
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1431


Abstract—This paper is concerned with minimization of mean

tardiness and flow time in a real single machine production
scheduling problem. Two variants of genetic algorithm as meta-
heuristic are combined with hyper-heuristic approach are proposed to
solve this problem. These methods are used to solve instances
generated with real world data from a company. Encouraging results
are reported.

Keywords—Hyper-heuristics, evolutionary algorithms,
production scheduling.

I. INTRODUCTION

HIS work is motivated by the scheduling problem of a
real world single machine production encountered in a

metal industry. The objective function to consider is the
minimization of mean tardiness and flow time. This problem
belongs to the class of difficult problems (NP-complete). Due
to the dynamic and the difficulty for searching the solution,
deterministic searching methods do not work effectively when
the problem size is getting bigger.

Most techniques are domain-specific, which means that
their applications are fit rather to specific than to general
problems. The performance of the algorithm can be drastically
reduced if there is a change in the problem being modeled.
Unfortunately, real problems change dynamically and rapidly
by nature. This lead to the need for a technique that is easily
adapted to a variety of changes.

Hyper-heuristic is a methodology that has multi-level
heuristics, in which a high level heuristic coordinates lower
level ones [1]. This algorithm provides searching framework
that more general and non domain-specific. Hyper-heuristic
methodology is more flexible in the search process and can be
easily applied to a larger scope of issues [2]. This construction
of this method is motivated by the need for flexible search
techniques that can be easily adapted to respond to changes
and free of domain-specific problems. This technique does not
directly conduct a search on the solution space, but prior to the
heuristic space.

In this work, we compare two variants of genetic algorithm
as meta-heuristic that are combined with hyper-heuristic
approach to solve a real single machine scheduling problem.
In the first variant, Genetic Algorithm is used as the high level
heuristic to choose some low level heuristic (MRT, SPT, LPT,

Nugraheni, C. E. and Abednego, L. are with the Parahyangan Catholic
University, Bandung, Indonesia (e-mail: cheni@unpar.ac.id,
luciana@unpar.ac.id).

EDD, LDD, and MON). While in the second variant, Genetic
Algorithm concept is adopted to create a new heuristic based
on its problem’s attributes, such as due date, sum of all
processing time, processing time, etc. This new created
heuristic can be added to the heuristics collection used by the
first variant.

The remainder of this paper is organized as follows. Section
II gives the formal definition of the multi-objective single
machine scheduling problem and technique that is often used
in solving real scheduling problem. Section III explains the
system’s architecture used to solve the problem. Section IV
presents experimental setup and results. Section V gives some
concluding remarks and recommendations for future work.

II. PROBLEM DEFINITION

A. Single Machine Scheduling Problem

Single machine scheduling problem is the process of
assigning a group of tasks to a single machine or resource [3].
The tasks are arranged so that one or many performance
measures may be optimized.

Let CTi, DDi, RDi be the completion time, due date, and
the release date of task i respectively, the objective of this
problem is to find a schedule that simultaneously satisfies:
1. Minimization of mean tardiness:

ଵܨ ൌ
∑ max ሼܥ ௜ܶ െ ,௜ܦܦ 0ሽ௡

௜ୀଵ

݊

2. Minimization of mean flow time:

ଶܨ ൌ
∑ ሺܥ ௜ܶ െ ௜ሻ௡ܦܴ

௜ୀଵ

݊

 where n is the total number of tasks to be scheduled.

The objective function is constructed by combining the two
different objectives into a weighted sum where all the
objectives have the same priority. It can be defined as:

ܨ ൌ 0.5 כ ଵܨ ൅ 0.5 כ ଶܨ

B. Heuristic

Heuristic methods are often used to deal with most real-
world combinatorial problems which are difficult to solve.
These methods have no guarantee of optimality but can
produce a solution in a reasonable time even when
deterministic method cannot produce one [4].

A Combined Meta-Heuristic with Hyper-Heuristic
Approach to Single Machine Production Scheduling

Problem
C. E. Nugraheni, L. Abednego

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1432

C. Dispatching Rules

Dispatching rules are among the most frequently applied
heuristics in production scheduling, due to their ease of
implementation and low time complexity. Whenever a
machine is available, a dispatching rule inspects the waiting
jobs and selects the job with the highest priority to be
processed next [5].

Some dispatching rules that are usually used to solve single
machine problems are:
1. Minimum Realese Time (MRT): This rule chooses the

next job with the minimum release time in the queue that
will be removed for processing.

2. Shortest Processing Time (SPT): This rule chooses the
next job with the shortest time in the queue that will be
removed for processing.

3. Longest Processing Time (LPT): Contrary with SPT, this
rule chooses the next job with the longest time in the
queue that will be removed for processing.

4. Earliest Due Date (EDD): This rule chooses the next job
with the earliest due date in the queue that will be
removed for processing.

5. Longest Due Date (LDD): Contrary with EDD, this rule
chooses the next job with the longest due date in the
queue that will be removed for processing.

6. Montagne (MON): This rule chooses the next job in the
queue that will be removed for processing according to
this formula:

௣೔

∑ ௣೔ିௗ೔
೙
೔సభ

where pi refers to processing time of i-th job, di refers to due
date of i-th job.

Each of these dispatching rules has different characteristics.
For example, SPT works well when no job can be completed
on time, while EDD works well when at most one job can’t be
completed on time.

D. Hyper-Heuristics

Often, heuristics are the result of years of work by a number
of experts. An interesting question is how we can automate the
design of heuristics. Hyperheuristics are search methodologies
for choosing or generating (combining, adapting) heuristics
(or components of heuristics), in order to solve a range of
optimisation problems [4].

The main feature of hyper-heuristics is that they search a
space of heuristics rather than a space of solutions directly.
The motivation behind hyper-heuristics is to raise the level of
generality at which search methodologies operate. Fig. 1
shows the general framework for hyper-heuristics approach.

III. SYSTEM ARCHITECTURE

Abednego [6] investigates the potential use of genetic
programming hyper-heuristics for solution of the real single
machine production problem. Experimental results show that
this technique performs at least as good as the ones produced
by man-made dispatching rules. This can be achieved by
combine each strength from some different heuristics using
members of a set of known and reasonably understood
heuristic’s components (terminal set and function set).

Fig. 1 General framework for hyper-heuristics approach

The proposed global system architecture adopts the concept

of multi-agent system and hyper-heuristics [7]. This paper
implemented two Algorithm Agents that are variants of
Genetic Algorithm, i.e. Genetic Algorithm Hyper-heuristics
and Genetic Programming Hyper-heuristics.

A. Agent

There are some agent types in the system: Problem Agent,
Trainer Agent, Training Dataset Agent, Heuristics Pool Agent,
Algorithm Agents (GPHH and GAHH), Advisor Agent, and
Solver Agent. Fig. 2 shows the proposed system configuration.
Arrows represent communications between agents.

Problem Agent

This agent is the entry point of the system. The agent
initializes all other agents by sending the problem description
to the trainer agent.

Trainer Agent

Based on the problem description get from the problem
agent, this agent trains the system with a group of training
dataset.

Fig. 2 Global system’s architecture

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1433

Training Dataset Agent

The agent manages the training data set and provides
training data set to all algorithm agents through the Trainer
Agent.

Heuristics Pool Agent

The agent manages the collection of heuristics (low level
heuristics and heuristics produced by GPHH).

Algorithm Agent

The agent is responsible for:
 Running the hyper-heuristics algorithm with received

parameter and heuristics
 Sending the best solution found to the optimiser agent

after the hyper-heuristics algorithm is finished
There are two Algorithm Agent proposed in this research:

GAHH and GPHH. The detail algorithm for each agents can
be found in section IV.B and IV.C.

Solver Agent

The agent solves the problem from the Problem Agent with
the best heuristic got from the Advisor Agent. The algorithm
for the Solver Agent is given in Algorithm 1.

ALGORITHM I

 SOLVER AGENT’S ALGORITHM

B. Algorithm Agent: Genetic Algorithm Hyper-Heuristics

Like other hyper-heuristics approach, Genetic Algorithm
Hyper-heuristics works in search space of heuristics rather
than a space of solutions directly. Fig. 3 shows a general
framework for the Genetic Algorithm Hyper-heuristics used in
this research.

First the algorithm creates a random initial population. On
each iteration, the algorithm creates population of n individu.
Each individu consists of a range of heuristics selected from
the set of low-level heuristics available. The populations are
then modified with genetic operation that is chosen
probabilistically. When the stopping conditions are met, the
system terminates and outputs the best solution found so far.
The GAHH algorithm is given in Algorithm 2.

ALGORITHM II
GAHH ALGORITHM

Fig. 3 General framework for GAHH

C. Algorithm Agent: Genetic Programming Hyper-
Heuristics

Genetic Programming Hyper-heuristics belongs to the
family of evolutionary computation methods. Given a set of
functions and terminals and an initial population of randomly
generated syntax trees (representing programs), these
programs are then evolved through genetic recombination
(crossover, mutation) and natural selection. A new generation
is created by probabilistically selecting individuals from the
old generation based on their fitness value. These individuals
are either survived intact or genetically modified through a

while there are unscheduled
jobs do

calculate priorities of all
available jobs
schedule job with the
greatest priority first

end while

Create the initial random population
P of size n
Do

Evaluate fitness of each
individual in the population

Select genetic operation
(reproduction/crossover/mutation)
probabilistically

Loop until stopping criteria are met

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1434

number of operators [1].
Genetic Programming Hyper-heuristics is a form of

automatic programming with variable length. The solution is
represented by a computer program that takes a number of
inputs, i.e. terminal set that are relevant to the problem
considered, manipulates them through a number of functions
and produces the required outputs. Solution is usually
represented in a form of parse tree. Fig. 4 illustrates the
solution of genetic programming in a form of parse tree. From
this parse tree, GPHH-generated dispatching rule is RD + (DD
SP).

In GPHH, an individual is composed of terminals and
functions. The terminal set, function set, and GP parameters
that are used in this research are described in Tables I-III.
Table IV shows some best GPHH-generated heuristics.

TABLE I

TERMINAL SET
Terminal Meaning

RD Release date of a job
DD Due date of a job
PT Processing time of a job
W Weight of a job
N Total number of job
SP Sum of PT of all job

TABLE II

FUNCTION SET

Function Meaning

ADD, SUB, MUL Addition, substraction, multiplication

DIV Protected division (DIV(a,b)=1, if |b|<0.000001)

TABLE III

GP’S PARAMETER

Parameter Meaning

Population size 1000000

Type of selection Tournament selection

Stopping criteria Maximum generation=100000

Crossover probability 85%

Mutation probability 5%

Reproduction probability 5%

Initialisation Ramped half-and-half, max depth=5

TABLE IV

GPHH-GENERATED HEURISTICS

Machine GPHH Heuristics

1 ൜
DD

SPଶ ൅ PT െ W
െ Nൠ כ RD

2 RD כ ൜൬W ൅
2 כ DD
N ൅ SP

൰ െ ሺN ൅ PT ൅ DDሻൠ

3
DD

W ൅ ሺሺPT ൅ Wሻ െ ሺW כ SPሻሻ
െ ሺ2 כ W ൅ SPሻ

GPHH-generated dispatching rule: RD + (DD-SP)

Fig. 4 An example of a GP parse tree and its interpretation

IV. EXPERIMENTAL SETUP AND RESULTS

Experiment was conducted to compare the performance
attained by two Algorithm Agents: GPHH and GAHH, and
some low level heuristics, get from Heuristics Pool Agent:
MRT, SPT, LPT, EDD, LDD, and MON. The goal is to show
that GPHH can enrich the collection of GAHH’s heuristics
collection to increase its performance.

Three instance groups from different machines in real single
machine production scheduling problem was used in the
experiment. Table V summarises the average performance
obtained by different algorithm agents, excluding GAHH. The
best obtained results for each instance are highlighted in bolt
font. Notice that numbers in OBJ column show the total
objective function obtained by each heuristic. We use the
minimation objective function. Rank column shows the rank
of each heuristic. This seven heuristics will be used as low
level heuristics in GAHH Algorithm Agent. Heuristics
numbering can be seen in ID column.

Table VI summarises GAHH performance with various
kind of low level heuristics. In the first experiment, GAHH
used 6 heuristics (H1-H6) as low level heuristics. The second
experiment adds GPHH to the heuristics collection. It can be
seen from Table V that the performance increases when we
enrich heuristics collection with GPHH. At the third row from
Table VI, GAHH used 3 best performance heuristics, get from
Table V:
 Machine-1 used GPHH, MRT, and EDD as GAHH’s low

level heuristics.
 Machine-2 used GPHH, EDD, and MRT
 Machine-3 used GPHH, MON, and SPT

At the forth row of Table V, GAHH used 3 worst
performance heuristics. The performance of GAHH increased
significantly when we used 3 best performance low level
heuristics.

TABLE V

PERFORMANCE OF 7 HEURISCTICS COLLECTION

ID
HEURI

STIC
MACHINE-1 MACHINE-2 MACHINE-3

OBJ RANK OBJ RANK OBJ RANK

H1 MRT 9.12 2 10.27 2 151.80 3

H2 SPT 86.62 4 26.55 3 117.71 2

H3 LPT 136.15 5 77.16 5 315.97 6

H4 EDD 12.85 3 9.93 1 153.63 4

H5 LDD 137.76 6 63.01 4 241.06 5

H6 MON 86.62 4 26.55 3 117.71 2

H7 GPHH 8.49 1 9.93 1 114.90 1

TABLE VI

PERFORMANCE OF GAHH WITH DIFFERENT LOW LEVEL HEURISTICS
Low Level
Heuristics

Machine-1 Machine-2 Machine-3

H1-H6 92.92 44.74 241.41

H1-H7 68.61 36.89 200.64

3 best 13.58 11.55 128.00

3 worst 120.32 69.71 249.83

Fig. 5 summaries the performance of all methods used in

the experiments. It can be observed that the rank of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1435

algorithms is as follows: in the first place are the GPHH
methods, followed by MRT and GAHH.

Fig. 5 Heuristics’ performance

V. CONCLUSIONS AND FUTURE WORK

The presented research was motivated by a real single
machine scheduling problem. Several variants of Genetic
Algorithm (GA) as meta-heuristic combined with hyper-
heuristic approach have been developed. These variants of GA
were compared to see each performance. We measured each
performance by the objective function get by each algorithm.
Experiments show that the performance of GAHH increased
when it only includes the first n-best performance low level
heuristics, while GPHH always be in the first place.

REFERENCES
[1] Burke E. K., Hart E., Kendall G., Newall J., Ross P., and S.

Schulenburg. "Hyperheuristics: An emerging direction in modern search
technology." In F. Glover and G. Kochenberger (eds.), Handbook of
Metaheuristics. Kluwer, pp. 457-474. 2003.

[2] Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Qu R.
"Hyperheuristics:A Survey of the State of the Art". 2010.

[3] Silva J.D.L., Burke E.K., Petrovic S. "An Introduction to Multiobjective
Metaheuristics for Scheduling and Timetabling." 2005.

[4] Burke E.K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Woodward
J. "Exploring hyper-heuristic methodologies with genetic programming."
In Mumford C, Jain L (eds) Computational Intelligence: Collaboration,
Fusion and Emergence, Intelligent Systems Reference Library, Springer,
pp 177-201. 2009.

[5] Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Qu R.
"Hyperheuristics:A Survey of the State of the Art." 2010.

[6] Abednego L. "Genetic Programming Hyper-Heuristics For Solving
Dynamic Production Scheduling Problem". Proc. ICEEI 2011. 2011.

[7] Nugraheni C.E., Abednego L. " Collaboration of Multi-Agent and
Hyper-heuristics Systems for Production Scheduling Problem ".
International Journal of Computer, Information, Systems and Control
Engineering Vol:7 No:8. 2013.

