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I. INTRODUCTION 

.A. Zadeh [1] introduced the notion of a fuzzy subset μ of 
a set X as a function from X into the closed unit 

interval[ ]0,1 . The concept of fuzzy subgroups was introduced 

by A. Rosenfeld [2].W.J. Liu [3] introduced and studied fuzzy 
ideals of rings. T.K. Dutta and B.K. Biswas [4] studied fuzzy 
ideals, fuzzy prime ideals of semirings and they defined fuzzy 
k–ideal and fuzzy prime k–ideals of semirings and 
characterized fuzzy prime k-ideals of semirings of non-
negative integers and determined all its prime k–ideals. S.I. 
Baik and H.S Kim [6] studied more about the fuzzy k-ideals in 
semirings and investigated their properties. Y.B. Jun et.al [5] 
extended the concept of L–fuzzy ideal of rings to semirings. 
Ayten Koç, Erol Balkanay [7, 8] introduced a concept of θ -
Euclidean L–fuzzy ideals, θ -Euclidean level subset in rings 
and studied the properties of ideals θ -Euclidean L–fuzzy 
ideals, θ -Euclidean level subset in rings. C.B Kim et al [10] 
introduce the k-fuzzy ideal of semirings and studied the 
properties of the image and pre image of a k-fuzzy ideal in 
semirings. C.B Kim [9] studied some isomorphism theorems 
and fuzzy k–ideals in  
 k–semirings.    
    The purpose of this paper is to introduce θ -Euclidean k-
fuzzy ideals in semirings and to study the properties of the 
image and pre image of a θ -Euclidean k-fuzzy ideal in a 
semiring under epimorphism. Also we prove the structural 
theorem for a θ -Euclidean k– fuzzy ideal.  
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II. PRELIMINARIES 

An algebra ( ); , .S +  is said to be a semiring if 

( );S + and ( ); .S are semigroup satisfying ( ). . .a b c a b a c+ = + and  

( ) . . .b c a b a c a+ = + , for all , ,a b c S∈ .A semiring S may have 
an identity 1, defined by 1. .1a a a= = and a zero 0, defined 
by 0 0a a a+ = = +  and .0 0 0.a a= =  for all a S∈ . A non – 
empty subset I of S is said to be left (resp., right) ideal 
if ,x y I∈ and r S∈ imply that x y I+ ∈ and rx I∈  

( ).,resp xr I∈ . If I is both left and right ideal of S, we say I is  
a two-sided ideal, or simply ideal, of S. A left ideal I of a 
semiring S is said to be a left k–ideal if a I∈ and x S∈  and if 
a x I+ ∈ or x a I+ ∈ then x I∈ . Right k–ideal is defined 
dually, and two–sided k–ideal or simply a k–ideal is both a left 
and a right k–ideal. 
 
Definition 2.1 [10]:  Let K and S be any sets and let 

:f K S→     be a function. A fuzzy subset μ  of K is called 
  f –invariant if ( ) ( )f x f y=   implies ( ) ( )x yμ μ= ,where 

,x y K∈ . 
 
Definition 2.2 [2] : A fuzzy subset μ of a semiring S is said to 
be fuzzy left (resp., right) 
ideal of S if 
       ( ) ( ) ( ) ( ){ }min ,i x y x yμ μ μ+ ≥  and   

      ( ) ( ) ( ) ( ) ( )( ).,ii xy y resp xy xμ μ μ μ≥ ≥    

for all ,x y S∈ . If μ is a fuzzy ideal of S if it is both fuzzy left 
and a fuzzy right ideal of  S. 
 
Definition 2.3 [10]: A fuzzy ideal μ of a semiring S is said to 

be a k-fuzzy ideal of S ( ) ( )0x yμ μ+ =   and  ( ) ( )0yμ μ=  

imply ( ) ( )0xμ μ= , for all , .x y S∈  
 
Definition 2.4 [8]: Let [ ]: 0,1Sθ →  and [ ]: 0,1Sμ → be a 

fuzzy subsets of S. For any, 0 y S≠ ∈  the set 

L 
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{ }
| ,

0 ( ) max ( ), ( )y

x S there exists q r S such that x yq r

where either r or else r y yθ μ μ θ
μ

∈ ∈ = +

= ≥

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 

is called a θ − Euclidean level subset ofμ . 
 

II. θ -EUCLIDEAN K-FUZZY IDEALS 

Definition 3.1: Let S be a semiring and let [ ]: 0,1Sθ → be a 

non–constant fuzzy subset of S. A fuzzy ideal [ ]: 0,1Sμ → is 

called a θ -Euclidean k-fuzzy ideal if μ satisfies the following 
axioms 
   ( ) ( )( ) 0i x yμ μ+ =   and  ( ) ( )0yμ μ=  imply 

( ) ( )0xμ μ= , for all ,x y in R. 

   ( )ii  For any ,x y R∈  with 0y ≠ , there exists elements 

,q r R∈  such that ,x yq r= + where either 0r = or else 

( ) ( ){ } ( ) ( ){ }max , max ,r r y yμ θ μ θ≥ . 

 
Example 3.2: Let S be the set of Natural Numbers including 
zero and [ ]: 0,1Sμ → be a fuzzy subset defined    by                           

                     ( )
1 0,
1

,
3
0 .

if a

a if a is non zero even

if a is odd

μ

=

= −

⎧
⎪⎪
⎨
⎪
⎪⎩

 

Let [ ]: 0,1Sθ → be a fuzzy subset defined by  

                       ( )
0 0,
1

3, 5, 7, ...
3
1

.

if a

a if a

otherwise
a

θ

=

= =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

 

Clearly μ is a  k–fuzzy ideal of S, also μ is a θ -Euclidean 
 k–fuzzy ideal of S. 
 
Example 3.3: Let S  be the set of Natural Numbers including 

zero and [ ]: 0,1Sμ → be a fuzzy set defined by  

       ( )
1 0,
1

,
3
0 .

if a

a if a is non zero even

if a is odd

μ

=

= −

⎧
⎪⎪
⎨
⎪
⎪⎩

 

Let [ ]: 0,11 Sθ → be a fuzzy subset defined by  

        ( )
0 0
11 .

if a
a otherwise

a
θ

=

=
⎧
⎪
⎨
⎪⎩

 

So μ is a k–fuzzy ideal but μ is not a 1θ -Euclidean k–fuzzy 

ideal of S. 
 
Theorem 3.4:  Let A be a non empty subset of S. Let μ  be a  

fuzzy subset  of a semiring S such that μ  is into { }0,1 ,so that 
μ  is the characteristic function of A. Then μ  is a  
θ -Euclidean k-fuzzy ideal of a semiring S then A is a left  
ideal of S. 
 
Proof: The proof is easy and straight forward. �  
 
Theorem 3.5:  Let  μ  be a θ -Euclidean k-fuzzy ideal of a 

semiring S. Then for 0 y S≠ ∈ , ( )i
y

μθ  is an ideal of S 

( )ii yθμ  is an ideal of S. and ( )iii tμ  is a θ -Euclidean  

k-fuzzy ideal  of S, for [0,1]t ∈ . 
 
Proof: The proof is similar to [8, Theorem 3.3]. �  
 
Theorem 3.6: Let μ  be a fuzzy ideal of a semiring S. If 

y
μθ and yθμ  is the Euclidean level set of μ  and θ  

respectively. Then μ  is a θ -Euclidean k-fuzzy ideal of a 
semiring S. 
 
Proof: Suppose μ  is fuzzy ideal of semiring S. For 

,x y S∈ ,if    ( ) (0)x yμ μ+ = and ( ) (0)yμ μ= ,then  

{ }( ) min ( ), ( )x y x yμ μ μ+ ≥ ,since μ  is fuzzy ideal of S. 

                                    { }(0) min ( ), (0)xμ μ μ≥  

                                    ( ) (0)xμ μ= . 
  Thus μ  is a k-fuzzy ideal of semiring S. 

We have 
y

μθ and yθμ  is the Euclidean level set of μ  and 

θ  respectively. Then, for ,x y S∈ , with 0 y≠ ,there exists 

,q r S∈ such that x yq r= +  where either 0r =  or 

else { }( ) max ( ), ( )r y yμ μ θ≥ and { }( ) max ( ), ( )r y yθ μ θ≥ . 

Thus { } { }max ( ), ( ) max ( ), ( )r r y yμ θ μ θ≥ . 
Hence μ  is a θ -Euclidean k-fuzzy ideal of a semiring S. �  
 
Definition 3.7 ([10]): Let :f S S ′→ be a homomorphism of 
semirings. Let μ be a fuzzy subset of S ′ .We define a fuzzy 

subset 1f μ−  of  S  by ( )1 ( ) ( )f x f xμ μ− = ,for all x S∈  
 
Theorem 3.7: Let :f S S ′→  be an epimorphism of   
semirings and μ  be a fuzzy ideal of S ′ . Then μ  is a 

 θ -Euclidean k-fuzzy ideal of S ′ if and only if 1( )f μ−  
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 is a 1( )f θ− -Euclidean k-fuzzy ideal of fuzzy ideal of S. 
 
Proof: Suppose μ  is a θ -Euclidean k-fuzzy ideal of  S ′ .   
(i)   For all ,x y S ′∈  

( ) ( )1 ( ) ( ) ( ) ( )f x y f x y f x f yμ μ μ− + = + = +  

                         ( ) ( ){ }min ( ) , ( )f x f yμ μ≥  

                        { }1 1min ( ), ( )f x f yμ μ− −=  

(ii) For all ,x y S ′∈  

           ( ) ( )1 ( ) ( ) ( ) ( )f xy f xy f x f yμ μ μ− = =  

                             ( ) ( ){ }max ( ) , ( )f x f yμ μ≥  

                             { }1 1max ( ), ( )f x f yμ μ− −=  

(iii) For all ,x y S ′∈ ,if 1 1( ) (0)f x y fμ μ− −+ =  

 and 1 1( ) (0)f y fμ μ− −=  than       

       ( ) ( ) ( )1 ( ) ( ) 0f x f x xμ μ μ μ− = = =  

                       ( ) 1(0) (0)f fμ μ−= = . 

iv)  We have μ  is a θ -Euclidean k-fuzzy ideal of  S ′ ,then for 
any ,x y S∈ , then ( ), ( )f x f y S ′∈  there exists elements 

( ), ( )f q f r S ′∈  such that ( ) ( ) ( ) ( )f x f y f q f r= + where 
either ( ) 0f r = or else 

( ) ( ){ } ( ) ( ){ }max ( ) , ( ) max ( ) , ( )f y f y f r f rμ θ μ θ≥  . 

That is ( ) ( ) ( )f x f yq f r= + where either ( ) 0f r =  or  

else { } { }1 1 1 1max ( ), ( ) max ( ), ( )f y f y f r f rμ θ μ θ− − − −≥  .  

Thus  ( ) ( )f x f yq r= + where either ( ) 0f r =  or else   

{ } { }1 1 1 1max ( ), ( ) max ( ), ( )f y f y f r f rμ θ μ θ− − − −≥ . 

Hence for any ,x y S∈ there exists elements ,q r S∈  such 

that x yq r= + where either 0r =  or else   

{ } { }1 1 1 1max ( ), ( ) max ( ), ( )f y f y f r f rμ θ μ θ− − − −≥ . 

Conversely, suppose 1( )f μ−  is aθ -Euclidean k-fuzzy ideal 
of S. 

(i) For any ,x y S∈ then ( )a f x= , ( )b f y S ′= ∈ . 

 ( ) ( )( ) ( ) ( ) ( )a b f x f y f x yμ μ μ+ = + = +  

                            1 ( )f x yμ−= +  

                            { }1 1min ( ), ( ))f x f yμ μ− −≥  

                            ( ) ( ){ }min ( ) , ( )f x f yμ μ=     

                            ( ) ( ){ }max ,a bμ μ= . 

(ii) For any ,x y S∈ then ( )a f x= , ( )b f y S ′= ∈ . 

( ) ( )( ) ( ) ( ) ( )ab f x f y f xyμ μ μ= = 1 ( )f xyμ−=  

                    { }1 1max ( ), ( ))f x f yμ μ− −≥  

                    ( ) ( ){ }max ( ) , ( )f x f yμ μ=  

                   ( ) ( ){ }max ,a bμ μ= . 

    (iii)      For any ,x y S∈ then ( )a f x= , ( )b f y S ′= ∈ ,if 
( ) (0)a bμ μ+ = and ( ) (0)bμ μ= imply 

1 1( ) ( ( )) ( ) (0) ( (0)) (0)a f x f x f fμ μ μ μ μ μ− −= = = = =  
     (iv)      For any , , ,x y q r S∈ then     

( )a f x= , ( ), ( ), ( )b f y c f q d f r S ′= = = ∈ . 

  We have 1( )f μ−  is aθ -Euclidean k-fuzzy ideal of 
fuzzy ideal of S, then there  exists ,q r S∈  such that 

x yq r= +  either 0r =  or else  
 

{ } { }1 1 1 1max ( ), ( ) max ( ), ( )f y f y f r f rμ θ μ θ− − − −≥ .

That is ( ) ( )f x f yq r= +   either ( ) 0f r =  or else 

( ) ( ){ } ( ) ( ){ }max ( ) , ( ) max ( ) , ( )f y f y f r f rμ θ μ θ≥ . 

that is   ( ) ( ) ( ) ( )f x f y f q f r= +  either ( ) 0f r =  
 or else 

( ) ( ){ } ( ) ( ){ }max ( ) , ( ) max ( ) , ( )f y f y f r f rμ θ μ θ≥ . 

Thus there exists ,c d S ′∈  such that a bc d= +  either 

0r =  or else { } { }max ( ), ( ) max ( ), ( )c c d dμ θ μ θ≥ . �  
 

Definition 3.8: Let :f S S ′→ be an homomorphism of the 

semirings. Let μ  be a fuzzy subset of S .we define a fuzzy 
subset ( )f μ  of S ′ by 
 

{ } 1sup ( ) | , ( ) ( )
( )( )

10 ( )

t t R f t y if f y
f y

if f y

μ φ
μ

φ

−∈ = ≠
=

− =

⎧⎪
⎨
⎪⎩

 

 
Theorem 3.9: Let :f S S ′→  epimorphism of semirings. Let 
μ  be a f-invariant θ -Euclidean k-fuzzy ideal of S. Then  

( )f μ  is ( )f θ - Euclidean k-fuzzy ideal of S ′ . 
 
Proof: Suppose ,x y S ′∈  such that ( ), ( )x f a y f b= = , for 
all ,a b S∈ .Then ( ) ( ) ( )x y f a f b f a b+ = + = +  and 

( ) ( ) ( )xy f a f b f ab= = .Since μ  is  f-invariant  
 Thus 
(i)  ( )( ) ( ) ( )f x y f f a bμ μ+ = +             

                            { }sup ( ) | , ( ) ( )t t S f t f a bμ= ∈ = +  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

122

 

                            { }sup ( ) | , ( ) ( )t t S t a bμ μ μ= ∈ = +  

                            ( )a bμ= +  

                             { }min ( ), ( )a bμ μ≥ , 
                                                  since μ is a k-fuzzy ideal of S.  

                            ( ) ( ){ }1 1min ( ) , ( )f x f yμ μ− −=  

                            { }min ( )( ), ( )( )f x f yμ μ= . 

    (ii)   ( )( ) ( ) ( ) ( )f xy f f ab abμ μ μ= =  

                             { }max ( ), ( )a bμ μ≥ ,           
                                                    since μ is a k-fuzzy ideal of S.  

                            ( ) ( ){ }1 1max ( ) , ( )f x f yμ μ− −=  

                             { }max ( )( ), ( )( )f x f yμ μ= . 

(iii) If ( )( ) ( )(0)f x y fμ μ+ = and
( )( ) ( )(0)f y fμ μ=  imply that 

                       ( )( )( ) ( ) ( ) ( )f x f f a aμ μ μ= =  

                                     ( )1(0) (0) ( )(0)f fμ μ μ−= == . 

 
(iv) We have μ  is  f-invariant  θ -Euclidean k-fuzzy 
ideal of S.  If , , ,a b c d S∈ then ( )x f a= , 

      ( ), ( ), ( )y f b q f c r f d= = = ,for all , , ,x y q r S ′∈ . 
Then for any ,a b S∈ there exists elements ,c d S∈ , 
such that a bc d= + , where either 0d = or else 

{ } { }max ( ), ( ) max ( ), ( )b b d dμ θ μ θ≥ . 

That is , ( ) ( )f a f bc d= + , 
        thus ( ) ( ) ( ) ( )f a f b f c f d= +  , 

Thus x yq r= + .Let 0d = .  
Then ( ) (0) 0f d f= = . We get  0r = . 
Finally, we have 

{ } { }max ( ), ( ) max ( ), ( )b b d dμ θ μ θ≥ , 
                                                 Since μ  is  f-invariant. 

{ }( )( ) ( ) ( ) sup ( ) | , ( ) ( )f y f f b t t R f t f bμ μ μ= = ∈ =  

                                   { }sup ( ) | , ( ) ( )t t R t bμ μ μ= ∈ =  

                                  ( )bμ=  

so that { } { }max ( ), ( ) max ( ), ( )b b d dμ θ μ θ≥   then       

{ } { }max ( )( ), ( )( ) max ( )( ), ( )( )f y f y f r f rμ θ μ θ≥ . 

Hence ( )f μ  is a  ( )f θ - Euclidean k-fuzzy ideal of S ′ . 
 
Theorem 3.10: Let :f S S ′→ be an isomorphism of the 

semirings and [ ]: 0,1Sμ′ ′ → be a θ -Euclidean k–fuzzy ideal 

of S ′ . Then [ ]: 0,1f Sμ′ →o is a ( )fθ ′ o -Euclidean 

 k–fuzzy ideal of S. Here, we mean 
that ( )( ) ( )f x f xμ μ′ ′= ⎡ ⎤⎣ ⎦o . 

 
Proof: Let ,f fμ μ θ θ′ ′= =o o and also ,a b S∈  and μ′ is 
an θ -Euclidean k–fuzzy ideal of  S ′ . 

 
It was proved that μ  is a fuzzy ideal of S [5] and μ is a  
θ -Euclidean fuzzy ideal of S [7]. 
If ( ) (0)a bμ μ+ =  and ( ) (0)bμ μ= , then  

    ( ) ( ) ( )( ) ( ) 0a f a f aμ μ μ μ′ ′ ′= = =o . Since μ′ is an  

θ -Euclidean k–fuzzy ideal of  S ′ . 
                                                  ( )(0)fμ′=  

                                                  (0)fμ′= o  
                                                  (0)μ=  

Hence [ ]: 0,1f Sμ′ →o is a ( )fθ ′ o -Euclidean k–fuzzy 

ideal of S. �  
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