
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

427

Abstract—Renewable and non-renewable resource constraints
have been vast studied in theoretical fields of project scheduling
problems. However, although cumulative resources are widespread in
practical cases, the literature on project scheduling problems subject
to these resources is scant. So in order to study this type of resources
more, in this paper we use the framework of a resource constrained
project scheduling problem (RCPSP) with finish-start precedence
relations between activities and subject to the cumulative resources in
addition to the renewable resources. We develop a branch and bound
algorithm for this problem customizing precedence tree algorithm of
RCPSP. We perform extensive experimental analysis on the
algorithm to check its effectiveness and performance for solving
different instances of the problem in question.

Keywords—Resource constrained project scheduling problem,
cumulative resources, branch and bound algorithm, precedence tree.

I. INTRODUCTION

ENEWABLE and nonrenewable resources have been
vast studied in project scheduling literature. On the other

resources that in spite of their wide usage in practical cases,
have been studied much less theoretically. Material resources
of a project that are procured according to a procurement plan
during the project horizon are good examples of this type of
resources. Neumann and Schwindt[1] introduced these
resources and their practical applications. Reference[2]
modeled a batch production scheduling problem in process
industry as a project scheduling problem subject to this type of
resources while considering several extra considerations such
as minimum and maximum time lags between activities.
Reference[3] modeled a production scheduling problem using
this resource type. Reference[4] modeled scheduling of tests in
R&D projects in automotive industry as a customized model
of resource investment problem (RIP), aiming at minimization
of the number of cumulative resources that are needed. Extra
considerations such as activities ready times were made as
well.

In this paper in order to study cumulative resource type
more, we use the framework of a resource constrained project
scheduling problem subject to cumulative resources (RCPSP-
Cu) with finish-start precedence relations between activities
and we develop a branch and bound algorithm for the
problem.

A. Shirzadeh Chaleshtari is a Ph.D. candidate in the Department of

Industrial Engineering, Sharif University of Technology, Tehran, Iran (phone:
0098 912 605 7607; e-mail: a_shirzadeh@ie.sharif.edu).

Shahram Shadrokh is associate professor of the Department of Industrial
Engineering, Sharif University of Technology, Tehran, Iran (e-mail:
shadrokh@sharif.edu).

In order that, we customize a branch and bound algorithm

of resource constrained project scheduling problem
(RCPSP).As we know, the literature on RCPSP is so
extensive, dating back to 1960s, [5]. Many review papers such
as [6], [7], [8], [9], [10], [11] and [12] summarize the literature
on this problem. Due to the NP-hardness of this problem
([9],[13]), many studies have made on the problem developing
inexact methods, such as heuristic methods of [14], [15], [16],
[17], [18] and [19] and meta-heuristic methods of [20],
[21],[22], [23], [24], [25], [26] and [27] based on genetic
algorithm, [28], [29] and [30] based on simulated annealing,
[31]and [32] based on tabu search and [33] based on ant
colony. Besides, many exact algorithms such as binary
programming based models of [34], [35] and [36], dynamic
programming algorithm of [5] and branch and bound methods
of [37], [38], [39], [40], [41], [42], [43] and [44] have been
developed for the problem as well. Four basic approaches
have been most used for the development of branch and bound
methods for this problem, including precedence tree [45],
extension alternatives [46], minimal delaying alternatives [39]
and minimal forbidden sets [47]. Here we use precedence tree
approach and develop our method for RCPSP-Cu based on
this algorithm. So the rest of this paper is organized as the
following. In the next section, RCPSP-Cu is described in
detail. In section 3, the branch and bound algorithm for the
problem is described. Section 4 is dedicated to computational
analysis on and finally section 5 concludes the whole work.

II. PROBLEM DESCRIPTION

A project with n non-dummy activities is considered.
Finish-start precedence relations between activities are
illustrated using an activity-on-node (AON) loop-less network,
with dummy nodes 0 and n+1 as initial and terminal nodes
respectively. � � �1, … , ��and	 � �1, … ,
�� are the sets of
renewable and cumulative resources respectively. Each
activity i has a fixed duration of di and requires rik units of
renewable resource k (� � �) for each units of time over its
duration and cik units of cumulative resource k (� �) which
are used in the first period of its execution. Besides, each
activity i (i=0,…,n+1) has a set of predecessor activities Pi.
Each renewable resource k has a constant availability Rk over
the project duration and each cumulative resource k has
availability of CRkt from the beginning of the project up to the
period t (CRkt
CRk(t-1)). No preemption is permitted during
the activities execution, all activities have just one mode and
they are ready in the beginning of the project horizon. All
parameters are deterministic and integrals. The problem is to

A Branch and Bound Algorithm for Resource
Constrained Project Scheduling Problem subject

to Cumulative Resources

A.Shirzadeh Chaleshtari, Sh. Shadrokh

R
hand, cumulative resources [1] are another type of

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

428

find the start time each of activity i, Si, (i=0,…,n+1), such that
all problem constraints are satisfied and the project makespan
is minimized.

Suppose that the earliest and latest start time of each
activity i, ESTiand LSTi, (i=0,…,n+1), is determined with
forward and backward passes assigning LSTn+1= LFTn+1=T,
where T is an upper bound for optimum project makespan
determined by any valid method. Also xit be 1, if activity i
starts at time t and 0 otherwise, then we have, �� �∑ �. ������������� and the mathematical model of the problem is as

the following:

��� � �. �!"#$%�
&��'()

�����'()
* (1)

 �+� � 1���,

�����,
, - � 1, … , � . 1, (2)

 !� . /�%���
����

������
0 ��+� ,���,

�����,
 -

� 1, … , � . 1, � � 1+

(3)

 2+3
"

+�$ �+4
�

4��56,#$ 0 �3 , � � �
� �1, … , ��, � � 0, … , 	�89

(4)

 :+3
"

+�$ �+4
�

4����,
0
�3�, � � 	

� �1, … ,
��, �� 1, … , 	�89

(5)

�+� � �0,1�, - � 1, … , � . 1, �
� ;�8+ , … , 	�8+ .

(6)

Objective (1) is to minimize the project makespan.

Constraints (2) guarantee that each activity j can only has a
single start time which has to be from the period [ESTj,LSTj].
Constraints (3) take into consideration precedence relations
between each pair of activities (i,j) where i is an immediate
predecessor of j. Constrains (4) and (5) regard renewable and
cumulative resources usage limitations respectively and
finally, constraints (6) denote the domain of variables.

III. BRANCH AND BOUND ALGORITHM

In this part we introduce a branch and bound algorithm for
RCPSP-Cu problem. Fig. 1 shows the pseudo-code of the
algorithm. In this algorithm, partial schedules containing parts
of project activities are completed along the branching tree. In
each level of the tree, a node not fathomed yet is selected for
branching and according to the schedule in that node, one
activity not scheduled yet is chosen. The selected activity is
scheduled and a new node is generated. Relating to each node
in which all activities have been scheduled, a feasible schedule
is in hand for the problem. An upper bound for the project

makespan is kept during the procedure which is equal to the
makespan of the best feasible solution achieved up to the
current time. Also a lower bound for the project makespan for
each node in which only part of project activities have been
scheduled is determined. For all new nodes generated in each
step, this lower bound is compared to the current upper bound
and if exceeds that, the node is fathomed. This procedure is
repeated for all nodes not fathomed yet whenever the upper
bound is modified in the algorithm. More details of the
algorithm are described in the following.

• Perform preprocessing and stop if the instance is
infeasible

• Specify the initial upper bound
• Generate the initial node and select it for branching
• Branch selected node and fathom it
• Check new nodes for fathoming using dominance

rules
• Fathom each new node not fathomed yet that

contains feasible solution and update upper bound
if necessary

• If upper bound has been updated after last
branching:

a. Perform fathoming check on all nodes not
fathomed yet

Else:
a. Perform fathoming check on new nodes not

fathomed yet
• If there is at least one node not fathomed yet:

a. Select a new node for branching
b. Continue from step 4

Else:
a. Report the best feasible solution achieved

and stop

Fig. 1 Pseudo-code of branch and bound algorithm for RCPSP-Cu

A. Preprocessing

There are two cases in which a given instance has no
feasible solution, one is the case of renewable resources
shortage in which at least one activity exists in given instance
whose renewable resource requirement for at least one of the
renewable resources is more than the availability of that
resource. In this situation the activity cannot be executed and
no feasible solution exists for the problem. The second case is
the cumulative resource shortage in which at least one
cumulative resource exists in the given problem whose total
availability which is equal to the sum of all amounts ordered
for that resource during the periods, is less than the total
requirement of whole project activities for that resource. If
none of these two states exists in a given instance, there are
feasible solutions and the instance is feasible. So the branch
and bound algorithm in the first step checks the feasibility of
the instance.

B. Upper Bound Specification

Normally the tighter is the initial upper bound for an
instance, the fasternodes are fathomed in the related branching
tree. So in order to have a tight initial upper bound, first we

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

429

use a simple method of summing whole project activities
durations plus the latest time all cumulative resources are
ready for execution of entire project activities. Then we
improve this upper bound using the following procedure. In
this procedure we generate an activity list and schedule
activities based on this list using a customized version of serial
schedule generation scheme in which each selected activity is
scheduled in the earliest feasible time that besides preserving
precedence relations with other activities, enough renewable
and also cumulative resources exist for execution of the
activity. In order to generate a rather good activity list, we
prioritize activities in decreasing order of the sum of latest
start and finish times (LSTLFT) for activities. In [48] several
most efficient heuristics for MRCPSP, embracing activities
mode assignment and prioritization rules for scheduling using
serial or parallel schedule generation schemes were compared
and according to that, LSTLFT rule concluded the best among
other single-pass heuristics for prioritizing activities.This
method has been also compared to the best multi-pass
methods. Results showed that although multi-pass methods
need much more time than single-pass methods, they usually
result in negligible improvement in the solution, so the
LSTLFT choice seems the most appropriate among those
compared considering time requirements.

In order to determine latest start time and finish time for
activities, we use the simple initial upper bound we
determined in our first step and we perform backward pass
using this upper bound as the latest start time and finish time
of the last project activity. So the initial upper bound
determination for the problem is summarized as the pseudo-
code shown in fig. 2.

• Determine initial project upper bound IUB summing

whole activities durations plus the latest time all
cumulative resources are ready for execution of entire
project activities

• Assign the last activity start time equal to IUB
• Determine the latest start time and finish time of activities

using backward pass
• Compute LSTLFT of each activity and generate AL by

prioritizing activities in non-decreasing order of their
LSTLFTs

• Schedule activities based on the AL using customized
serial schedule generation scheme for cumulative
resources existence

• Report the finish time of last project activity as initial
upper bound (IUB)

Fig. 2 Pseudo-code of initial upper bound determination for RCPSP-
Cu

During the algorithm, as the base procedure of branch and
bound algorithm, we fathom any node in the last level of the
branching tree which contains a feasible schedule for the
problem. Then we substitute the current upper bound if the
related objective function of the node is less than the current
value of the upper bound.

C. Selecting Node for Branching

At the initial step in the first node, activity zero is scheduled

at time zero. Then the initial node as the only available one is
used for branching. In each other step of the algorithm, a node
from the set of nodes not fathomed yet is selected for
branching. In order to speed up the algorithm process, the
back-tracking rule is used and from the set, a node is selected
in which more activities have been scheduled. In this way we
try to reach feasible solutions as fast as possible. In case a tie
happens when more than one node exist in the set with
maximum number of scheduled activities, the jump-tracking
rule is used and one node is selected with the lower amount of
lower bound for project makespan and if tie happens again, the
node with the higher index is selected.

D. Branching

Once a node is selected for branching, all activities whose
predecessors have been scheduled in the current node can be
selected to be scheduled next. So regarding to each feasible
activity that can be scheduled, one node is generated in the
next level of the branching tree. The selected activity for each
new node is scheduled in the earliest possible time in the way
that first, its start time will not be earlier than finish time of
any of its predecessors which have been all scheduled before
and second, periodic availability of renewable and cumulative
resources are enough for scheduling the activity in selected
periods. Once the activity is scheduled, the periodic
availability of all resources it uses is updated; availability of
renewable resources from the start period of the activity until
its finish period and availability of cumulative resources from
the start period of the activity until the end of project are
lessened as much as the related resource requirement of the
activity. The process described here for scheduling any
selected activity is similar to the scheduling each activity
under serial schedule generation scheme which is described in
part 4.4.1.

E. Dominance Rules

Here we use some dominance rules previously introduced in
the literature for the precedence algorithm that implicitly help
shorten the enumeration process. These rules which have been
described in [49] for precedence tree algorithm of RCPSP can
be extended to the customized algorithm for RCPSP-Cu.
Experimental analysis in section 8 shows dramatic
effectiveness of these rules in algorithm efficiency.

Regarding to each partial schedule in each node, we can
specify an activity list that contains activities in the order they
have been selected along the branching path. Sometimes it is
possible to relate more than one activity list to a given partial
schedule. For example for the partial schedule shown in fig. 3,
we can have either activity lists (1,2,3,4) or (1,3,2,4). There
can be one node associated to each of these activity lists in the
branching tree. Therefore if we have two nodes in the
branching tree with different activity lists whose related partial
schedules are the same as each other, we can fathom one of
them, as they contain similar solutions. Noting to this, if in
any level g of the branching tree, the selected activity j g is
scheduled with the start time of less than the start time of one
of the scheduled activities like i, we fathom the generated

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

430

node, because it contains the same partial schedule as another
node whose activity list is the same as the current node but
activities i and jg are substituted with each other in the order.
In other case, if recently selected activity jg is scheduled with
the same start time of the last activity in the schedule that has
the latest start time, the node contains the same partial
schedule with another node in which the order of two last
activities are substituted. In this case, we can fathom one of
the nodes and as a rule, in this case we fathom new node if jg
is less than the previously scheduled one with the same start
time.

Fig. 3 Example of a partial schedule with two different activity lists

F. Lower Bound Determination for Nodes and Fathoming

According to the nodes present in the last level of the
branching tree in which all activities have been scheduled, a
feasible solution for the problem is in hand and therefore, the
objective function can be assessed for each of these nodes
based on their related makespan. But in the other nodes only a
partial schedule of the project activities exists. So in order to
determine a lower bound for the project makespan in such
nodes, we use forward pass and specify project critical path
length as a lower bound for the project makespan, however we
modify the procedure of forward pass as the following by
using extra information available for the solution. For
activities present in partial schedule, we use the scheduled
start time and finish time of the activity as their earliest start
time (EST) and finish time (EFT) respectively. For activities
not present in partial schedule, using the usual procedure, an
earliest start time is specified equal to the latest finish time of
all predecessors of the activity, we call this time precedence
based earliest start time (PBEST). The two dominance rules
mentioned above can be used to tighten critical path based
lower bound as well. According to them, the start time of each
activity not scheduled yet like i cannot be less than the start
time of the last scheduled activity like j if i>j and cannot be
less than the start time of j plus one time unit if i<j, otherwise
the related node is dominated and fathomed. So these rules are
used in the determination of PBESTs.

Besides, a minimum for the activity start time is achievable
based on the resource usage of activity as well, we call this
minimum resource based earliest start time (RBEST). So
activity EST would be the maximum of the values PBEST and
RBEST. In order to specify RBEST, we consider both
renewable and cumulative resource usage of activity. As we
described in part 3.4, we update the periodic availability of
each resource along project planning horizon after scheduling
each activity. So based on this updated resource availability
data, RBEST is determined as the earliest period in which the
availability of all resources either renewable or cumulative

type are enough for execution of the activity. Of course
regarding to the renewable resources, there should be enough
availability for all duration of the activity, so all periods of
duration must be checked for renewable resource availability
but for cumulative resources, enough availability from the
start period of the activity until the end of project planning
horizon must be checked because the availability decreases as
much as requirement for all these periods.

IV. EXPERIMENTAL TESTS

In this part we present comprehensive experimental analysis
on the branch and bound algorithm presented in this paper for
RCPSP-Cu. Algorithm has been coded and executed on
C#.NET 2010 platform on a PC with Core 2 Duo 2.53 GHz
CPU and 3 GBs RAM.

A. Sample Problems

In order to have a full factorial design of parameters, sample
problems of the project scheduling library (PSPLIB) [50] have
been used. As RCPSP problem instances of the library are
only subject to the renewable resources, MRCPSP problem
instances have been used in order to have data of the
nonrenewable resources as well. Using the following method,
each MRCPSP instance has been transformed to a RCPSP-Cu
instance:
� For each activity one mode is randomly chosen among

the modes of that activity in the instance.
� Each nonrenewable resource k is substituted with a

cumulative resource k in the instance and requirement
of nonrenewable resource k for each activity is assumed
as requirement of activity from cumulative resource k.

� For each cumulative resource k, the total amount
required by all activities is randomly distributed
between CPR first periods where CPR is the critical
path length.

We use seven sets of multimode project scheduling
problems from the PSPLIB, j10, j12, j14, j16, j18, j20 and j30
for experiments and convert them to RCPSP-Cu instances
using the above procedure above.

B. Algorithm Validation

We use sample problems sets of j10, j16, j20 and j30 in this
part and customize data of each instance so that its optimum
objective function value is specified. In order that, for each
instance we develop a random feasible solution schedule
satisfying all constraints. Then if the makespan of the
generated schedule is for example TM, we set one of the
cumulative resource requirements of the last dummy activity
equal to one and increase the input amount of that resource for
period TM one unit. As the availability of the resource is equal
to the activities requirement, the makespan of each solution
cannot be less than TM up to which all the required amount of
the resource is procured. So the feasible schedule in hand is an
optimal solution.

We solve each revised instance as above with the branch
and bound algorithm, limiting the solving time to 0.5 seconds.
In order to assess the validity of algorithm, following quantity
is computed regarding to each problem solved:

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

431

/ � Z = >?@�>?@� A 100 (7)

Z: objective function value of the best solution achieved by
branch and bound algorithm

ZOpt: Optimal objective function value of the instance
The average and standard deviation of d for each problem

set has been reported in table I. Results show little deviations
of final solutions from the optimums

TABLE I

BRANCH AND BOUND ALGORITHM VALIDITY ASSESSMENT

Sample problems sets
Mean
of d

Standard
deviation of d

J10 (536 problems) 0.04 4.14
J16 (550 problems) 0.44 1.76
J20 (554 problems) 0.92 3.13
J30 (640 problems) 1.44 3.61

C. Algorithm Performance

In this part we use all sample problems set and from each of
set, 50 instances are selected randomly. These instances are
solved with the algorithm under three settings of limiting the
solving times to 0.5, 3 and 10 seconds for each instance. In
order to observe the effectiveness of two dominance rules used
in the structure of the algorithm, we also solve all instances
under three runtime settings using a simplified version of the
branch and bound algorithm without these two dominance
rules. Table 2, 3 and 4 show the number of problems solved
from each set by original and simplified method under the
related runtime limitation.

TABLE II

BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 0.5 SECONDS

Sample
problems sets

Simplified
method

Original
method

J10 49 50
J12 32 50
J14 4 46
J16 2 36
J18 2 27
J20 2 6
J30 0 0

TABLE III

BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 3 SECONDS

Sample
problems sets

Simplified
method

Original
method

J10 50 50
J12 50 50
J14 22 50
J16 3 47
J18 5 40
J20 2 25
J30 1 2

TABLE IV
BRANCH AND BOUND METHOD PERFORMANCE ASSESSMENT-NUMBER OF

PROBLEMS SOLVED TO OPTIMALITY -RUNTIME LIMITATION : 10 SECONDS

V. CONCLUSION
In this paper we studied resource-constrained project

scheduling problem subject to cumulative resources (RCPSP-
Cu). We developed a branch and bound algorithm for RCPSP-
Cu based on the precedence tree approach and performed
extensive experimental analysis on this algorithm. Validation
assessment of the algorithm using revised instances with
optimum solutions in hand showed algorithm validity via little
deviation of the algorithm solutions from optimums. Checking
the effectiveness of dominance rules used in the structure of
the algorithm via comparing the performance of the original
algorithm with its simplified version without dominance rules
showed noticeable effectiveness of the rules. Finally
performance assessment of the algorithm checking ability to
solve instances of different sizes under different time
limitations to optimality showed its efficiency for instances of
size j18 and smaller for short runtime limitation of 0.5 seconds
and j20 and smaller for more available runtimes of 3 and 10
seconds.

For further study of the problem in question, other exact
algorithms can be developed and checked specially using
ideas of other RCPSP branch and bound approaches. Also
considering the NP-hardness of the problem, development of
inexact and bounding algorithms would be useful.

REFERENCES
[1] K. Neumann, C. Schwindt, “Project scheduling with inventory

constraints,” Mathematical Methods of Operations Research, vol. 56,
pp. 513–533, 2002.

[2] C. Schwindt, and N. Trautmann, “Batch scheduling in process
industries: An application of resource-constrained project
scheduling,”OR Spectrum, vol. 22, pp. 501–524, 2000.

[3] K. Neumann, C.Schwindt, and N. Trautmann, “Scheduling of
continuous and discontinuous material flows with intermediate storage
restrictions,”European Journal of Operational Research, vol. 165, pp.
495–509, 2005.

[4] J. H. Bartels, and J. Zimmermann, “Scheduling tests in automotive R&D
projects,”European Journal of Operational Research, vol. 193, pp. 805–
819, 2009.

[5] J.A. Carruthers, and A. Battersby, “Advances in critical path
methods,”Operational Research Quarterly, vol. 17, pp. 359–380, 1996.

[6] O. Icmeli, S.S. Erenguc, and C.J. Zappe, “Project scheduling problems:
a survey,” International Journal of Operations & Production
Management, vol. 13(11), pp. 80–91, 1993.

[7] L. Özdamar, and G.Ulusoy, “A survey on the resource constrained
project scheduling problem,”IIE Transactions, vol. 27, pp. 574–586,
1995.

[8] W. Herroelen, E. Demeulemeester, and B. De Reyck, “Resource-
constrained project scheduling: a survey of recent
developments,”Computers & Operations Research, vol. 25, pp. 279–
302, 1998.

Sample
problems sets

Simplified
method

Original
method

J10 50 50
J12 50 50
J14 38 50
J16 5 49
J18 6 47
J20 2 39
J30 1 3

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

432

[9] P. Brucker, A.Drexl, R.Mohring, K. Neumann, and E. Pesch, “Resource-
constrained project scheduling: notation, classification, models, and
methods,”European Journal of Operational Research, vol. 112, pp. 3–
41, 1999.

[10] S. Hartmann, and R.Kolisch, “Experimental evaluation of state-of-the-
art heuristics for the resource-constrained project scheduling problem.
European Journal of Operational Research, vol. 127, pp. 394–407,
2000.

[11] R. Kolisch, and R. Padman, “An integrated survey of deterministic
project scheduling,”OMEGA, vol. 29, pp. 249–272, 2001.

[12] R. Kolisch, and S. Hartmann, “Experimental investigation of heuristics
for resource-constrained project scheduling: an update,”European
Journal of Operational Research, vol. 174, pp. 23–37, 2006.

[13] J. Blazewicz, J. Lenstra, and A. RinnooyKan, “Scheduling subject to
resource constraints: Classification and complexity,” Discrete Applied
Mathematics, vol. 5, pp. 11–24, 1983.

[14] E.W. Davis, and J.H. Patterson, “A comparison of heuristic and
optimum solutions in resource-constrained project
scheduling,”Management Science, vol. 21, pp. 944–955, 1975.

[15] D.F. Cooper, “Heuristics for scheduling resource-constrained projects:
an experimental investigation,”Management Science, vol. 22, pp. 1186–
1194, 1976.

[16] G. Ulusoy, and L. Ozdamar, “Heuristic performance and
network/resource characteristics in resource-constrained project
scheduling,”Journal of the Operational Research Society, vol. 40, pp.
1145–1152, 1989.

[17] FF. Boctor,“Some efficient multi-heuristic procedures for resource-
constrained project scheduling,”European Journal of Operational
Research, vol. 49, pp. 3–13, 1990.

[18] L. Özdamar, and G.Ulusoy, “A local constraint based analysis approach
to project scheduling under general resource constraints,”European
Journal of Operational Research, vol. 79, pp. 287–298, 1994.

[19] R. Kolisch, “Efficient priority rule for the resource-constrained project
scheduling problem,”Journal of Operations Management, vol. 14, pp.
179–192, 1996.

[20] V.J. Leon, and B. Ramamoorthy, “Strength and adaptability of problem-
space based neighborhoods for resource-constrained scheduling,”OR
Spektrum, vol. 17, pp. 173–182, 1995.

[21] J.K. Lee, and Y.D. Kim, “Search heuristics for resource-constrained
project scheduling,”Journal of the Operational Research Society, vol.
47, pp. 678–689, 1996.

[22] S. Hartmann, “A competitive genetic algorithm for the resource-
constrained project scheduling,”Naval Research Logistics, vol. 45, pp.
733–750, 1997.

[23] S. Hartmann “A self-adapting genetic algorithm for project scheduling
under resource constraints,”Naval Research Logistics, vol. 49, pp. 433–
448, 2002.

[24] J. Alcaraz, and C. Maroto,“A robust genetic algorithm for resource
allocation in project scheduling,”Annals of Operations Research, vol.
102, pp. 83–109, 2001.

[25] K.S. Hindi, H. Yang, and K. Fleszar, “An evolutionary algorithm for
resource-constrained project scheduling,”IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 512–518, 2002.

[26] Y.C. Toklu, (2002). “Application of genetic algorithms to construction
scheduling with or without resource constraints,” Canadian Journal of
Civil Engineering, vol. 29, pp. 421–429, 2002.

[27] V. Valls, F.Ballestin, and S. Quintanilla, “A hybrid genetic algorithm for
the resource constrained project scheduling problem,”European Journal
of Operational Research, vol. 185, pp. 495–508, 2008.

[28] FF. Boctor, “An adaptation of the simulated annealing algorithm for
solving resource-constrained project scheduling problems,”International
Journal of Production Research, vol. 34, pp. 2335–2351, 1996.

[29] J.H. Cho, and Y.D. Kim, “A simulated annealing algorithm for resource-
constrained project scheduling problems,”Journal of the Operational
Research Society, vol. 48, pp. 736–744, 1997.

[30] K. Bouleimen, and H.Lecocq, “A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and
its multiple mode version,”European Journal of Operational Research,
vol. 149, pp. 268–281, 2003.

[31] E. Pinson, C. Prins, and F. Rullier, “Using tabu search for solving the
resource- constrained project scheduling problem,” in Proc. 4th
international workshop on project management and scheduling, Leuven,
Belgium, 1994, pp. 102–106.

[32] P.R. Thormas, and S. Salhi, “A tabu search approach for the resource
constrained project scheduling problem,” Journal of Heuristics, vol. 4,
pp. 123–139, 1998.

[33] D. Merkle, M.Middendorf, and H. Schmeck, “Ant colony optimization
for resource-constrained project scheduling,”IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 333–346, 2002.

[34] A.A.B. Pritsker, L.J. Watters, P.M. Wolfe, “Multiproject scheduling
with limited resources: a zero-one programming approach,”
Management Science, vol. 16, pp. 93–107, 1969.

[35] J.H. Patterson, and W.D. Huber, “A horizon-varying, zero-one approach
to project scheduling,”Management Science, vol. 20, pp. 990–998, 1974.

[36] J.H. Patterson, and G.W. Roth, “Scheduling a project under multiple
resource constraints: a zero-one programming approach,”AIIE
Transactions, vol. 8, pp. 449–455, 1976.

[37] E.W. Davis, and G.E. Heidorn, “An algorithm for optimal project
scheduling under multiple resource constraints,” Management Science,
vol. 17, pp. 803–816, 1971.

[38] F.B. Talbot, and J.H. Patterson, “An efficient integer programming
algorithm with network cuts for solving resource constrained scheduling
problems,” Management Science, vol. 24, pp. 1163–1174, 1978.

[39] N. Christofides, R. Alvarez-Valdes, and J.M. Tamarit, “Project
scheduling with resource constraints: a branch and bound approach,”
European Journal of Operational Research, vol. 29, pp. 262–73, 1987.

[40] E. Demeulemeester, and W. Herroelen, “A branch-and-bound procedure
for the multiple resource-constrained project scheduling
problems,”Management Science, vol. 38, pp. 1803–1818, 1992.

[41] E. Demeulemeester, and W. Herroelen, “New benchmark results for the
resource-constrained project scheduling problem,” Management Science,
vol. 43, pp. 1485–1492, 1997.

[42] P. Brucker, S.Knust, A.Schoo, and O. Thiele, “A branch and bound
algorithm for the resource-constrained project scheduling
problem,”European Journal of Operational Research, vol. 107, pp. 272–
288, 1998.

[43] A. Mingozzi, V.Maniezzo, S. Ricciardelli, and L. Bianco, “An exact
algorithm for project scheduling with resource constraints based on new
mathematical formulation,”Management Science, vol. 44, pp. 714–729,
1998.

[44] U. Dorndorf, E. Pesch, and T. Phan-Huy, “A branch-and-bound
algorithm for the resource-constrained project scheduling problem,”
Mathematical Methods of Operations Research, vol. 52, pp. 413–439,
2000.

[45] J.H. Patterson, R. Sowinski, F.B. Talbot, and J. Weglarz, “An algorithm
for a general class of precedence and resource constrained scheduling
problems,” in Advances in Project Scheduling, R. Sowinski, and J.
Weglarz, Amsterdam: Elsevier, 1989, pp. 3-28.

[46] J.P. Stinson, E.W. Davis, and B.M. Khumawala, “Multiple resource-
constrained scheduling using branch and bound,” AIIE Transactions,
vol. 10, pp. 252-259, 1978.

[47] G. Igelmund, and F.J. Radermacher, “Preselectivestrategies for the
optimization of stochastic project networks under resource constraints,”
Networks, vol. 13, pp. 1-28, 1983.

[48] A. Lova, A., P. Tormos, and F. Barber, “Multimode resource-
constrained project scheduling: scheduling schemes, priority rules and
mode selection rules,” Inteligenica Artificial, vol. 10(30), pp. 69-86,
2006.

[49] E. Demeulemeester, and W. Herroelen, Project Scheduling, A research
handbook. Boston: Kluwer Academic Publishers, 2002.

[50] R. Kolisch, A. Sprecher, “PSPLIB – A project scheduling problem
library,” European Journal of Operational Research, vol. 96, pp. 205–
216, 1996.

