A Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers

G.K.Panda, S.S.Rout

Abstract

The balancing numbers are natural numbers n satisfying the Diophantine equation $1+2+3+\cdots+(n-1)=(n+1)+$ $(n+2)+\cdots+(n+r) ; r$ is the balancer corresponding to the balancing number n. The $n^{t h}$ balancing number is denoted by B_{n} and the sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ satisfies the recurrence relation $B_{n+1}=$ $6 B_{n}-B_{n-1}$. The balancing numbers posses some curious properties, some like Fibonacci numbers and some others are more interesting. This paper is a study of recurrent sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfying the recurrence relation $x_{n+1}=A x_{n}-B x_{n-1}$ and possessing some curious properties like the balancing numbers.

Keywords-Recurrent sequences, Balancing numbers, Lucas balancing numbers, Binet form.

I. Introduction

THE balancing numbers originally introduced by Behera and Panda [1] are natural numbers n satisfying the Diophantine equation $1+2+3+\cdots+(n-1)=(n+$ $1)+(n+2)+\cdots+(n+r)$, where r is called the balancer corresponding to the balancing number n. It is proved in [1] (see also [3]) that the sequence of balancing numbers $\left\{B_{n}\right\}_{n=1}^{\infty}$ are solution of the second order linear recurrence $y_{n+1}=6 y_{n}-y_{n-1}, y_{0}=0, y_{1}=1$. The Binet form of this sequence is $B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}$ where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$. In a subsequent paper Panda [2], unveiled some fascinating properties of balancing numbers. These properties are:

- The sum of first n odd balancing numbers is equal to the square of the $n^{\text {th }}$ balancing numbers - a property similar to the fact that the sum of first n odd natural numbers is equal to n^{2}. This property is neither satisfied by the cobalancing numbers [3] nor by the Fibonacci numbers.
- The greatest common divisor of two balancing numbers is a balancing number; in particular, the greatest common divisor of B_{m} and B_{n} is B_{k} where k is the greatest common divider of m and n. This property is true for Fibonacci numbers also.
- $B_{m+n}=B_{m} C_{n}+C_{m} B_{n}$ a property similar to $\sin (x+$ $y)=\sin x \cos y+\cos x \sin y$, where $C_{n}=\sqrt{8 B_{n}^{2}+1}$ is a sequence whose terms are known as Lucas balancing numbers and satisfy a recurrence relation identical with balancing numbers.

II. Results

We consider a class of recurrent second order sequences $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=1$ such that $A^{2}-4 B>$
G.K.Panda,Department of Mathematics, National Institute of Technology, Rourkela, India-769008 e-mail: gkpanda@nitrkl.ac.in
S.S.Rout,Department of Mathematics, National Institute of Technology, Rourkela, India-769008 e-mail:sudhansumath @yahoo.com .

0 and study conditions under which these sequences would satisfy some of the fascinating properties of balancing numbers mentioned in the last paragraph.

Let us start with a second order linear recurrence

$$
x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=1
$$

where A and B are natural numbers such that $A^{2}-4 B>0$. The auxiliary equation of this recurrence is given by

$$
\alpha^{2}-A \alpha+B=0
$$

which has, because of the condition $A^{2}-4 B>0$, the unequal real roots

$$
\alpha_{1}=\frac{A+\sqrt{A^{2}-4 B}}{2}, \quad \alpha_{2}=\frac{A-\sqrt{A^{2}-4 B}}{2}
$$

The general solution is given by

$$
x_{n}=P \alpha_{1}^{n}+Q \alpha_{2}^{n}
$$

and using the initial conditions, we get the Binet form

$$
x_{n}=\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\alpha_{1}-\alpha_{2}}, n=0,1,2, \cdots
$$

To find the conditions under which

$$
x_{1}+x_{3}+\cdots+x_{2 n-1}=x_{n}^{2}
$$

it is enough to find conditions for

$$
x_{2 n+1}=x_{n+1}^{2}-x_{n}^{2}
$$

We note that $\alpha_{1}+\alpha_{2}=A$ and $\alpha_{1} \alpha_{2}=B$ and

$$
\begin{aligned}
x_{n+1}^{2}-x_{n}^{2} & =\left[\frac{\alpha_{1}^{n+1}-\alpha_{2}^{n+1}}{\alpha_{1}-\alpha_{2}}\right]^{2}-\left[\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\alpha_{1}-\alpha_{2}}\right]^{2} \\
& =\frac{\alpha_{1}^{2 n+2}+\alpha_{2}^{2 n+2}-\alpha_{1}^{2 n}-\alpha_{2}^{2 n}-2 B^{n+1}+2 B^{n}}{\left(\alpha_{1}-\alpha_{2}\right)^{2}}
\end{aligned}
$$

and

$$
x_{2 n+1}=x_{n+1}^{2}-x_{n}^{2}
$$

is equivalent to

$$
\begin{aligned}
\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}^{2 n+1}-\alpha_{2}^{2 n+1}\right) & =\alpha_{1}^{2 n+2}+\alpha_{2}^{2 n+2}-\alpha_{1}^{2 n}-\alpha_{2}^{2 n} \\
& -2 B^{n+1}+2 B^{n}
\end{aligned}
$$

which yields

$$
B\left(\alpha_{1}^{2 n}+\alpha_{2}^{2 n}\right)=\alpha_{1}^{2 n}-\alpha_{2}^{2 n}+2 B^{n+1}-2 B^{n}
$$

Further rearrangement converts the last equation to

$$
(B-1)\left[2 B^{n}-\left(\alpha_{1}^{2 n}+\alpha_{2}^{2 n}\right)\right]=0
$$

ISSN: 2517-9934
Vol:6, No:1, 2012
and applying $\alpha_{1} \alpha_{2}=B$ the last equation finally reduces to

$$
(B-1)\left(\alpha_{1}^{n}-\alpha_{2}^{n}\right)^{2}=0
$$

which is possible if $\alpha_{1}^{n}=\alpha_{2}^{n}$ or $B=1$. If $\alpha_{1}^{n}=\alpha_{2}^{n}$, then $\alpha_{1}=\alpha_{2}$ or $\alpha_{1}=-\alpha_{2}$. But $\alpha_{1}=\alpha_{2}$ corresponds to $A^{2}-4 B=0$, which is forbidden by our initial assumption and $\alpha_{1}=-\alpha_{2}$ corresponds to a negative B , which is also firbidden.Thus the only option left for us is $B=1$.

Conversly, if $B=1$ then $\alpha_{1} \alpha_{2}=1$ and

$$
\begin{aligned}
x_{n+1}^{2}-x_{n}^{2} & =\left[\frac{\alpha_{1}^{n+1}-\alpha_{2}^{n+1}}{\alpha_{1}-\alpha_{2}}\right]^{2}-\left[\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\alpha_{1}-\alpha_{2}}\right]^{2} \\
& =\frac{\alpha_{1}^{2 n+2}+\alpha_{2}^{2 n+2}-\alpha_{1}^{2 n}-\alpha_{2}^{2 n}}{\left(\alpha_{1}-\alpha_{2}\right)^{2}} \\
& =\frac{\alpha_{1}^{2 n+1}\left(\alpha_{1}-\alpha_{2}\right)-\alpha_{2}^{2 n+1}\left(\alpha_{1}-\alpha_{2}\right)}{\left(\alpha_{1}-\alpha_{2}\right)^{2}} \\
& =\frac{\alpha_{1}^{2 n+1}-\alpha_{2}^{2 n+1}}{\alpha_{1}-\alpha_{2}} \\
& =x_{2 n+1}
\end{aligned}
$$

leading to

$$
x_{1}+x_{3}+\cdots+x_{2 n-1}=x_{n}^{2}
$$

The above discussion proves the following theorem:
Theorem 2.1: Let $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=$ 1 be a second order linear recurrence such that A and B are natural numbers satisfying $A^{2}-4 B>0$. Then, for each natural number n, a necessary and sufficient conditions for $x_{1}+x_{3}+\cdots+x_{2 n-1}=x_{n}^{2}$ to hold is $B=1$.

The balancing number also satisfies a relation

$$
B_{2}+B_{4}+\cdots+B_{2 n}=B_{n} B_{n+1}
$$

We next investigate the conditions under which

$$
x_{2}+x_{4}+\cdots+x_{2 n}=x_{n} x_{n+1}
$$

It is enough to find conditions under which

$$
x_{n} x_{n+1}-x_{n-1} x_{n}=x_{2 n}
$$

This is equivalent to

$$
\begin{aligned}
& x_{n}\left(x_{n+1}-x_{n-1}\right) \\
& \qquad \begin{aligned}
= & \frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\alpha_{1}-\alpha_{2}}\left[\frac{\alpha_{1}^{n+1}-\alpha_{2}^{n+1}}{\alpha_{1}-\alpha_{2}}-\frac{\alpha_{1}^{n-1}-\alpha_{2}^{n-1}}{\alpha_{1}-\alpha_{2}}\right] \\
= & \frac{\alpha_{1}^{2 n+1}+\alpha_{2}^{2 n+1}-\alpha_{1}^{2 n-1}-\alpha_{2}^{2 n-1}-B^{n}\left(\alpha_{1}+\alpha_{2}\right)}{\left(\alpha_{1}-\alpha_{2}\right)^{2}} \\
& \quad+\frac{B^{n-1}\left(\alpha_{1}+\alpha_{2}\right)}{\left(\alpha_{1}-\alpha_{2}\right)^{2}} \\
= & \frac{\alpha_{1}^{2 n}-\alpha_{2}^{2 n}}{\alpha_{1}-\alpha_{2}}
\end{aligned} .
\end{aligned}
$$

On rearrangement we get

$$
\begin{aligned}
\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}^{2 n}-\alpha_{2}^{2 n}\right)= & \alpha_{1}^{2 n+1}+\alpha_{2}^{2 n+1}-\alpha_{1}^{2 n-1}-\alpha_{2}^{2 n-1} \\
& -B^{n}\left(\alpha_{1}+\alpha_{2}\right)+B^{n-1}\left(\alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

which leads to

$$
(B-1)\left(\alpha_{1}^{2 n-1}+\alpha_{2}^{2 n-1}\right)=B^{n-1}(B-1)\left(\alpha_{1}+\alpha_{2}\right)
$$

which is possible for all n if $B=1$.
Conversly, it can be easily seen that if $B=1$, then $x_{n} x_{n+1}-x_{n-1} x_{n}=x_{2 n}$. The above discussion together with Theorem 2.1 proves

Theorem 2.2: Let $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=$ 1 be a second order linear recurrence such that A and B are natural numbers satisfying $A^{2}-4 B>0$. Then, for each natural number n, a necessary and sufficient conditions for $x_{2}+x_{4}+\cdots+x_{2 n}=x_{n} x_{n+1}$ is $B=1$.

While the Binet form for balancing numbers is

$$
B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}
$$

where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$, the Binet form for the Lucas balancing numbers is

$$
C_{n}=\frac{\lambda_{1}^{n}+\lambda_{2}^{n}}{2}
$$

Thus, if we define a new sequence

$$
y_{n}=\frac{\alpha_{1}^{n}+\alpha_{2}^{n}}{2}
$$

then it is easy to verify that

$$
2 x_{n} y_{n}=x_{2 n}
$$

a property similar to that of balancing numbers. In addition,we observe that $\alpha_{1}-\alpha_{2}=\sqrt{A^{2}-4 B}$, so that

$$
\left(\alpha_{1}-\alpha_{2}\right)^{2}=A^{2}-4 B
$$

is a natural number. Thus in all cases where $\sqrt{A^{2}-4 B}$ is irrational, we have

$$
y_{m}+\frac{\sqrt{A^{2}-4 B}}{2} x_{m}=\alpha_{1}^{m}
$$

leading to

$$
\begin{aligned}
& {\left[y_{m}+\frac{\sqrt{A^{2}-4 B}}{2} x_{m}\right]\left[y_{n}+\frac{\sqrt{A^{2}-4 B}}{2} x_{n}\right]} \\
& =\alpha_{1}^{m+n}=y_{m+n}+\frac{\sqrt{A^{2}-4 B}}{2} x_{m+n}
\end{aligned}
$$

Comparing rational and irrational parts from both sides, we get

$$
y_{m+n}=y_{m} y_{n}+\frac{A^{2}-4 B}{4} x_{m} x_{n}
$$

and

$$
x_{m+n}=x_{m} y_{n}+y_{m} x_{n}
$$

The above discussion proves
Theorem 2.3: Let $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A and B are natural numbers and $A^{2}-4 B$ is non-square and positive. If y_{n} is defined as $y_{n}=\frac{\alpha_{1}^{n}+\alpha_{2}^{n}}{2}$, then for all natural numbers m and n we have

$$
\begin{gathered}
y_{m+n}=y_{m} y_{n}+\frac{A^{2}-4 B}{4} x_{m} x_{n} \\
x_{m+n}=x_{m} y_{n}+y_{m} x_{n}
\end{gathered}
$$

A well known connection between balancing and Lucas balancing numbers is

$$
C_{n}^{2}=8 B_{n}^{2}+1
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934
 Vol:6, No:1, 2012

We can except a similar relationship between the sequences x_{n} and y_{n}. Indeed

$$
x_{n}^{2}=\left[\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\alpha_{1}-\alpha_{2}}\right]^{2}=\frac{\alpha_{1}^{2 n}+\alpha_{2}^{2 n}-2 B^{n}}{A^{2}-4 B} .
$$

Thus

$$
\begin{aligned}
\frac{\left(A^{2}-4 B\right) x_{n}^{2}}{4}+B^{n} & =\frac{\alpha_{1}^{2 n}+\alpha_{2}^{2 n}+2 B^{n}}{4} \\
& =\left[\frac{\alpha_{1}^{n}+\alpha_{2}^{n}}{2}\right]^{2} \\
& =y_{n}^{2} .
\end{aligned}
$$

Writting $D=\frac{A^{2}-4 B}{4}$, the last equation can be written as

$$
y_{n}^{2}=B^{n}+D x_{n}^{2} .
$$

The above equation proves
Theorem 2.4: Let $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A and B are natural numbers and $A^{2}-4 B>0$. If y_{n} is defined as $y_{n}=$ $\frac{\alpha_{1}^{n}+\alpha_{2}^{n}}{2}$, then $y_{n}^{2}=B^{n}+D x_{n}^{2}$ where $D=\frac{A^{2}-4 B}{4}$.

We now try to find a recurrence relation for y_{n}. Since α_{1} and α_{2} are roots of the equation

$$
\alpha^{2}-A \alpha+B=0
$$

it follows that

$$
\alpha_{1}^{2}-A \alpha_{1}+B=0,
$$

and

$$
\alpha_{2}^{2}-A \alpha_{2}+B=0 .
$$

Multiplying the last two equations by α_{1}^{n-1} and α_{2}^{n-1} respectively and rearranging,we get

$$
\alpha_{1}^{n+1}=A \alpha_{1}^{n}+B \alpha_{1}^{n-1}
$$

and

$$
\alpha_{2}^{n+1}=A \alpha_{2}^{n}+B \alpha_{2}^{n-1} .
$$

Adding the last two equation and dividing by 2 we arrive at

$$
y_{n+1}=A y_{n}-B y_{n-1}
$$

It is clear that $y_{0}=1$ and $y_{1}=\frac{A}{2}$. This shows that y_{n} satisfies a recurrence relation identical with x_{n}. Further, if A is even then y_{n} is an integer sequence.

Theorem 2.5: Let $x_{n+1}=A x_{n}-B x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A and B are natural numbers and $A^{2}-4 B>0$. If y_{n} is defined as $y_{n}=$ $\frac{\alpha_{1}^{n}+\alpha_{2}^{n}}{2}$, the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ satisfies the recurrence relation $y_{n+1}=A y_{n}-B y_{n-1}$. Further, y_{n} is an integer sequence if A is even.

We now suppose that A is even and hence $\left\{y_{n}\right\}_{n=1}^{\infty}$ an integer sequence and choose $B=1$ so that the greatest common divisor of x_{n} and y_{n} is 1 for each n. Let k and n be two natural numbers such that $n>1$. Then denoting the greatest common divisor of a and b by (a, b), we have

$$
\left(x_{k}, x_{n k}\right)=\left(x_{k}, x_{k} y_{(n-1) k}+y_{k} x_{(n-1) k}\right)=\left(x_{k}, x_{(n-1) k}\right)
$$

Iterating recursively, we arrive at

$$
\left(x_{k}, x_{n k}\right)=\left(x_{k}, x_{k}\right)=x_{k} .
$$

This proves
Theorem 2.6: Let $x_{n+1}=A x_{n}-x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A is an even natural number and $A^{2}-4$ is positive. If m and n are natural numbers and m divides n then x_{m} divides x_{n}.

We now look at the converse of this theorem. Assume that m and n are natural numbers such that x_{m} divides x_{n}. Then definitely, $m<n$ and by Euclid's division algorithm [4], there exist natural numbers k and r such that $n=m k+r, k \geq 1,0 \leq$ $r<m$. By Theorem 2.3

$$
x_{m}=\left(x_{m}, x_{n}\right)=\left(x_{m}, x_{m k+r}\right)=\left(x_{m}, x_{m k} y_{r}+y_{m k} x_{r}\right) .
$$

Since m divides $m k$, by Theorem 2.6, x_{m} divides $x_{m k}$ and hence the last equation yields

$$
x_{m}=\left(x_{m}, y_{m k} x_{r}\right)
$$

Further by Theorem $2.5\left(x_{m k}, y_{m k}\right)=1$ and since x_{m} divides $x_{m k}$ by Theorem 2.6, we arrive at the conclusion that $\left(x_{m}, y_{m k}\right)=1$. Thus the last equation results in

$$
x_{m}=\left(x_{m}, x_{r}\right) .
$$

Since $r<m$, this is impossible unless $r=0$. Thus $n=m k$ showing that m divides n. This proves
Theorem 2.7: Let $x_{n+1}=A x_{n}-x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A is an even natural number and $A^{2}-4$ is positive. If x_{m} divides x_{n}, then m divides n.
Let m and n are two natural numbers such that $k=$ (m, n).Thus k divides both m and n. In view of Theorem 2.6, x_{k} divides both x_{m} and x_{n} and hence x_{k} divides $\left(x_{m}, x_{n}\right)$. Further if $s>k$ and x_{s} divides x_{m} and x_{n}, then by Theorem 2.7, s divides both m and n and consequently, s divides k which is a contradiction. Hence if $k=(m, n)$, then k is the largest number such that x_{k} divides both x_{m} and x_{n}. The discussion of this paragraph may be summarized as follows:
Theorem 2.8: Let $x_{n+1}=A x_{n}-x_{n-1}, x_{0}=0, x_{1}=1$ be a second order linear recurrence such that A is an even natural number and $A^{2}-4$ is positive. If m and n are natural numbers then $\left(x_{m}, x_{n}\right)=x_{(m, n)}$.

References

[1] Behera A. and Panda G.K., On the square roots of triangular numbers, The Fibonacci Quaterly, 37(2) (1999), 98-105.
[2] Panda G.K., Some fascinating properties of balancing numbers, Applications of Fibonacci Numbers,Congressus Numerantium, Vol 194, 185-190, 2006.
[3] Panda G.K. and Ray P.K., Cobalancing numbers and cobalancers, International Journal of mathematics and Mathematical Sciences,(8)(2005),1189-1200.
[4] Niven I. and Zuckerman H.L., An Introduction to the theory of Numbers, Wiley Eastern Limited, New Delhi 1991.

