
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3385

 Abstract—We present an implementation of an Online Exhibi-
tion System (OES) web service(s) that reflects our experiences with
using web service development packages and software process mod-
els. The system provides major functionality that exists in similar
packages. While developing such a complex web service, we gained
insightful experience (i) in the traditional software development
processes: waterfall model and evolutionary development and their
fitness to web services development, (ii) in the fitness and effective-
ness of a major web services development kit.

Keywords—Web Services, Online Exhibition System, Software
Engineering, Waterfall Model, e-business.

I. INTRODUCTION

ITH the advent of XML [1] in the Internet, and with the recent
developments of protocols and methodologies in network

programming, distributed computing has taken a new shape called
service oriented computing [2], or web services [3]. Web services is a
new computing model where a function that performs a certain task
is developed, publicized and used by three different parties, as op-
posed to the traditional computing model where the developer, the
user and the publicizer are usually the same person Obviously web
services revolutionize the way the computing is performed on the
networked environment, as most applications are now distributed or
client/server applications. With more mobile and wireless devices
coming to market, web services are becoming more important.

Though it seems that web services are appropriate for small
applications or task, we believe that it will be unavoidable in
near future that mid and large size applications will be offered
as complex sets of web services as part of the distributed
computing transformation. Therefore there is a need for de-
velopment methods and supporting technology for complex
web services. In this paper we present the experiences with
implementing a web service(s) for an Online Exhibition Sys-
tem. We reflect upon our experience with respect to software
process methodology and the experience with the tools used in
the web service development.

It seems the traditional theory and methodology of the
software design and development lacks to address the prob-
lems introduced by the complex nature of the web services
computing model. We can expect that the web services model
will have a major impact on the software engineering field.
Object Oriented Analysis and Design with UML revolution-
ized the Software Engineering practice. Similarly web ser-

 Manuscript received on 3-30-2005
 A.K. is with Fatih University, istanbul, Turkey (+90 212 889-0810 ext

1043, akurt@fatih.edu.tr) A.N. is with Alfabim inc. (anai-
boglu@alfabim.com.tr)

vices are deeply changing the way the software is designed for
the distributed environment.

The experiences with the web services development tools
are important as companies are rushing new tools or the new
versions of existing RAD tools with web service support to
the market. It appears that the technology will be the driving
force for the theory in the case of web services. We observed
that the tools have solid but limited functionality and far from
the meeting the challenges of the intricate web services com-
puting model.

The paper is organized as follows. In Section 2 we summa-
rize the OES functionality and architecture. The architecture
of Java API for XML-Based RPC (JAX-RPC) used for the
implementation is presented in Section 3. We briefly touch
upon some important points on the implementation of OES in
Section 4. Various issues surrounding our web service imple-
mentation experience specifically and other issues regarding
web services in general are discussed in Section 5. Concluding
remarks are given in Section 6.

II. SYSTEM ARCHITECTURE
Online exhibitions are used in e-business for the online exhibition of
goods and services, or in e-museum type applications like [4, 5] to
create exhibitions of artworks organized into galleries. The OES
allows the system administrator to maintain multiple online exhibi-
tions by artists (which are also the exhibition administrators).

The overall architecture of the classical online exhibition
systems is shown in Figure 1. The traditional system consists
of system administrator module, exhibition administrator
module and an exhibition module. The system administrator
module has functionality to create exhibition administrators,
reporting/monitoring capability. Exhibition administrator
module manages multiple exhibitions and monitor visitor
activity. An online exhibition is a timed event created in the
exhibition module. Online exhibitions consist of galleries. A
gallery is an online room filled with artwork. An artwork is
presented to the visitor using multimedia and textual data.

Fig. 1 The Traditional OES Architecture

W

Web Site
 Web

Server

DBMS

OES
Exhibition
Module
Exh admin
Module
Sys admin
Module

Visitors

System
admin

Exhibition
admins

A Case Study: Experiences with Building an
Online Exhibition System using Web Services

Atakan Kurt, Arzu Naiboğlu

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3386

In the web services computing model, shown in Fig. 2, the

OES is a set of web service available to web site owners (the
consumers of web services) who wish to use this service in-
stead of implementing a new one or installing an existing
package on the market. The system is designed so that multi-
ple web sites can use this service to offer online exhibitions
for their clients. The consumer site contains its own business
logic and an OES client application that mainly consists of
method calls to web services available in the OES Web Ser-
vices. The calls go through the local web server to the OES
web server through JAX-RPC [6, 7] using SOAP [8, 9] on top
of HTTP explained in the next section.

Fig. 2 The OES Web Services Architecture

III. JAX-RPC ARCHITECTURE
JAX-RPC is a Java API for invoking web services through

SOAP using XML. It allows Java clients to make SOAP based
Remote Procedure Calls (RPC) to non-Java platforms as well.
The complexity of SOAP messages are concealed in the JAX-
RPC, because SOAP messages are not required to be explic-
itly coded to make an RPC call. The call is simply coded using
java API. The JAX-RPC converts the RPC to SOAP and
transports it to the server/client and server/client converts the
SOAP and processes it.

The JAX-RPC Web Service Architecture is shown plainly
in Fig. 3. Specific web services are described in endpoints.
Web Services Description Language (WSDL) [3, 10] docu-
ments on the server and the client contains detailed technical
information about endpoints. In JAX-RPC, invocations are
passed to endpoints. Endpoints are implemented as servlets.
All classes, interfaces and other files on clients and server
used by JAX-RPC are called artifacts. Stubs, ties, serializers
and deserializers are required artifacts for client-server end-
points communication. Stubs and ties are classes representing
service endpoints on the client and the server respectively. A
JAX-RPC client invokes a remote method on a service end-
point as though the method were local similar to Remote
Method Invocation (RMI) [11] in Java. The corresponding

stub class converts this call to a SOAP message and sends it to
the endpoint on the server side. The call is handled by a tie on
the server side. A tie is a server-side analog to a stub. The tie
converts the SOAP message to the right method call. A stub
represents a remote object locally on the client. A tie plays a
similar role on the server. Serializers and deserializers are
classes handling the type conversions from/to Java and XML
on both ends.

Fig. 3 The JAX-RPC Architecture

IV. IMPLEMENTATION
We implemented the online exhibition system in Java using MySQL
database. We used Sun’s Web Services Developer Pack (WSDP 1.1)
[13] on Windows XP platform. System was written in Java (Java 2
SDK 1.4.1) using JAX-RPC which uses SOAP 1.1 and HTTP 1.1. A
screen shot of the system implemented using the OES web services is
shown in Fig. 4 (details skipped).

Fig. 4 The Main page of the application

The client application made up of JSP scripts produces pure

XML, since the web services are designed to return XML
messages. We defined a DTD to define the grammar for the
exhibition system for web pages and various administrative
reports. The DTD is used for defining a standard vocabulary.
All web services produce appropriate XML outputs as de-
scribed in the DTD not given here for lack of space. The XML
messages returned by the web service are converted to HTML
by XSLT using an XSL file. The XSLT is performed by the
web client such as MS Internet Explorer 5.0 or higher. As a
result the web service coding is simplified. Separating the
formatting from the data using different versions of the XSL
file allows us to create more than one GUI on the client side.

Web Service Consumer 1
 Business Logic

Web Service Provider

Web Site
 Web

Server

DBMS

Web
Server

DBMS OES
Web Services

Web Services
Administration

OES
Exhibition
Module
Exh admin
Module
Sys admin
Module

V
isitors exhibition

adm
ins

adm
in

Web Service
 Tie for x Method x

wsdl

Web Service Client
 Stub for x Call x

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3387

Hence user can dynamically select different GUI without any
hassles. Developing a multi-language GUI is also possible
with XSLT on the client side in a similar manner. For a better
exhibition system, it is possible to create output in VRML and
SVG formats through XSLT to create a virtual 3D exhibition
system.

V. DISCUSSIONS

We discuss some issues surrounding web service design
and development with our experience in this project. One of
our objectives was to have a first hand experience with the
implementation of a web service. We wished to build a com-
plete application with multiple modules using only web ser-
vices. We wanted to see the software engineering issues in-
volved in the design and implementation of an application
with complex web services. We had a chance to examine a
few alternative tools for implementing web services including
IBM’s Web Services toolkit, now evolved into Emerging
Technologies Toolkit (ETTK) [12], Sun’s Java WSDP [13],
and Microsoft’s .NET Web Services [14] among others. We
see that some tools are quite handy, while others are cumber-
some. Some are easy to use, while others require a good deal
of study to understand the architecture.

Waterfall Model and Web Services

Web services are used either as a part of an application like
using a car rental web service in an airline reservation system
web site or developing a complete application involving mul-
tiple modules. In both cases a web service is required to de-
liver a complete and coherent functionality. The design and
development a web service(s) may require using software
processes such as waterfall model [15], or evolutionary devel-
opment using prototyping [15]. How the software processes
are affected by web service computing model is an issue that
requires consideration. We used waterfall model for the pro-
ject.

We think that there could be two ways to use waterfall
model in web service development as shown in
Fig. 5, (Even though the waterfall model is considered an
underdog, it is still used widely. We are aware that there have
been studies in inadequacy of waterfall model for web ser-
vices.) First method, shown in the upper part of the figure,
requires applying appropriate measures in all steps of the
process model. In the requirement analysis phase, issues in-
volving who will provide what web services in what manners
etc, needs to be addressed and documented explicitly. In the
detailed design (also called object design if Object Oriented
paradigm is used), web services will be shown as classes or
methods in the (system and object) design documents. If the
project is a web service client application, then the web ser-
vice is already implemented by someone else and it will sim-
ply be reused by the application. If the project is the design of
the web service itself, then the system will be designed in
most flexible way to allow others to create different versions
of client applications using the web service.

The second method of combining web service design into
waterfall model would be to develop the application as a tradi-
tional application up to the implementation phase. A new

phase, called web services design, involving the intricacies of
web service is employed before the implementation phase. In
the web service design phase, the client/server architecture of
the web service with all classes/methods, protocols and trans-
ports are decided and documented. This second method seems
more appropriate if an existing traditional system with all
documentations at hand is to be converted to web services
architecture, or both a traditional version and web service
version of an application are to be developed. We used the
second method in our system, since we set out to replicate an
existing system.

Web Service Considerations

Requirement
Analysis

System
Design

Detailed
Design

Implementa-
tion Testing Deployment

Require-
ment
Analysis

System
Design

Detailed
Design

Web
Service
Design

Implemen-
tation Testing Deployment

Fig. 5 Waterfall model involving web services

It looks the evolutionary software process model could be
easily used with/for web services development as well. Since
web services are small invocable web methods, writing and
testing methods one-by-one, or in small groups (modules) is a
suitable process for the evolutionary model. The web services
can be implemented in small coherent increments for the small
modules of a big application. It is possible to do throw-away
prototyping by creating small prototype applications using the
web services developed at the beginning and by adding more
web services to create bigger versions at each iteration and
arriving a better prototype application at each iteration until a
final version is reached.

Web Service Design versus Client Application Design

Let web service design be the process of planning a web
service itself. A web service can be implemented and tested
using stubs without actually creating a client application. A
web service client application could be a standalone applica-
tion that integrates one or more web service into its existing
code, or it may consist of web service calls only (a pure web
service client application). Designing a web service itself is
different in some aspects from designing the web service
client application:
• Web service client application is designed for one company

or a web site, whereas a web service is usually designed for
many client applications. The issues of multi-users, multi-
databases have to be carefully studied. Methodologies and
technology at the application design level should be devel-
oped to address these issues in web services development.
For example a DBMS could be enhanced with tools to either
convert a single-company database, to multiple company
databases with all stored procedures, or to create new multi-
ple copies of a single-company database to support web
pages. Similarly a class library written for a single-company
should be either be converted to multi-company library or
multiple copies of the library should be generated to support
web services for multiple clients.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3388

• Client applications can be created and modified in different
ways using the same web service. For example the admin
module may or may not include statistics functionality in
one client application, while it can have it in other client ap-
plication. However once described in WSDL documents, the
interfaces of methods can’t be modified. When creating a
complex set of web services, there needs to be more docu-
mentation about how all the little web services behave to-
gether to create client applications. The data dependencies,
control dependencies, deployment dependencies and such
issues should be easily and precisely expressible in some
form.

• The subjects of deployment, pricing, accounting, auditing,
security and such administrative task has to be provided to
the administrator of the web service provider by the com-
mercial tools available. These tools should also allow web
server client application or the administrator of that applica-
tion to access similar facilities.

Web Service Integration

Developing a pure web service client application may in-
volve integrating multiple web services from multiple provid-
ers. For example in an application authentication, accounting,
storage facilities could be provided by different web services.
There are issues related to Object Oriented Analysis and De-
sign [16] in developing such applications:
• A pure client application makes full reuse of existing web

services. No significant coding, except a skeleton applica-
tion that invokes the web services.

• Issues involving disparities between the different web ser-
vices such as data types, time zones, character sets, file for-
mats etc. should be resolved.

• Issues with respect to dependability (used here in software
engineering terms) regarding a web service that uses other
web services in turn, or a web service that repackages an ex-
isting web service.

CASE Tools for Web Service Development

There are Computer Aided Software Engineering (CASE)
tools used for developing web services and web service client
applications such as Web Services Toolkit with Web Sphere
Application Development Environment, Sun’s Web Services
Development Kid, Microsoft’s .NET environment. Many
RAD packages usually include one or more tools for web
service development. A programming language, a DBMS and
a web server are preconfigured in most system, keeping in
mind that web services are platform independent.

The tools specify how a web service is created from the ex-
isting methods written in a high level language in essence.
The WSDL documents, SOAP messaging and UDDI registra-
tion are usually automated by the tools. However considerable
differences exist between different tools regarding the number
of steps involved in creating, modifying, deploying and testing
a web service. We observed that in some cases development
and testing are slowed down considerably. It appears these
tools are in their infancy with respect to the problems men-
tioned above in this section.

VI. CONCLUSIONS

An online exhibition management system using web ser-
vices computing model is presented. We believe the system
demonstrates the followings (i) An existing online application
can be fully implemented as a web service or a set of web
services (ii) With web services, a flexibility in creating differ-
ent versions of the same application is possible, i.e., the final
applications can be organized in different ways that is not
possible or is difficult with the non-web service version. (iii)
Most software engineering techniques including Object Ori-
ented Paradigm that apply a traditional application develop-
ment also apply to the development of web services. However
there are basic differences between the traditional distributed
application and web services architecture. There are different
ways of integrating web services design and development into
existing software engineering methodology. (iv) There is a
degree of complexity associated with web services model that
makes it difficult for developers to understand architecture
and to use the web services development tools.

Topics such as web service design, development, integra-
tion, security, pricing, accounting, benchmarking, etc. remains
among important problems that need further study.

REFERENCES
[1] W3 Consorium , “The Extensible Markup Language”, www.w3.org/xml
[2] E. Thomas, “Service-Oriented Architecture”, Prentice Hall, ISBN

:0131428985, 2004.
[3] E. Newcomer, “Understanding Web Services: XML, WSDL, SOAP, and

UDDI”, Addison-Wesley, ISBN: 0201750813, 2002.
[4] Smithsonian Art Museum, http://americanart.si.edu/index2.cfm.
[5] Palmer Museum of Art, http://www.psu.edu/dept/palmermuseum/
[6] Sun Micro Systems, “Java API for XML-Based RPC (JAX-RPC)”,

http://java.sun.com/xml/jaxrpc/index.jsp
[7] I. Singh et all, “Designing Web Services with the J2EE(TM) 1.4 ”,

Addison-Wesley Professional, ISBN: 0321205219, 2004.
[8] J. Snell et all, “Programming Web Services with SOAP”, O’Reilly,

ISBN: 0596000952, 2001.
[9] W3 Consorium, “Simple Object Access Protocol (SOAP),”

http://www.w3.org/2000/xp/Group/
[10] W3 Consorium, “Web Services Description Language (WSDL), Version

2.0, Part1: Core Language”, http://www.w3.org/TR/wsdl20/
[11] Sun Micro System, “Java RMI Specification”, http://java.sun.com/

j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
[12] IBM Alpha works, “Energing Technologies Toolkit” http://www. al-

phaworks.ibm.com/tech/webservicestoolkit
[13] Sun Micro Systems, “Java Web Services Developer Pack (WSDP),”

http://java.sun.com/webservices/jwsdp/index.jsp
[14] A. Ferrara and M. MacDonald, “Programming .NET Web Services”,

O’Reilly, ISBN: 0596002505, 2002.
[15] I. Sommerville, “Software Engineering (6th Edtion)”, Addison-Wesley,

ISBN: 020139815X, 2000.
[16] G. Booch, “Object-Oriented Analysis and Design with Applications

(2nd Edition)”, Pearson, isbn 0805353402, 1993.

