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Abstract—Renewable and non-renewable resource constraints 
have been vast studied in theoretical fields of project scheduling 
problems. However, although cumulative resources are widespread in 
practical cases, the literature on project scheduling problems subject 
to these resources is scant. So in order to study this type of resources 
more, in this paper we use the framework of a resource constrained 
project scheduling problem (RCPSP) with finish-start precedence 
relations between activities and subject to the cumulative resources in 
addition to the renewable resources. We develop a branch and bound 
algorithm for this problem customizing precedence tree algorithm of 
RCPSP. We perform extensive experimental analysis on the 
algorithm to check its effectiveness and performance for solving 
different instances of the problem in question. 
 

Keywords—Resource constrained project scheduling problem, 
cumulative resources, branch and bound algorithm, precedence tree.  

I. INTRODUCTION 

ENEWABLE and nonrenewable resources have been 
vast studied in project scheduling literature. On the other 

resources that in spite of their wide usage in practical cases, 
have been studied much less theoretically. Material resources 
of a project that are procured according to a procurement plan 
during the project horizon are good examples of this type of 
resources. Neumann and Schwindt[1] introduced these 
resources and their practical applications. Reference[2] 
modeled a batch production scheduling problem in process 
industry as a project scheduling problem subject to this type of 
resources while considering several extra considerations such 
as minimum and maximum time lags between activities. 
Reference[3] modeled a production scheduling problem using 
this resource type. Reference[4] modeled scheduling of tests in 
R&D projects in automotive industry as a customized model 
of resource investment problem (RIP), aiming at minimization 
of the number of cumulative resources that are needed. Extra 
considerations such as activities ready times were made as 
well. 

In this paper in order to study cumulative resource type 
more, we use the framework of a resource constrained project 
scheduling problem subject to cumulative resources (RCPSP-
Cu) with finish-start precedence relations between activities 
and we develop a branch and bound algorithm for the 
problem. 
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In order that, we customize a branch and bound algorithm 

of resource constrained project scheduling problem 
(RCPSP).As we know, the literature on RCPSP is so 
extensive, dating back to 1960s, [5]. Many review papers such 
as [6], [7], [8], [9], [10], [11] and [12] summarize the literature 
on this problem. Due to the NP-hardness of this problem 
([9],[13]), many studies have made on the problem developing 
inexact methods, such as heuristic methods of [14], [15], [16], 
[17], [18] and [19] and meta-heuristic methods of [20], 
[21],[22], [23], [24], [25], [26] and [27] based on genetic 
algorithm, [28], [29] and [30] based on simulated annealing, 
[31]and [32] based on tabu search and [33] based on ant 
colony. Besides, many exact algorithms such as binary 
programming based models of [34], [35] and [36], dynamic 
programming algorithm of [5] and branch and bound methods 
of [37], [38], [39], [40], [41], [42], [43] and [44] have been 
developed for the problem as well. Four basic approaches 
have been most used for the development of branch and bound 
methods for this problem, including precedence tree [45], 
extension alternatives [46], minimal delaying alternatives [39] 
and minimal forbidden sets [47]. Here we use precedence tree 
approach and develop our method for RCPSP-Cu based on 
this algorithm. So the rest of this paper is organized as the 
following. In the next section, RCPSP-Cu is described in 
detail. In section 3, the branch and bound algorithm for the 
problem is described. Section 4 is dedicated to computational 
analysis on and finally section 5 concludes the whole work. 

II. PROBLEM DESCRIPTION 

A project with n non-dummy activities is considered. 
Finish-start precedence relations between activities are 
illustrated using an activity-on-node (AON) loop-less network, 
with dummy nodes 0 and n+1 as initial and terminal nodes 
respectively. � � �1, … , ��and	 � �1, … , 
�� are the sets of 
renewable and cumulative resources respectively. Each 
activity i has a fixed duration of di and requires rik units of 
renewable resource k (� � �) for each units of time over its 
duration and cik units of cumulative resource k (� � 	) which 
are used in the first period of its execution. Besides, each 
activity i (i=0,…,n+1) has a set of predecessor activities Pi. 
Each renewable resource k has a constant availability Rk over 
the project duration and each cumulative resource k has 
availability of CRkt from the beginning of the project up to the 
period t (CRkt
CRk(t-1)). No preemption is permitted during 
the activities execution, all activities have just one mode and 
they are ready in the beginning of the project horizon. All 
parameters are deterministic and integrals. The problem is to 
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find the start time each of activity i, Si, (i=0,…,n+1), such that 
all problem constraints are satisfied and the project makespan 
is minimized.   

Suppose that the earliest and latest start time of each 
activity i, ESTiand LSTi, (i=0,…,n+1), is determined with 
forward and backward passes assigning LSTn+1= LFTn+1=T, 
where T is an upper bound for optimum project makespan 
determined by any valid method. Also xit be 1, if activity i 
starts at time t and 0 otherwise, then we have, �� �∑ �. �������������  and the mathematical model of the problem is as 

the following:   
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Objective (1) is to minimize the project makespan. 

Constraints (2) guarantee that each activity j can only has a 
single start time which has to be from the period [ESTj,LSTj]. 
Constraints (3) take into consideration precedence relations 
between each pair of activities (i,j) where i is an immediate 
predecessor of j. Constrains (4) and (5) regard renewable and 
cumulative resources usage limitations respectively and 
finally, constraints (6) denote the domain of variables. 

III.  BRANCH AND BOUND ALGORITHM 

In this part we introduce a branch and bound algorithm for 
RCPSP-Cu problem. Fig. 1 shows the pseudo-code of the 
algorithm. In this algorithm, partial schedules containing parts 
of project activities are completed along the branching tree. In 
each level of the tree, a node not fathomed yet is selected for 
branching and according to the schedule in that node, one 
activity not scheduled yet is chosen. The selected activity is 
scheduled and a new node is generated. Relating to each node 
in which all activities have been scheduled, a feasible schedule 
is in hand for the problem. An upper bound for the project 

makespan is kept during the procedure which is equal to the 
makespan of the best feasible solution achieved up to the 
current time. Also a lower bound for the project makespan for 
each node in which only part of project activities have been 
scheduled is determined. For all new nodes generated in each 
step, this lower bound is compared to the current upper bound 
and if exceeds that, the node is fathomed. This procedure is 
repeated for all nodes not fathomed yet whenever the upper 
bound is modified in the algorithm. More details of the 
algorithm are described in the following. 

 
 

• Perform preprocessing and stop if the instance is 
infeasible 

• Specify the initial upper bound 
• Generate the initial node and select it for branching 
• Branch selected node and fathom it 
• Check new nodes for fathoming using dominance 

rules 
• Fathom each new node not fathomed yet that 

contains feasible solution and update upper bound 
if necessary 

• If upper bound has been updated after last 
branching: 

a. Perform fathoming check on all nodes not 
fathomed yet 

Else: 
a. Perform fathoming check on new nodes not 

fathomed yet 
• If there is at least one node not fathomed yet: 

a. Select a new node for branching 
b. Continue from step 4 

Else: 
a. Report the best feasible solution achieved 

and stop 

Fig. 1 Pseudo-code of branch and bound algorithm for RCPSP-Cu 

A. Preprocessing 

There are two cases in which a given instance has no 
feasible solution, one is the case of renewable resources 
shortage in which at least one activity exists in given instance 
whose renewable resource requirement for at least one of the 
renewable resources is more than the availability of that 
resource. In this situation the activity cannot be executed and 
no feasible solution exists for the problem. The second case is 
the cumulative resource shortage in which at least one 
cumulative resource exists in the given problem whose total 
availability which is equal to the sum of all amounts ordered 
for that resource during the periods, is less than the total 
requirement of whole project activities for that resource. If 
none of these two states exists in a given instance, there are 
feasible solutions and the instance is feasible. So the branch 
and bound algorithm in the first step checks the feasibility of 
the instance. 

B. Upper Bound Specification 

Normally the tighter is the initial upper bound for an 
instance, the fasternodes are fathomed in the related branching 
tree. So in order to have a tight initial upper bound, first we 
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use a simple method of summing whole project activities 
durations plus the latest time all cumulative resources are 
ready for execution of entire project activities. Then we 
improve this upper bound using the following procedure. In 
this procedure we generate an activity list and schedule 
activities based on this list using a customized version of serial 
schedule generation scheme in which each selected activity is 
scheduled in the earliest feasible time that besides preserving 
precedence relations with other activities, enough renewable 
and also cumulative resources exist for execution of the 
activity. In order to generate a rather good activity list, we 
prioritize activities in decreasing order of the sum of latest 
start and finish times (LSTLFT) for activities. In [48] several 
most efficient heuristics for MRCPSP, embracing activities 
mode assignment and prioritization rules for scheduling using 
serial or parallel schedule generation schemes were compared 
and according to that, LSTLFT rule concluded the best among 
other single-pass heuristics for prioritizing activities.This 
method has been also compared to the best multi-pass 
methods. Results showed that although multi-pass methods 
need much more time than single-pass methods, they usually 
result in negligible improvement in the solution, so the 
LSTLFT choice seems the most appropriate among those 
compared considering time requirements.  

In order to determine latest start time and finish time for 
activities, we use the simple initial upper bound we 
determined in our first step and we perform backward pass 
using this upper bound as the latest start time and finish time 
of the last project activity. So the initial upper bound 
determination for the problem is summarized as the pseudo-
code shown in fig. 2. 

 
• Determine initial project upper bound IUB summing 

whole activities durations plus the latest time all 
cumulative resources are ready for execution of entire 
project activities 

• Assign the last activity start time equal to IUB 
• Determine the latest start time and finish time of activities 

using backward pass  
• Compute LSTLFT of each activity and generate AL by 

prioritizing activities in non-decreasing order of their 
LSTLFTs 

• Schedule activities based on the AL using customized 
serial schedule generation scheme for cumulative 
resources existence 

• Report the finish time of last project activity as initial 
upper bound (IUB) 

Fig. 2 Pseudo-code of initial upper bound determination for RCPSP-
Cu 

During the algorithm, as the base procedure of branch and 
bound algorithm, we fathom any node in the last level of the 
branching tree which contains a feasible schedule for the 
problem. Then we substitute the current upper bound if the 
related objective function of the node is less than the current 
value of the upper bound. 

 
C. Selecting Node for Branching 

At the initial step in the first node, activity zero is scheduled 

at time zero. Then the initial node as the only available one is 
used for branching. In each other step of the algorithm, a node 
from the set of nodes not fathomed yet is selected for 
branching. In order to speed up the algorithm process, the 
back-tracking rule is used and from the set, a node is selected 
in which more activities have been scheduled. In this way we 
try to reach feasible solutions as fast as possible. In case a tie 
happens when more than one node exist in the set with 
maximum number of scheduled activities, the jump-tracking 
rule is used and one node is selected with the lower amount of 
lower bound for project makespan and if tie happens again, the 
node with the higher index is selected. 

D. Branching 

Once a node is selected for branching, all activities whose 
predecessors have been scheduled in the current node can be 
selected to be scheduled next. So regarding to each feasible 
activity that can be scheduled, one node is generated in the 
next level of the branching tree. The selected activity for each 
new node is scheduled in the earliest possible time in the way 
that first, its start time will not be earlier than finish time of 
any of its predecessors which have been all scheduled before 
and second, periodic availability of renewable and cumulative 
resources are enough for scheduling the activity in selected 
periods. Once the activity is scheduled, the periodic 
availability of all resources it uses is updated; availability of 
renewable resources from the start period of the activity until 
its finish period and availability of cumulative resources from 
the start period of the activity until the end of project are 
lessened as much as the related resource requirement of the 
activity. The process described here for scheduling any 
selected activity is similar to the scheduling each activity 
under serial schedule generation scheme which is described in 
part 4.4.1. 

E. Dominance Rules 

Here we use some dominance rules previously introduced in 
the literature for the precedence algorithm that implicitly help 
shorten the enumeration process. These rules which have been 
described in [49] for precedence tree algorithm of RCPSP can 
be extended to the customized algorithm for RCPSP-Cu. 
Experimental analysis in section 8 shows dramatic 
effectiveness of these rules in algorithm efficiency.  

Regarding to each partial schedule in each node, we can 
specify an activity list that contains activities in the order they 
have been selected along the branching path. Sometimes it is 
possible to relate more than one activity list to a given partial 
schedule. For example for the partial schedule shown in fig. 3, 
we can have either activity lists (1,2,3,4) or (1,3,2,4). There 
can be one node associated to each of these activity lists in the 
branching tree. Therefore if we have two nodes in the 
branching tree with different activity lists whose related partial 
schedules are the same as each other, we can fathom one of 
them, as they contain similar solutions. Noting to this, if in 
any level g of the branching tree, the selected activity j g is 
scheduled with the start time of less than the start time of one 
of the scheduled activities like i, we fathom the generated 
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node, because it contains the same partial schedule as another 
node whose activity list is the same as the current node but 
activities i and jg are substituted with each other in the order. 
In other case, if recently selected activity jg is scheduled with 
the same start time of the last activity in the schedule that has 
the latest start time, the node contains the same partial 
schedule with another node in which the order of two last 
activities are substituted. In this case, we can fathom one of 
the nodes and as a rule, in this case we fathom new node if jg 
is less than the previously scheduled one with the same start 
time. 

 
Fig. 3 Example of a partial schedule with two different activity lists 

F. Lower Bound Determination for Nodes and Fathoming 

According to the nodes present in the last level of the 
branching tree in which all activities have been scheduled, a 
feasible solution for the problem is in hand and therefore, the 
objective function can be assessed for each of these nodes 
based on their related makespan. But in the other nodes only a 
partial schedule of the project activities exists. So in order to 
determine a lower bound for the project makespan in such 
nodes, we use forward pass and specify project critical path 
length as a lower bound for the project makespan, however we 
modify the procedure of forward pass as the following by 
using extra information available for the solution. For 
activities present in partial schedule, we use the scheduled 
start time and finish time of the activity as their earliest start 
time (EST) and finish time (EFT) respectively. For activities 
not present in partial schedule, using the usual procedure, an 
earliest start time is specified equal to the latest finish time of 
all predecessors of the activity, we call this time precedence 
based earliest start time (PBEST). The two dominance rules 
mentioned above can be used to tighten critical path based 
lower bound as well. According to them, the start time of each 
activity not scheduled yet like i cannot be less than the start 
time of the last scheduled activity like j if i>j and cannot be 
less than the start time of j plus one time unit if i<j, otherwise 
the related node is dominated and fathomed. So these rules are 
used in the determination of PBESTs.   

Besides, a minimum for the activity start time is achievable 
based on the resource usage of activity as well, we call this 
minimum resource based earliest start time (RBEST). So 
activity EST would be the maximum of the values PBEST and 
RBEST. In order to specify RBEST, we consider both 
renewable and cumulative resource usage of activity. As we 
described in part 3.4, we update the periodic availability of 
each resource along project planning horizon after scheduling 
each activity. So based on this updated resource availability 
data, RBEST is determined as the earliest period in which the 
availability of all resources either renewable or cumulative 

type are enough for execution of the activity. Of course 
regarding to the renewable resources, there should be enough 
availability for all duration of the activity, so all periods of 
duration must be checked for renewable resource availability 
but for cumulative resources, enough availability from the 
start period of the activity until the end of project planning 
horizon must be checked because the availability decreases as 
much as requirement for all these periods. 

 
IV.  EXPERIMENTAL TESTS 

In this part we present comprehensive experimental analysis 
on the branch and bound algorithm presented in this paper for 
RCPSP-Cu. Algorithm has been coded and executed on 
C#.NET 2010 platform on a PC with Core 2 Duo 2.53 GHz 
CPU and 3 GBs RAM. 

A. Sample Problems 

In order to have a full factorial design of parameters, sample 
problems of the project scheduling library (PSPLIB) [50] have 
been used. As RCPSP problem instances of the library are 
only subject to the renewable resources, MRCPSP problem 
instances have been used in order to have data of the 
nonrenewable resources as well. Using the following method, 
each MRCPSP instance has been transformed to a RCPSP-Cu 
instance:  
� For each activity one mode is randomly chosen among 

the modes of that activity in the instance. 
� Each nonrenewable resource k is substituted with a 

cumulative resource k in the instance and requirement 
of nonrenewable resource k for each activity is assumed 
as requirement of activity from cumulative resource k. 

� For each cumulative resource k, the total amount 
required by all activities is randomly distributed 
between CPR first periods where CPR is the critical 
path length.  

We use seven sets of multimode project scheduling 
problems from the PSPLIB, j10, j12, j14, j16, j18, j20 and j30 
for experiments and convert them to RCPSP-Cu instances 
using the above procedure above. 

B. Algorithm Validation 

We use sample problems sets of j10, j16, j20 and j30 in this 
part and customize data of each instance so that its optimum 
objective function value is specified. In order that, for each 
instance we develop a random feasible solution schedule 
satisfying all constraints. Then if the makespan of the 
generated schedule is for example TM, we set one of the 
cumulative resource requirements of the last dummy activity 
equal to one and increase the input amount of that resource for 
period TM one unit. As the availability of the resource is equal 
to the activities requirement, the makespan of each solution 
cannot be less than TM up to which all the required amount of 
the resource is procured. So the feasible schedule in hand is an 
optimal solution. 

We solve each revised instance as above with the branch 
and bound algorithm, limiting the solving time to 0.5 seconds. 
In order to assess the validity of algorithm, following quantity 
is computed regarding to each problem solved: 
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/ � Z = >?@�>?@� A 100 (7) 

Z: objective function value of the best solution achieved by 
branch and bound algorithm 

ZOpt: Optimal objective function value of the instance 
The average and standard deviation of d for each problem 

set has been reported in table I. Results show little deviations 
of final solutions from the optimums 

 
TABLE I 

BRANCH AND BOUND ALGORITHM VALIDITY ASSESSMENT 

Sample problems sets 
Mean 
of  d 

Standard 
deviation of d 

J10 (536 problems) 0.04 4.14 
J16 (550 problems) 0.44 1.76 
J20 (554 problems) 0.92 3.13 
J30 (640 problems) 1.44 3.61 

C. Algorithm Performance 

In this part we use all sample problems set and from each of 
set, 50 instances are selected randomly. These instances are 
solved with the algorithm under three settings of limiting the 
solving times to 0.5, 3 and 10 seconds for each instance. In 
order to observe the effectiveness of two dominance rules used 
in the structure of the algorithm, we also solve all instances 
under three runtime settings using a simplified version of the 
branch and bound algorithm without these two dominance 
rules. Table 2, 3 and 4 show the number of problems solved 
from each set by original and simplified method under the 
related runtime limitation. 

 
TABLE II 

BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF 

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 0.5 SECONDS 

Sample 
problems sets 

Simplified 
method 

Original 
method 

J10 49 50 
J12 32 50 
J14 4 46 
J16 2 36 
J18 2 27 
J20 2 6 
J30 0 0 

 
TABLE III 

BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF 

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 3 SECONDS 

Sample 
problems sets 

Simplified 
method 

Original 
method 

J10 50 50 
J12 50 50 
J14 22 50 
J16 3  47 
J18 5 40 
J20 2 25 
J30 1 2 

 
 
 
 
 

TABLE IV 
BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF 

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 10 SECONDS 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
In this paper we studied resource-constrained project 

scheduling problem subject to cumulative resources (RCPSP-
Cu). We developed a branch and bound algorithm for RCPSP-
Cu based on the precedence tree approach and performed 
extensive experimental analysis on this algorithm. Validation 
assessment of the algorithm using revised instances with 
optimum solutions in hand showed algorithm validity via little 
deviation of the algorithm solutions from optimums. Checking 
the effectiveness of dominance rules used in the structure of 
the algorithm via comparing the performance of the original 
algorithm with its simplified version without dominance rules 
showed noticeable effectiveness of the rules. Finally 
performance assessment of the algorithm checking ability to 
solve instances of different sizes under different time 
limitations to optimality showed its efficiency for instances of 
size j18 and smaller for short runtime limitation of 0.5 seconds 
and j20 and smaller for more available runtimes of 3 and 10 
seconds.  

For further study of the problem in question, other exact 
algorithms can be developed and checked specially using 
ideas of other RCPSP branch and bound approaches. Also 
considering the NP-hardness of the problem, development of 
inexact and bounding algorithms would be useful. 
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