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A Class of Recurrent Sequences Exhibiting Some

Exciting Properties of Balancing Numbers
G.K.Panda, S.S.Rout

Abstract—The balancing numbers are natural numbers n satisfying
the Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n + 1) +
(n + 2) + · · · + (n + r); r is the balancer corresponding to the

balancing number n.The n
th balancing number is denoted by Bn

and the sequence {Bn}
∞

n=1 satisfies the recurrence relation Bn+1 =
6Bn−Bn−1. The balancing numbers posses some curious properties,
some like Fibonacci numbers and some others are more interesting.
This paper is a study of recurrent sequence {xn}

∞

n=1 satisfying the
recurrence relation xn+1 = Axn − Bxn−1 and possessing some
curious properties like the balancing numbers.

Keywords—Recurrent sequences, Balancing numbers, Lucas bal-
ancing numbers, Binet form.

I. INTRODUCTION

T
HE balancing numbers originally introduced by Behera

and Panda [1] are natural numbers n satisfying the

Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n +
1) + (n + 2) + · · · + (n + r), where r is called the balancer

corresponding to the balancing number n. It is proved in

[1] (see also [3]) that the sequence of balancing numbers

{Bn}∞n=1 are solution of the second order linear recurrence

yn+1 = 6yn − yn−1, y0 = 0, y1 = 1. The Binet form of

this sequence is Bn =
λn

1
−λn

2

λ1−λ2

where λ1 = 3 +
√

8 and

λ2 = 3−
√

8. In a subsequent paper Panda [2], unveiled some

fascinating properties of balancing numbers.These properties

are:

• The sum of first n odd balancing numbers is equal to the

square of the nth balancing numbers – a property similar

to the fact that the sum of first n odd natural numbers

is equal to n2. This property is neither satisfied by the

cobalancing numbers [3] nor by the Fibonacci numbers.

• The greatest common divisor of two balancing numbers is

a balancing number; in particular, the greatest common

divisor of Bm and Bn is Bk where k is the greatest

common divider of m and n. This property is true for

Fibonacci numbers also.

• Bm+n = BmCn + CmBn a property similar to sin(x +
y) = sinx cos y + cos x sin y, where Cn =

√

8B2
n + 1 is

a sequence whose terms are known as Lucas balancing

numbers and satisfy a recurrence relation identical with

balancing numbers.

II. RESULTS

We consider a class of recurrent second order sequences

xn+1 = Axn −Bxn−1, x0 = 0, x1 = 1 such that A2 − 4B >

G.K.Panda,Department of Mathematics, National Institute of Technology,
Rourkela, India-769008 e-mail: gkpanda@nitrkl.ac.in

S.S.Rout,Department of Mathematics, National Institute of Technology,
Rourkela, India-769008 e-mail:sudhansumath@yahoo.com .

0 and study conditions under which these sequences would

satisfy some of the fascinating properties of balancing numbers

mentioned in the last paragraph.

Let us start with a second order linear recurrence

xn+1 = Axn − Bxn−1, x0 = 0, x1 = 1

where A and B are natural numbers such that A2 − 4B > 0.

The auxiliary equation of this recurrence is given by

α2 − Aα + B = 0

which has, because of the condition A2−4B > 0, the unequal

real roots

α1 =
A +

√
A2 − 4B

2
, α2 =

A −
√

A2 − 4B

2
.

The general solution is given by

xn = Pαn
1 + Qαn

2 ,

and using the initial conditions, we get the Binet form

xn =
αn

1 − αn
2

α1 − α2
, n = 0, 1, 2, · · · .

To find the conditions under which

x1 + x3 + · · · + x2n−1 = x2
n,

it is enough to find conditions for

x2n+1 = x2
n+1 − x2

n.

We note that α1 + α2 = A and α1α2 = B and

x2
n+1 − x2

n =

[

αn+1
1 − αn+1

2

α1 − α2

]2

−
[

αn
1 − αn

2

α1 − α2

]2

=
α2n+2

1 + α2n+2
2 − α2n

1 − α2n
2 − 2Bn+1 + 2Bn

(α1 − α2)2
,

and

x2n+1 = x2
n+1 − x2

n

is equivalent to

(α1 − α2)(α
2n+1
1 − α2n+1

2 ) = α2n+2
1 + α2n+2

2 − α2n
1 − α2n

2

− 2Bn+1 + 2Bn

which yields

B(α2n
1 + α2n

2 ) = α2n
1 − α2n

2 + 2Bn+1 − 2Bn.

Further rearrangement converts the last equation to

(B − 1)[2Bn − (α2n
1 + α2n

2 )] = 0



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:1, 2012

80

and applying α1α2 = B the last equation finally reduces to

(B − 1)(αn
1 − αn

2 )2 = 0

which is possible if αn
1 = αn

2 or B = 1. If αn
1 = αn

2 ,

then α1 = α2 or α1 = −α2. But α1 = α2 corresponds to

A2 − 4B = 0, which is forbidden by our initial assumption

and α1 = −α2 corresponds to a negative B, which is also

firbidden.Thus the only option left for us is B = 1.

Conversly, if B = 1 then α1α2 = 1 and

x2
n+1 − x2

n =

[

αn+1
1 − αn+1

2

α1 − α2

]2

−
[

αn
1 − αn

2

α1 − α2

]2

=
α2n+2

1 + α2n+2
2 − α2n

1 − α2n
2

(α1 − α2)2

=
α2n+1

1 (α1 − α2) − α2n+1
2 (α1 − α2)

(α1 − α2)2

=
α2n+1

1 − α2n+1
2

α1 − α2

= x2n+1

leading to

x1 + x3 + · · · + x2n−1 = x2
n.

The above discussion proves the following theorem:

Theorem 2.1: Let xn+1 = Axn − Bxn−1, x0 = 0, x1 =
1 be a second order linear recurrence such that A and B

are natural numbers satisfying A2 − 4B > 0. Then, for each

natural number n, a necessary and sufficient conditions for

x1 + x3 + · · · + x2n−1 = x2
n to hold is B = 1.

The balancing number also satisfies a relation

B2 + B4 + · · · + B2n = BnBn+1.

We next investigate the conditions under which

x2 + x4 + · · · + x2n = xnxn+1.

It is enough to find conditions under which

xnxn+1 − xn−1xn = x2n.

This is equivalent to

xn(xn+1 − xn−1)

=
αn

1 − αn
2

α1 − α2

[

αn+1
1 − αn+1

2

α1 − α2
− αn−1

1 − αn−1
2

α1 − α2

]

=
α2n+1

1 + α2n+1
2 − α2n−1

1 − α2n−1
2 − Bn(α1 + α2)

(α1 − α2)2

+
Bn−1(α1 + α2)

(α1 − α2)2

=
α2n

1 − α2n
2

α1 − α2
.

On rearrangement we get

(α1 − α2)(α
2n
1 − α2n

2 ) = α2n+1
1 + α2n+1

2 − α2n−1
1 − α2n−1

2

−Bn(α1 + α2) + Bn−1(α1 + α2) .

which leads to

(B − 1)(α2n−1
1 + α2n−1

2 ) = Bn−1(B − 1)(α1 + α2)

which is possible for all n if B = 1.

Conversly, it can be easily seen that if B = 1, then

xnxn+1−xn−1xn = x2n. The above discussion together with

Theorem 2.1 proves

Theorem 2.2: Let xn+1 = Axn − Bxn−1, x0 = 0, x1 =
1 be a second order linear recurrence such that A and B

are natural numbers satisfying A2 − 4B > 0. Then, for each

natural number n, a necessary and sufficient conditions for

x2 + x4 + · · · + x2n = xnxn+1 is B = 1.

While the Binet form for balancing numbers is

Bn =
λn

1 − λn
2

λ1 − λ2
,

where λ1 = 3 +
√

8 and λ2 = 3−
√

8, the Binet form for the

Lucas balancing numbers is

Cn =
λn

1 + λn
2

2
.

Thus, if we define a new sequence

yn =
αn

1 + αn
2

2
,

then it is easy to verify that

2xnyn = x2n,

a property similar to that of balancing numbers. In addition,we

observe that α1 − α2 =
√

A2 − 4B, so that

(α1 − α2)
2 = A2 − 4B

is a natural number. Thus in all cases where
√

A2 − 4B is

irrational, we have

ym +

√
A2 − 4B

2
xm = αm

1 ,

leading to
[

ym +

√
A2 − 4B

2
xm

][

yn +

√
A2 − 4B

2
xn

]

= αm+n
1 = ym+n +

√
A2 − 4B

2
xm+n.

Comparing rational and irrational parts from both sides,we get

ym+n = ymyn +
A2 − 4B

4
xmxn,

and

xm+n = xmyn + ymxn.

The above discussion proves

Theorem 2.3: Let xn+1 = Axn − Bxn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A and B are

natural numbers and A2 − 4B is non-square and positive. If

yn is defined as yn =
αn

1
+αn

2

2 , then for all natural numbers m

and n we have

ym+n = ymyn +
A2 − 4B

4
xmxn,

xm+n = xmyn + ymxn.

A well known connection between balancing and Lucas

balancing numbers is

C2
n = 8B2

n + 1.
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We can except a similar relationship between the sequences

xn and yn. Indeed

x2
n =

[

αn
1 − αn

2

α1 − α2

]2

=
α2n

1 + α2n
2 − 2Bn

A2 − 4B
.

Thus

(A2 − 4B)x2
n

4
+ Bn =

α2n
1 + α2n

2 + 2Bn

4

=

[

αn
1 + αn

2

2

]2

= y2
n.

Writting D = A2
−4B
4 , the last equation can be written as

y2
n = Bn + Dx2

n.

The above equation proves

Theorem 2.4: Let xn+1 = Axn − Bxn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A and B are

natural numbers and A2 − 4B > 0. If yn is defined as yn =
αn

1
+αn

2

2 , then y2
n = Bn + Dx2

n where D = A2
−4B
4 .

We now try to find a recurrence relation for yn. Since α1

and α2 are roots of the equation

α2 − Aα + B = 0

it follows that

α2
1 − Aα1 + B = 0,

and

α2
2 − Aα2 + B = 0.

Multiplying the last two equations by αn−1
1 and αn−1

2 respec-

tively and rearranging,we get

αn+1
1 = Aαn

1 + Bαn−1
1 ,

and

αn+1
2 = Aαn

2 + Bαn−1
2 .

Adding the last two equation and dividing by 2 we arrive at

yn+1 = Ayn − Byn−1.

It is clear that y0 = 1 and y1 = A
2 . This shows that yn satisfies

a recurrence relation identical with xn. Further, if A is even

then yn is an integer sequence.

Theorem 2.5: Let xn+1 = Axn − Bxn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A and B are

natural numbers and A2 − 4B > 0. If yn is defined as yn =
αn

1
+αn

2

2 , the sequence {yn}∞n=1 satisfies the recurrence relation

yn+1 = Ayn − Byn−1. Further, yn is an integer sequence if

A is even.

We now suppose that A is even and hence {yn}∞n=1 an

integer sequence and choose B = 1 so that the greatest

common divisor of xn and yn is 1 for each n. Let k and

n be two natural numbers such that n > 1. Then denoting the

greatest common divisor of a and b by (a, b),we have

(xk, xnk) = (xk, xky(n−1)k + ykx(n−1)k) = (xk, x(n−1)k).

Iterating recursively, we arrive at

(xk, xnk) = (xk, xk) = xk.

This proves

Theorem 2.6: Let xn+1 = Axn − xn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A is an even

natural number and A2−4 is positive. If m and n are natural

numbers and m divides n then xm divides xn.

We now look at the converse of this theorem. Assume that

m and n are natural numbers such that xm divides xn. Then

definitely, m < n and by Euclid’s division algorithm [4], there

exist natural numbers k and r such that n = mk+r, k ≥ 1, 0 ≤
r < m. By Theorem 2.3

xm = (xm, xn) = (xm, xmk+r) = (xm, xmkyr + ymkxr).

Since m divides mk, by Theorem 2.6, xm divides xmk and

hence the last equation yields

xm = (xm, ymkxr)

Further by Theorem 2.5 (xmk, ymk) = 1 and since xm

divides xmk by Theorem 2.6, we arrive at the conclusion that

(xm, ymk) = 1. Thus the last equation results in

xm = (xm, xr).

Since r < m, this is impossible unless r = 0. Thus n = mk

showing that m divides n. This proves

Theorem 2.7: Let xn+1 = Axn − xn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A is an even

natural number and A2 −4 is positive. If xm divides xn, then

m divides n.

Let m and n are two natural numbers such that k =
(m, n).Thus k divides both m and n. In view of Theorem 2.6,

xk divides both xm and xn and hence xk divides (xm, xn).
Further if s > k and xs divides xm and xn, then by Theorem

2.7, s divides both m and n and consequently, s divides k

which is a contradiction. Hence if k = (m, n), then k is

the largest number such that xk divides both xm and xn.The

discussion of this paragraph may be summarized as follows:

Theorem 2.8: Let xn+1 = Axn − xn−1, x0 = 0, x1 = 1
be a second order linear recurrence such that A is an even

natural number and A2−4 is positive. If m and n are natural

numbers then (xm, xn) = x(m,n).
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