter Edition,
processor type is Intel® Atom™ CPU N450 @ 1.66 GHz 1.67
GHz, with installed memory (RAM) of 1GB and 32-bit
Operating System type was used throughout the numerical
experiments.

To estimate the order of accuracy, we consider two mesh

sizes A and A on Q'and Q7 respectively. The estimated
order of accuracy for each scheme can be computed for
different grid size as [8]

Iog[ElJ
5/ (15)
Iog(A;]

A

Here, E; and E, are the maximum absolute errors of the

Order of Accuracy=

grids Q' and Q7 respectively.

TABLEII
PERFORMANCE OF THE TESTED METHODS
Methods n Iter  Time (secs) Max error Order of
Accuracy
8 70 0.02058 1.6295715e-02 -
Centered 16 198 0.17208  4.0403450e-03 2.0
difference 32 582 1.67167  1.0080067¢-03 2.0

o(h?) 64 1795  21.045181 2.5187200e-04 2.0

128 5739  289.70744  6.2959899¢-05 2.0
8 51 0.01427  1.6295715e-02 -
, 16 130 0.09486  4.0403450e-03 2.0
EG O(h?)
i 32 365 0.99144  1.0080067¢-03 2.0
64 1093 11.64828  2.5187200e-04 2.0
128 3432 161.12459  6.2959899¢-05 2.0
8 35 0.00716  6.7414825¢-02 -
EDG 16 97 0.05167  1.6295715e-02 2.0
o(h?) 32 277 0.45759  4.0403450e-03 2.0
[3] 64 827 5.43904  1.0080067¢-03 2.0
128 2589  68.20788  2.5187200e-04 2.0
8 57 0.02056  8.2061725¢-05 -
. 16 129 0.12877  5.1660378e-06 4.0
EG O(h%)
(4] 32 352 127219 3.2344040e-07 4.0
64 1040 1528502  2.0223875e-08 4.0
128 3242 209.53039 1.26432209¢-09 4.0
8 35 0.00731  5.7194476¢-03 -
Presented 14 93 0.06270  2.5809650e-04 45
Method
EDG 32 258 0.51509  1.3690194¢-05 42
o(h') 64 760 6.43387  7.8938221e-07 4.1
128 2350 101.88331 4.7367252¢-08 4.1

Table II displays the performances of the implemented
numerical schemes. The numerical results obtained by the
existing group schemes of the same class, i.e. the EG 0(h?)
and EDG 0(h?), which were derived by [1], [3] respectively,
and EGO(h*) [4] are also included in the table. For
comparison purposes, the numerical solutions obtained by the
conventional second order centered difference scheme as the
benchmark solutions are also computed. Fig. 4 depicts the
graphical performances of the tested methods in terms of
execution timings for different mesh sizes.

V.DISCUSSION OF RESULTS

From Table II, it is clear that between the two group
methods which were derived from the rotated grid, EDG O(h?)
requires less computing time than the proposed EDG O(h%).
This is expected since the latter requires more computational
effort to produce fourth order accuracy compared to the
former which only produces second order accuracy solutions.
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Table II shows that among the group methods, the EDG O(h?)
requires the least computing times for each grid size
attempted; approximately 65-76% faster than the benchmark
centered difference scheme. The new fourth order scheme on
the rotated grid, EDG O(h?), and second order group scheme,
EG O(h?), are about 63-69% and 30-44% faster than the
centered difference scheme, respectively. Meanwhile, the
fourth order compact scheme on the standard grid Q, EG

O(h*), gives the least improvement in timings with 0.097-27%
over the centered point scheme.

350 - —e—CD
5 300 4 —8—EGO2
2 250 | EDGO2
_E" 200 EGO4
E 150 4 —%— EDGO4
S 100 -
3
g %
8 16 32 64 128
Mesh sizes

Fig. 4 Execution timings (in secs) for the centered difference (CD)
the EG O(h?) (EGO2), EDG O(h?) (EDGO2), EG O(h*) (EGO4), and

EDG O(h*) (EDGO4)
TABLE III
COMPUTING EFFORTS FOR CENTERED DIFFERENCE METHOD
Method
n Centered Five-Point Difference
Iter Operation count
8 70 20580
16 198 267300
32 582 3355812
64 1795 42746130
128 5739 555385986
TABLE IV
COMPUTING EFFORTS FOR EG OF ORDER 2 AND EDG OF ORDER 2
Methods
n EG O(h?) EDG O(h?)
Iter Operation count Iter Operation count
8 51 10659 35 4180
16 130 120770 97 50612
32 365 1425325 277 606260
64 1093 17489093 827 7423148
128 3432 222287208 2589 94166004

A summary of the operation counts of the existing methods
and the proposed EDG 0 (h*) methods are given in Tables III-
V. These total operation counts were obtained by combining
the results of the experimental number of iterations (shown in
Table II) with the theoretical number of operations in each
iteration given in Table 1. From the experimental results, we
can clearly see that the experimental timings of the iterative
methods are in agreement with the computing effort analysis.

TABLE V
COMPUTING EFFORTS FOR EG OF ORDER 4 AND EDG OF ORDER 4
Methods
n EG O(h%) [4] EDG O(h*)
Iter Operation count Iter  Operation count
8 57 23826 35 6140
16 129 239682 93 95420
32 352 2749120 258 107320
64 1040 33282080 760 16398560
128 3242 419962196 2350 211944520

In terms of accuracy, the second ordered schemes in general
give the least accurate results compared to the schemes of
fourth order accuracies. The EG O(h*) scheme on the standard
grid Q gives the best accuracy, followed by the newly

formulated EDG O(h*) which produces relatively comparable
accuracy. This is expected since the latter is derived from a

formula based on a mesh size v/2 h between points compared
to a mesh size h in the former method which incur a very
slight decrease in accuracy. However, EDG O(h?) still manage
to produce fourth order accuracy in the solutions. The EDG
O(h?) scheme may give the fastest rate of convergence but it
has the least accuracy as n gets larger compared to the other
schemes due to its O(h?) accuracy on the Q Jah grid. The EG

O(h*) method, which is the fourth order scheme on the
standard grid €Q,,, even though give the best results in terms

of accuracy but requires the longest time of execution due to
its higher operation counts. However, the newly formulated
EDG O(h%) manage to narrow the gap in the duration of
execution time by requiring lesser execution timings than EG
O(h?) but producing higher order accuracy solutions close to
the ones obtained by EG O(h*). In summary, the proposed
fourth order scheme on the rotated grid Q Jah has proven to be

a relatively computationally efficient alternative solver to the
Helmholtz equation with high accuracy solution and a fast rate
of convergence.

VI. CONCLUSION

A new fourth order iterative method derived from the
rotated nine-point discretisation formula, used in conjunction
with a specific grouping strategy, is presented in solving the
two dimensional Helmholtz equation. Our results indicated
that the rotated group scheme, EDG O(h*), can reduce the
computation times quite significantly compared to the fourth
order group scheme, EG O(h*), introduced in s[4]. We have
also shown that the proposed group method does give high
accuracy numerical solution for the model test problem. The
computed results compare well with the solutions obtained
from the common existing finite discretisation schemes. It
would be worthwhile to investigate the application of this
method to other types of partial differential equations such as
the time-dependent parabolic equations.
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