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 
Abstract—In this paper, we present a high order group explicit 

method in solving the two dimensional Helmholtz equation. The 
presented method is derived from a nine-point fourth order finite 
difference approximation formula obtained from a 45-degree rotation 
of the standard grid which makes it possible for the construction of 
iterative procedure with reduced complexity. The developed method 
will be compared with the existing group iterative schemes available 
in literature in terms of computational time, iteration counts, and 
computational complexity. The comparative performances of the 
methods will be discussed and reported.  

 
Keywords—Explicit group method, finite difference, Helmholtz 

equation, rotated grid, standard grid.  

I. INTRODUCTION 

HE Helmholtz equation is an equation of the elliptic type 
which describes many physical phenomena in science and 

engineering. Over the last few years, there has been some 
considerable interest in the development of numerical 
solutions for the two dimensional Helmholtz [1]–[5], [7]. A 
half-sweep point iterative method was derived in solving the 
equation where this method was found to converge faster than 
the normal full-sweep iterative scheme [2]. The former 
method uses a skewed difference formula which leads to lower 
computational complexities since the iterative procedure needs 
only involved nodes on half of the total grid points in the 
solution domain and thus reduces the computational 
complexity. The applications of group strategies were 
observed in [1], [3] to solve the same equation where these 
new methods were proven to have even better convergence 
rates than the point scheme in [2]. All these developed 
schemes are of second order accuracy and may not be accurate 
enough if the mesh is not sufficiently refined. In an effort to 
improve the accuracy of the solutions, Ali and Teng [4] 
introduced a fourth order group iterative method in solving the 
two dimensional Helmholtz by applying the nine-point 
compact finite difference formula in a specific group 
construction of the nodal points in the solution domain where 
the method was shown to have a better rate of convergence 
than the existing nine-point compact scheme. However, they 
observe a slightly more CPU times in the explicit group (EG) 
of O(h4) due to its larger complexity compared to second order 
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EG [2]. In this work, an attempt is made to construct an 
improved group scheme which will overcome this high 
complexity problem while still maintaining the high accuracy 
property. 

In this paper, we propose another group iterative scheme 
with the same order of accuracy as in [4] but with a much 
improved computing efforts. The four-point EG method is 
formulated by using a rotated (or skewed) compact nine-point 
finite difference formula which enables the construction of 
schemes that involve only half of the nodal points in the 
iterative processes. The formulation of the proposed method is 
presented in Section II, followed by the complexity analysis of 
the scheme in Section III. Numerical experiments comparing 
the proposed scheme with the existing group methods of the 
same class will be presented in Section IV. Conclusions are 
given in Section V.  

II.  GROUP ITERATIVE METHODS ON ROTATED GRID 

Consider the solution domain (0,1)x(0,1)  with 

Dirichlet conditions defined at the boundary. Many problems 
related to the steady-state oscillations (e.g. mechanical, 
thermal) lead to the two dimensional Helmholtz equation of 
the following form 
 

    )y,x(),y,x(fuku        22 .             (1) 
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  is the normal Laplacian, u(x,y) is 

the solution, k is known as a wave number, f is assumed to be 
sufficiently smooth. The solution domain is discretized 
uniformly in the x and y directions with the mesh size h=1/n, 

where , ix ih  jy jh  , 0,1,2, ,i j n  . The computed 

solution is denoted as iju = ( , )i ju x y . Using the second order 

centered difference formula on the standard grid, (1) can be 
approximated as   

 
2 2

1, 1, , 1 , 1
2

,,( 4)        i j i j i j i j i j i ju u u u h fk h u         (2) 

 
which has a truncation error of O(h2). We denote the standard 
grid as h . Applying this formula to any group of four points 

in the solution domain, [1] gave rise to the second order EG 
scheme as: 
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TABLE I 
OPERATION COUNTS OF THE TESTED METHODS  

Method 
Arithmetic operations in  

each iteration 
After 

convergence 
൅/െ ൈ/ൊ ൅/െ ൈ/ൊ 

CD 4 ൈ ݉ଶ ݉ଶ   

EG 
ܱሺ݄ଶሻ 

4 ൈ ൤݉ଶ െ 4 ൈ ቔ
݉
2
ቕ
ଶ
൨ 

൅11 ൈ ቔ
݉
2
ቕ
ଶ
 

൤݉ଶ െ 4 ൈ ቔ
݉
2
ቕ
ଶ
൨ 

൅5 ൈ ቔ
݉
2
ቕ
ଶ
 

െ െ 

EG 
ܱሺ݄ସሻ 

8 ൈ ൤݉ଶ െ 4 ൈ ቔ
݉
2
ቕ
ଶ
൨ 

൅23 ൈ ቔ
݉
2
ቕ
ଶ
 

2 ൈ ൤݉ଶ െ 4 ൈ ቔ
݉
2
ቕ
ଶ
൨ 

൅9 ൈ ቔ
݉
2
ቕ
ଶ
 

െ െ 

EDG 
ܱሺ݄ଶሻ 

7 ൈ ቔ
݉
2
ቕ
ଶ
 

൅4 ൈ ሺቜ
݉ଶ

2
ቝ െ 2

ൈ ቔ
݉
2
ቕ
ଶ
ሻ 

2 ൈ ቔ
݉
2
ቕ
ଶ
 

൅ሺቜ
݉ଶ

2
ቝ െ 2 ൈ ቔ

݉
2
ቕ
ଶ
ሻ 

4 ൈ 

ቔ
௠మ

ଶ
ቕ

቞
݉ଶ

2
቟ 

EDG 
ܱሺ݄ସሻ 

15 ൈ ሺቔ
݉
2
ቕ
ଶ
െ ሺ݉ െ 2ሻሻ 

൅7 ൈ ሺ݉ െ 2ሻ 

൅4 ൈ ሺቒ
௠మ

ଶ
ቓ െ 2 ൈ ቔ

௠

ଶ
ቕ
ଶ
ሻ  

8 ൈ ሺቔ
݉
2
ቕ
ଶ
െ ሺ݉ െ 2ሻሻ 

൅2 ൈ ሺ݉ െ 2ሻ 

൅ሺቜ
݉ଶ

2
ቝ െ 2 ൈ ቔ

݉
2
ቕ
ଶ
ሻ 

4 ൈ 

ቔ
௠మ

ଶ
ቕ

቞
݉ଶ

2
቟ 

IV. NUMERICAL EXPERIMENTS 

In order to compare the performances of the proposed 
method, we conduct several numerical experiments in solving 
model problem (1) with 

 

   2 2
( , ) ( 2 ) sin sin ,  ( , )f x y k x y x y           (13) 

 

The solution domain is (0,1)x(0,1)  with boundary 

conditions 0000  ),x(u,)y,(u  and 0101  ),x(u,)y,(u . 

The exact solution can be shown to be [5] 
 

   ( , ) sin sinu x y x y         (14) 

 
The execution times (in seconds), the number of iterations 

(Iter), the maximum absolute errors and the estimated order of 
accuracy are measured for different grid sizes of 8, 16, 32, 64 
and 128. The value of k is randomly chosen. The maximum 

errors are taken as  )Iterevious(Pr
j,i

)IterCurrent(
j,i uumax   . The 

tolerance used was 1310  . The programming language 
C++ on HP Mini 210-1000 with Windows 7 Starter Edition, 
processor type is Intel® AtomTM CPU N450 @ 1.66 GHz 1.67 
GHz, with installed memory (RAM) of 1GB and 32-bit 
Operating System type was used throughout the numerical 
experiments.  

To estimate the order of accuracy, we consider two mesh 

sizes 1  and 2  on 1 and 2  respectively. The estimated 
order of accuracy for each scheme can be computed for 
different grid size as [8] 

 























2

1

2

1

  

log

E

E
log

AccuracyofOrder .                     (15) 

 

Here, 1E  and 2E  are the maximum absolute errors of the 

grids 1  and 2 respectively.  
 

TABLE II 
PERFORMANCE OF THE TESTED METHODS 

Methods n Iter  Time (secs) Max error 
Order of 
Accuracy 

Centered 
difference 

O(h2) 

8 70 0.02058 1.6295715e-02 - 

16 198 0.17208 4.0403450e-03 2.0 

32 582 1.67167 1.0080067e-03 2.0 

64 1795 21.045181 2.5187200e-04 2.0 

128 5739 289.70744 6.2959899e-05 2.0 

EG O(h2) 
[1] 

8 51 0.01427 1.6295715e-02 - 

16 130 0.09486 4.0403450e-03 2.0 

32 365 0.99144 1.0080067e-03 2.0 

64 1093 11.64828 2.5187200e-04 2.0 

128 3432 161.12459 6.2959899e-05 2.0 

EDG 
O(h2) 

[3] 

8 35 0.00716 6.7414825e-02 - 

16 97 0.05167 1.6295715e-02 2.0 

32 277 0.45759 4.0403450e-03 2.0 

64 827 5.43904 1.0080067e-03 2.0 

128 2589 68.20788 2.5187200e-04 2.0 

EG O(h4)
[4]  

8 57 0.02056 8.2061725e-05 - 

16 129 0.12877 5.1660378e-06 4.0 

32 352 1.27219 3.2344040e-07 4.0 

64 1040 15.28502 2.0223875e-08 4.0 

128 3242 209.53039 1.26432209e-09 4.0 

Presented 
Method 

EDG 
O(h4) 

8 35 0.00731 5.7194476e-03 - 

16 93 0.06270 2.5809650e-04 4.5 

32 258 0.51509 1.3690194e-05 4.2 

64 760 6.43387 7.8938221e-07 4.1 

128 2350 101.88331 4.7367252e-08 4.1 

 
Table II displays the performances of the implemented 

numerical schemes. The numerical results obtained by the 
existing group schemes of the same class, i.e. the EG	ܱሺ݄ଶሻ 
and EDG	ܱሺ݄ଶሻ, which were derived by [1], [3] respectively, 
and EG	ܱሺ݄ସሻ [4] are also included in the table. For 
comparison purposes, the numerical solutions obtained by the 
conventional second order centered difference scheme as the 
benchmark solutions are also computed. Fig. 4 depicts the 
graphical performances of the tested methods in terms of 
execution timings for different mesh sizes. 

V. DISCUSSION OF RESULTS 

From Table II, it is clear that between the two group 
methods which were derived from the rotated grid, EDG O(h2) 
requires less computing time than the proposed EDG O(h4). 
This is expected since the latter requires more computational 
effort to produce fourth order accuracy compared to the 
former which only produces second order accuracy solutions.  
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Table II shows that among the group methods, the EDG O(h2) 
requires the least computing times for each grid size 
attempted; approximately 65-76% faster than the benchmark 
centered difference scheme. The new fourth order scheme on 
the rotated grid, EDG O(h4), and second order group scheme, 
EG O(h2), are about 63-69% and 30-44% faster than the 
centered difference scheme, respectively. Meanwhile, the 
fourth order compact scheme on the standard grid h , EG 

O(h4), gives the least improvement in timings with 0.097-27% 
over the centered point scheme.  
 

 

Fig. 4 Execution timings (in secs) for the centered difference (CD) 
the EG O(h2) (EGO2), EDG O(h2) (EDGO2), EG O(h4) (EGO4), and 

EDG O(h4) (EDGO4) 
 

TABLE III 
COMPUTING EFFORTS FOR CENTERED DIFFERENCE METHOD 

n 

Method 

Centered Five-Point Difference 

Iter Operation count 

8 70 20580 

16 198 267300 

32 582 3355812 

64 1795 42746130 

128 5739 555385986 

 
TABLE IV 

COMPUTING EFFORTS FOR EG OF ORDER 2 AND EDG OF ORDER 2 

n 

Methods 

EG O(h2)  EDG O(h2)  

Iter Operation count Iter Operation count 

8 51 10659 35 4180 

16 130 120770 97 50612 

32 365 1425325 277 606260 

64 1093 17489093 827 7423148 

128 3432 222287208 2589 94166004 

 
A summary of the operation counts of the existing methods 

and the proposed EDG	ܱሺ݄ସሻ methods are given in Tables III-
V. These total operation counts were obtained by combining 
the results of the experimental number of iterations (shown in 
Table II) with the theoretical number of operations in each 
iteration given in Table I. From the experimental results, we 
can clearly see that the experimental timings of the iterative 
methods are in agreement with the computing effort analysis. 
 
 
 
 

TABLE V 
COMPUTING EFFORTS FOR EG OF ORDER 4 AND EDG OF ORDER 4 

n 

Methods 

EG O(h4) [4] EDG O(h4) 

Iter Operation count Iter Operation count 

8 57 23826 35 6140 

16 129 239682 93 95420 

32 352 2749120 258 107320 

64 1040 33282080 760 16398560 

128 3242 419962196 2350 211944520 

 
In terms of accuracy, the second ordered schemes in general 

give the least accurate results compared to the schemes of 
fourth order accuracies. The EG O(h4) scheme on the standard 
grid h  gives the best accuracy, followed by the newly 

formulated EDG O(h4) which produces relatively comparable 
accuracy. This is expected since the latter is derived from a 

formula based on a mesh size 2 h between points compared 
to a mesh size h in the former method which incur a very 
slight decrease in accuracy. However, EDG O(h4) still manage 
to produce fourth order accuracy in the solutions. The EDG 
O(h2) scheme may give the fastest rate of convergence but it 
has the least accuracy as n gets larger compared to the other 
schemes due to its O(h2) accuracy on the 

h2
 grid. The EG 

O(h4) method, which is the fourth order scheme on the 
standard grid h , even though give the best results in terms 

of accuracy but requires the longest time of execution due to 
its higher operation counts. However, the newly formulated 
EDG O(h4) manage to narrow the gap in the duration of 
execution time by requiring lesser execution timings than EG 
O(h2) but producing higher order accuracy solutions close to 
the ones obtained by EG O(h4). In summary, the proposed 
fourth order scheme on the rotated grid 

h2
 has proven to be 

a relatively computationally efficient alternative solver to the 
Helmholtz equation with high accuracy solution and a fast rate 
of convergence.  

VI. CONCLUSION 

A new fourth order iterative method derived from the 
rotated nine-point discretisation formula, used in conjunction 
with a specific grouping strategy, is presented in solving the 
two dimensional Helmholtz equation. Our results indicated 
that the rotated group scheme, EDG	ܱሺ݄ସሻ, can reduce the 
computation times quite significantly compared to the fourth 
order group scheme, EG	ܱሺ݄ସሻ, introduced in s[4]. We have 
also shown that the proposed group method does give high 
accuracy numerical solution for the model test problem. The 
computed results compare well with the solutions obtained 
from the common existing finite discretisation schemes. It 
would be worthwhile to investigate the application of this 
method to other types of partial differential equations such as 
the time-dependent parabolic equations. 
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