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A 7DOF Manipulator Control in an Unknown 
Environment based on an Exact Algorithm

Pavel K. Lopatin, and Artyom S. Yegorov 

Abstract—An exact algorithm for a n-link manipulator 
movement amidst arbitrary unknown static obstacles is presented. 
The algorithm guarantees the reaching of a target configuration of 
the manipulator in a finite number of steps. The algorithm is 
reduced to a finite number of calls of a subroutine for planning a 
trajectory in the presence of known forbidden states. The 
polynomial approximation algorithm which is used as the 
subroutine is presented. The results of the exact algorithm 
implementation for the control of a seven link (7 degrees of 
freedom, 7DOF) manipulator are given. 

Keywords—Manipulator, trajectory planning, unknown 
obstacles. 

I. INTRODUCTION

N contemporary society robots and manipulators are used 
in different spheres of life. Robot should be as 

autonomous as possible and should effectively operate in a 
natural environment. 

In the beginning of the robotic era, robots operated in a 
workspace which was free of obstacles. Later the works 
dedicated to the invention of algorithms for the control of 
robots in the presence of obstacles began to appear. There 
are algorithms which guarantee finding a trajectory in the 
presence of known obstacles, if such trajectory exists [1, 4, 
10]. Some authors use the artificial potential methods (see, 
for example, [2]). In this method a robot is represented by a 
point, regions in the workspace that are to be avoided are 
modeled by repulsive potentials and the region to which the 
robot is to move is modeled by an attractive potential. In a 
general situation there is no guarantee that a collision-free 
path will always be found, if one exists [1]. There are 
different graph searching methods [10] which find the 
trajectory avoiding obstacles (even an optimal one), if it 
exists. It is easier to use such methods in the case where we 
have full information about free and forbidden points before 
the beginning of the movement. A computer may then 
calculate a preliminary trajectory and after that the 
manipulator may realize this trajectory. But in case of 
unknown obstacles the manipulator has to investigate its 
environment and plan its trajectory simultaneously. Then the 
difficulty arises that graph algorithms of route searching 
demand breadth searching, otherwise reaching the target 
configuration will not be guaranteed. But during breadth 
searching it is necessary to switch from one node q to 
another node q* which may be not adjacent. Then the  
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problem of the manipulator moving from q to q* arises, and 
as a result the total sum of the manipulator's movements 
becomes very big [3].  It is also known that the "depth-first" 
algorithms do not guarantee reaching the goal [3]. 

Attempts of creating algorithms for robot control in 
presence of unknown obstacles were made. Most of them 
cover various two-dimensional cases [9]. 

In [9] the algorithm for the control of manipulators in the 
presence of unknown obstacles in three-dimensional space is 
given. Though this algorithm guarantees reaching a target 
position, it has such a limitation that the manipulator should 
not have more than three degrees of freedom.  

In [11] the n-dimensional case is considered. The 
algorithm is based on the solution of the system of nonlinear 
equations using the Newton method and therefore it cannot 
guarantee reaching a target position. 

In [4] algorithms for moving a robot in the presence of 
uncertainty (including cases of unknown environment) are 
considered. The algorithms are based on the sequential 
decision theory. In general case the algorithms do not 
guarantee reaching the goal. In cases when the algorithms 
use searching on a graph the above mentioned difficulty 
arises connected with multiple mechanical movements. 

II. TASK FORMULATION AND THE EXACT ALGORITHM

A.  Preliminary Information 
We will consider manipulators which consist of n rigid 

bodies (called links) connected in series by either revolute or 
prismatic joints [5].  We must take into account that because 
of manipulator's constructive limitations the resulting 
trajectory q(t) must satisfy the set of inequalities 

                                 a1 q(t) a2                                     (1) 

for every time moment, where a1 is the vector of lower 
limitations on the values of generalized coordinates 
comprising q(t), and a2 is the vector of higher limitations. 

The points satisfying the inequalities (1) comprise a 
hyperparallelepiped in the generalized coordinate space. We 
will consider all points in the generalized coordinate space 
which do not satisfy the inequalities (1) as forbidden. 

We will have to move the manipulator from a start 
configuration q0=(q1

0, q2
0, …, qn

0) to a target configuration 
qT=(q1

T, q2
T, …, qn

T). In our case the manipulator will have 
to move amidst unknown obstacles. If in a configuration q
the manipulator has at least one common point with any 
obstacle then the point q in the configuration space will be 
considered as forbidden. If the manipulator in q has no 
common points with any obstacle then the q will be 
considered as allowed.   

So, in our problem a manipulator will be represented as a 
point which will have to move in the hyperparallelepiped 
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from q0 to qT and the trajectory of this point should not 
intersect with the forbidden points. 

B.  Preliminary Considerations 
Let us make the following considerations: 

1) The disposition, shapes and dimensions of the obstacles 
do not change during the whole period of the manipulator 
movement. 
2) It is known in advance, that the target configuration is 
reachable (that is, we know that in the generalized 
coordinates space it is possible to find a line connecting q0

qT, and that this line will not intersect with any forbidden 
point). 
3) The manipulator has a sensor system which allows to 
define whether the manipulator intersects with an obstacle 
or not for an arbitrary current configuration q  and for all 
configurations lying in a small r-neighborhood of q. r- 
neighborhood is a hyperball in the generalized coordinates 
space with the center in q and with a radius r>0. We will not 
consider the structure of the sensor system. 
4) We denote a set of all configurations from a r-
neighborhood of q as Y(q). The set of all forbidden points 
from Y(q) will be denoted as Q(q), the set of all permitted 
points from Y(q) will be denoted as Z(q). An r-
neighborhood of q with the sets Z(q) and Q(q) may look as  
follows (Fig. 1). Note that the sets Z(q) and Q(q) may be not 
continuous. 

                                                               

                                              

                                                          

The considerations 1)-4) cover wide range of 
manipulators’ applications. 

C. The Exact Algorithm for Manipulators’ Control in the 
Unknown Environment

Consider the exact algorithm for manipulators’ control in 
the unknown environment [6]. We will denote the points 
where generation of a new trajectory occurs as qn, n=0, 1, 
2,… We will call such points “trajectory changing points”. 
Before the algorithm work n=0 and qn= q0.
STEP 1. The manipulator is in a point qn, n=0, 1, 2,…, and 
its sensor system supplies information about the r-
neighborhood of the qn. After that the manipulator generates 
in the configuration space a preliminary trajectory L(qn, qT). 
The L(qn, qT) should satisfy the following conditions: I) 
connect the qn and the qT; II) no point from the L(qn, qT)

coincides with any point from the sets 
n

0i

i)(Q q , in other 

words the preliminary trajectory should not intersect with 
any known forbidden point; III) satisfy the conditions (1). 
    The manipulator starts to follow the L(qn, qT). The 
algorithm goes to STEP 2. 
STEP 2. While following the L(qn, qT) two results may 
happen:  

a) the manipulator will not meet forbidden points unknown 
earlier and therefore will reach the qT. Upon the reaching of 
the qT the algorithm terminates its work; 
) the manipulator will come to such a point (making at first 

operation n=n+1, let us define it qn, n=1,2,…), that the next 
point of the preliminary trajectory is forbidden. The 
algorithm goes to STEP 1. 

D.  Theorem  
If the manipulator moves according to the exact algorithm 

it will reach the target configuration in a finite number of 
steps.

Proof is given in [6]. 

III.  USING THE POLYNOMIAL APPROXIMATION ALGORITHM 
AS A SUBROUTINE IN THE EXACT ALGORITHM 

A. Reducing the Exact Algorithm to a Finite Number 
Calls of a Subroutine for a Trajectory Planning in Known 
Environment

Every time when the manipulator generates a new 
trajectory according to the STEP 1 of the exact algorithm, 
two cases may happen: either the manipulator will not meet 
an obstacle and therefore it will reach the qT in a finite 
number of steps (because the length of the trajectory is 
finite) or the manipulator will meet an unknown obstacle 
and will have to plan a new trajectory. In [6] it is proved that 
the number of cases when the manipulator will have to plan 
a new trajectory according to the STEP 1 will be finite. 
Therefore, in the exact algorithm the problem of a 
manipulator control in the presence of unknown obstacles is 
reduced to the solution of a finite number tasks of trajectory 
planning in the presence of known forbidden states. In other 
words, the exact algorithm will make a finite number of 
calls of a subroutine which will solve the problem stated in 
STEP 1. In the rest of the article we will call this subroutine 
the SUBROUTINE. We took the polynomial approximation 
algorithm as algorithm for the SUBROUTINE. 

B.  Polynomial Approximation Algorithm 
Denote the components of vector-function q(t) as q1, q2,

…, qn. Write down the restrictions using new variables: 
.n,1j,q)1(q,q)0(q T

jj
0
jj                     (2) 

.n,1j,q)t(qq H
jj

L
j                             (3) 

Fig. 2 Configuration space 

Specify the obstacles by hyperspheres with centers 

)q,,q,q( p
mn

p
2m

p
1m  and radius 1.1

2
qr , where p

miq

correspond to the components of vectors pm, m = 1, 2, …, 
M, q is step of configuration space discretization. The 

Fig. 1 An example of the r-neighborhood 

Q(q)Z(q)

r
q
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value of the radius r is chosen so that if two obstacles are 
located on neighbor nodes of the grid and their centers differ 
only in one component, the corresponding hyperspheres 
intersect. Otherwise the hyperspheres don’t intersect. Then 
the requirement of obstacles avoiding trajectory can be 
written as follow: 

.M,,2,1m],1;0[tr)q)t(q( 2
n

1i

2p
mii (4)

The left part of this inequality is squared distance between 
the trajectory point at moment t and the center of the m-th 
obstacle.

We will search the trajectory in the form of polynomials 
of some order s:

n,1j,tc)t(q
s

0i

i
jij                               (5) 

Here jic  are unknown coefficients. 
Substitute t = 0 and t = 1 in (5): 

n,1j

cc1c1c1cc)1(q

c0c0c0cc)0(q
s

1i
ji0j

s
js

2
2j1j0jj

0j
s

js
2

2j1j0jj

Taking into account requirements (2): 

.qc 0
j0j                                   (6) 

.qqc 0
j

T
j

s

1i
ji                            (7) 

n,1j

Divide duration [0; 1] into K+1 pieces by K intermediate 
points t1, t2, …, tK. Then the requirements (3) and (4) will be 
as follow: 

n,1j,qtc L
j

s

0i

i
kji

n,1j,qtc H
j

s

0i

i
kji                                                       (8) 

.K,...,2,1k,M,...,2,1m

,r)qtc( 2
n

1j

2p
mj

s

0i

i
kji

Thus, it is necessary to find such coefficients jic

( sinj ,1,,1 ) which satisfy the system of equations (6), 
(7) and inequalities (8). Obviously, the coefficients 0jc  are 
easily found from the equations (6). Express the coefficients 

jsc from the equations (7): 

.n,1j,cqqc
1s

1i
ji

0
j

T
jjs

Substitute 0jc and jsc  in (8): 

.K,...,2,1k,M,...,2,1m

,rqt)cqq(tcq

,n,1j,qt)cqq(tcq

,qt)cqq(tcq

2
n

1j

2
p
mj

1s

1i

s
k

1s

1i
ji

0
j

T
j

i
kji

0
j

H
j

1s

1i

s
k

1s

1i
ji

0
j

T
j

i
kji

0
j

L
j

1s

1i

s
k

1s

1i
ji

0
j

T
j

i
kji

0
j

(9)

Thus, it is necessary to solve the system of (M + 2n)·K
nonlinear inequalities. This problem can be replaced by the 
problem of optimization of some function F(C):

,0)(),(
0)(),(

)(
CEifCP
CEifCE

CF

where C is vector of coefficients  (c1,1, c1,2, …, 1,s-1, c2,1, c2,2,
…, 2,s-1,…, cn,1, cn,2, …, cn,s-1), E(C) is measure of 
restrictions violation, P(C) is estimated probability that 
trajectory not intersects with unknown obstacles. 

Let’s define function F(C). First, introduce function 
defining the trajectory point for the vector of coefficients C
at the moment t:

.t)cqq(tcq)t,C(L
1s

1i

s
1s

1i
ji

0
j

T
j

i
ji

0
jj

The following functions correspond to the inequalities of 
the system (8), they show the violation of upper and lower 
bounds and the intersection with the obstacles of trajectory 
at the moment t:

,r)q)t,C(L(I)t,C(E

,))t,C(Lq(I)t,C(E

,)q)t,C(L(I)t,C(E

M

1m

2
n

1j

2p
mjjP

n

1j
j

H
jH

n

1j

L
jjL

.0zif,0
,0zif,z

)z(I

Because of using of the operator I, the items in the above 
functions are negative only if corresponding restrictions are 
violated. The more violation of the restriction, the more the 
value of the function. If particular restriction is not violated, 
the corresponding function element is zero. In any case, 
values of functions can’t be positive. 

Join all restrictions into single function (taking into 
account all discrete moments except t = 0 and t = 1): 

K

1k
kPkHkL )t,C(E)t,C(E)t,C(E)C(E .

Thus, E(C) takes negative values if at least one restriction 
is violated and becomes zero otherwise, that is if the vector 
C satisfies all the inequalities of the system (9). 

The function P(C) was introduced to make possible 
comparison of trajectories which not violate the restrictions. 
Assume p(d) = e-2d is probability that there is an unknown 
obstacle in some point, where d is distance between this 
point and the nearest known obstacle. Then 

*

1
)),(()(

M

m
mOCDpCP , where {O1, O2, …, OM*} is set of 
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obstacles along which the trajectory lies, 

2

1

2)),((min),( rOtCLOCD
n

j
jkj

k
is distance 

between the trajectory C and the obstacle O. A trajectory 
lies along an obstacle O if such point of trajectory L(tk)
exists as an obstacle O is nearest among all obstacles for this 
point. Usage of function P(C) would promote the algorithm 
to produce trajectories which lie far from unknown 
obstacles.

Since function F(C) is multiextremal, the genetic 
algorithm is used to find the desired vector. 

C. Optimization of the Restriction Function using Genetic 
Algorithm 

Genetic algorithm is based on collective training process 
inside the population of individuals, each representing 
search space point. In our case search space is space of 
vectors C. Encoding of vector in the individual is made as 
follows. Each vector component is assigned the interval of 
values possessed by this component. The interval is divided 
into a quantity of discrete points. Thus, each vector 
component value is associated with corresponding point 
index. The sequence of these indexes made up the 
individual. 

The algorithm scheme: 
1. Generate an initial population randomly. The size of 

population is N.
2. Calculate fitness values of the individuals. 
3. Select individuals to the intermediate population. 
4. With probability PC perform crossover of two individuals 

randomly chosen from the intermediate population and 
put it into new population; and with probability 1 – PC
perform reproduction – copy the individual randomly 
chosen from intermediate population to new population. 

5. If size of new population is less than N, go to Step 4. 
6. With given mutation probability PM invert each bit of 

each individual from new population. 
7. If required number of generations is not reached go to 

Step 2. 
The fitness function matches F(C). On the third step the 

tournament selection is used: during the selection the N
tournaments are carried out among m randomly chosen 
individuals (m is called tournament size). In every 
tournament the best individual is chosen to be put into the 
new population. 

On the fourth step the arithmetical crossover is used. The 
components of offspring are calculated as arithmetic mean 
of corresponding components of two parents. 

D.  Quantization of the Path 
After the polynomials coefficients specifying the route are 

found, it’s necessary to get the sequence of route discrete 
points q0, q1, …, qT. The first point (q0) is obtained from the 
initial values. The rest of points can be found using the 
following algorithm: 
1. t = 0; i = 0. 
2. tH = 1. 

3. .
2

* Httt

4. Find the point q* with coordinates ),,,( **
2

*
1 nqqq in 

whose neighborhood the trajectory is lying at the moment 

t*: njqqtqqq jjj ,1
2

*)(
2

**

5. If q* equals qi , then t = t*, go to Step 3. 
6. If q* is not a neighbor of qi, then tH = t*, go to Step 3. 
7. If q* is not forbidden, then go to Step 9. 
8. If njqqtqqq ijjij ,1*)( , where qi

j are 
the coordinates of qi, then t = t*, otherwise tH = t*, go to 
Step 3. 
9. i = i + 1; qi = q*.
10. If qi = qT, then the algorithm is finished, otherwise go to 
Step 2. 

IV.  EXPERIMENTAL RESULTS

Consider the following experimental set (Fig. 4). It is 
necessary to move a seven-link manipulator (Fig. 3) from 
the start configuration q0 = (1.57; 1.57; 0; 4.71; 0; 4.71; 0) 
(rad) to the target configuration qT = (4.71; 1.57; 0; 0; 0; 0; 
0)(rad). There are the following limitations on the 
generalized coordinates: 0  qi(t)  6.28, i = 1,2,…,7. The 
length of each link is 10 points. There are four cuboid 
obstacles in the working area. Each obstacle is described by 
six values: the length, width, height and the coordinates of 
the origins attached to the obstacles in the basic coordinate 
system (Table I). 

Fig. 3 The manipulator kinematic scheme 

Fig. 4 Experimental set 
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TABLE I
THE CHARACTERISTICS OF OBSTACLES

x y z Length width height 
1 -30 2 12 80 1.6 2 
2 10 -20 0 34 14 20 
3 -44 -20 0 34 14 40 
4 -40 -40 -10 200 200 10 

The parameters of algorithms are as follow: 
1. Polynomial order s: 10. 
2. Number of time pieces K: 100. 
3. Polynomials coefficients precision: 10-5.
4. Population size N: 20. 
5. Number of generations: 20. 
6. Probability of crossover PC: 0,5. 
7. Probability of mutation PM: 0,1. 
8. Tournament size m: 5. 

The working time of the exact algorithm depending on 
different number_of_discretes is given in the Table II. The 

q is calculated as the difference between upper and lower 
bounds of q(t) (that is 6.28) divided on the 
number_of_discretes. The working time is a sum of three 
elements: trajectory search time, time to check whether 
trajectory intersects with unknown obstacles, manipulator 
moving time (12° per second).  

TABLE II
EXPERIMENTAL RESULTS

Obstacles number_of_ discretes Working time, 
seconds

40 58 
60 82 
120 153 
240 150 

1, 2 

360 125 
40 83 
60 96 
120 154 
240 233 

1, 2, 3 

360 251 
40 233 
60 340 
120 761 
240 1142 

1, 2, 3, 4 

360 1169 

The tests were done on the processor AMD Athlon XP 
1800+ (1533 MHz).  

The key steps of manipulator trajectory for the last test 
case (with four obstacles) are shown on the Fig. 5. 

Fig. 5 The key steps of manipulator movement trajectory 

V. CONCLUSION 
The exact algorithm for a n-link manipulator movement 

amidst arbitrary unknown static obstacles was presented. 
The algorithm guarantees the reaching of a target 
configuration in a finite number of steps. The algorithm is 
reduced to a finite number of calls of a subroutine for 
planning a trajectory in the presence of known forbidden 
states. The polynomial approximation algorithm which is 
used as the subroutine was presented. The results of the 
exact algorithm implementation for the control of a seven 
link manipulator are given. 

During experiments the following advantages and 
disadvantages of the polynomial approximation algorithm 
were discovered: 
1. Algorithm is applicable to the n-dimensional space. 
2. Algorithm works well if a searched path is not too 

«snaky» curve, i.e. when the obstacles are grouped in 

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 581 © 2008 WASET.ORG



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

749

big blocks and there are not many such blocks. If the 
configuration space is strongly encumbered, a path may 
be not found. 

3. The quality of the algorithm’s work depends on the 
chosen degree of the polynomial and the value of time 
discretes. Making these values bigger leads, from one 
side, to a possibility of finding complex trajectories, but 
from another side – makes the search time bigger.  

4. If the robot, following the generated path, meets 
with unknown obstacle, it will be necessary to carry out 
the work of a trajectory finding from the very 
beginning, i.e. the previous preliminary trajectory is not 
used. 

Here are the criteria which should be satisfied by an 
algorithm for the subroutine: 

- It should be applicable to the n-dimensional 
case;

- It should guarantee finding a path in the 
presence of known forbidden states; 

- In case of new call of the SUBROUTINE 
should be done the minimum work for finding 
a path in the presence of known forbidden 
states.
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