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Abstract—The main objective of this paper is to provide an 

efficient tool for delineating brain tumors in three-dimensional 
magnetic resonance images. To achieve this goal, we use basically a 
level-sets approach to delineating three-dimensional brain tumors. 
Then we introduce a compression plan of 3D brain structures based 
for the meshes simplification, adapted for time to the specific needs 
of the telemedicine and to the capacities restricted by network 
communication. We present here the main stages of our system, and 
preliminary results which are very encouraging for clinical practice. 
 

Keywords—Medical imaging, level-sets, compression, meshes 
simplification, telemedicine. 

I. INTRODUCTION 

 
EGMENTATION in volumetric images is a tool allowing 
a diagnostics automation and as well will assist the expert 

in the qualitative and quantitative analysis. It’s an important 
step in various applications such as visualization, quantitative 
analysis and image-guided surgery.  

In the context of neuro-imaging, 3D segmentation of 
pathology and healthy structures is extremely important for 
surgical planning, qualitative and quantitative analysis such as 
volume measurements. Precise segmentation of pathological 
structures is a difficult task because brain tumors vary greatly 
in size and position, may have overlapping intensities with 
normal tissue and may be space occupying. 

Traditionally, the boundary of a tumor in magnetic 
resonance imaging is usually traced by hand. Then the 
practitioner is confronted with a succession of boundary 
which he mentally stacked up to be made a 3D representation 
of the tumor. This reconstruction is inevitably subjective and 
becomes infeasible when dealing with large data sets, there is 
also an information loss in all the in three-dimensional images 
directions and then the process is time-consuming and very 
difficult. 

Numerous segmentation methods have been developed in 
the past two decades for extraction of organ contours on 
medical images. Low-level segmentation methods, such as 
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pixel-based clustering, region growing, and filter-based edge 
detection, requires additional pre-processing and post-
processing as well as considerable amounts of expert 
intervention or information of the objects of interest [1]. 

Recently, several attempts have been made to apply 
deformable models to brain image analysis. Indeed, 
deformable models refer to a large class of computer vision 
methods and have proved to be a successful segmentation 
technique for a wide range of applications. 

Deformable models, on the other hand, provide an explicit 
representation of the boundary and the shape of the object. 
They combine several desirable features such as inherent 
connectivity and smoothness, which counteract noise and 
boundary irregularities, as well as the ability to incorporate 
knowledge about the object of interest [2, 3, 4]. However, 
parametric deformable must be re-parameterized dynamically 
to faithfully recover the object boundary and that it has 
difficulty dealing with topological adaptation such as splitting 
or merging model parts. Level-sets deformable models [5, 6, 
7], also referred to as geometric deformable models, provide 
an elegant solution to address the primary limitations of 
parametric deformable models. These methods have drawn a 
great deal of attention since their introduction in 1988. 
Advantages of the contour implicit formulation of the 
deformable model over parametric formulation include: no 
parameterization of the contour, topological flexibility, good 
numerical stability and straightforward extension of the 2D 
formulation to n-D. 

We will develop a technique of 3D segmentation of a brain 
tumor by the stacking of 2D boundary. It consists in applying 
to each slice the level-sets method in 2D and to propagate the 
result by taking as initial data the result of the preceding slice. 
It’s the 3D reconstruction from 2D tumor contours using a 
sequence of 2D contours, detected by 2D level-sets method in 
the parallel cross-sectional MRI images. 

The segmentation of volumetric brain MR image supplied 
with the 3D representations of the popular structures, adapted 
to computing post-treatments as the compression and the 
transmission. Seen the enormous quantity of information to be 
managed and stored, the rapid improvement of medical 
instrumentation and patient record management system, and 
seen capacities restricted by communication networks. This 
evolution in the hospital environment which the objective is to 
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insure a better service for the patient and for the health 
professionals places very high demands on the networking 
and digital storage infrastructure of hospitals. In addition to 
having quite stringent requirements on the quality of the 
images displayed to the radiologist, much of the technical 
challenge resides in the necessity of displaying desired images 
as rapidly as possible. In this context a compression process 
adapted for time to the specific needs of the telemedicine and 
to the capacities restricted by network communication is 
necessary, in fact the 3D representation of brain structures 
segmented from the volumetric MR images are the triangular 
meshes, a simplification of these multi-resolution meshes [8, 
9, 10] allows to decrease the size of files while preserving 
geometrical characteristics of these segmented structures. 

II. 3D TUMOR SEGMENTATION USING 2D LEVEL-SETS 
METHOD 

The aim of this step is to extract ”exactly” the tumor region. 
For this reason, we propose to use a deformable model 
algorithm based on level set technique, rely on two central 
embeddings; first the embedding of the interface as the zero 
level-set of a higher dimensional function, and second, the 
embedding (or extension) of the interface’s velocity to this 
higher dimensional level-set function. 

A. Level-sets method: Basic Algorithms 
The level-set method was devised by Osher and Sethian in 

[5, 6] as a simple and versatile method for computing and 
analyzing the motion rely on partial differential equations 
(PDEs) to model deforming isosurfaces. These methods have 
applications in a wide range of fields such as visualization, 
scientific computing, computer graphics, and computer vision. 
Applications in visualization include volume segmentation, 
surface processing, and surface reconstruction. 

Level-sets methods rely on two central embeddings; first 
the embedding of the interface as the zero level set of a higher 
dimensional function, and second, the embedding (or 
extension) of the interface’s velocity to this higher 
dimensional level set function. More precisely, given a 
moving closed hyper surface ( )tΓ , that is, 

[ ) Nℜ→∞Γ ,0: , propagating with a speed F in its normal 
direction, we wish to produce an Eulerian formulation for the 
motion of the hyper surface propagating along its normal 
direction with speed F , where F  can be a function of various 
arguments, including the curvature, normal direction, etc. Let 

d±  be the signed distance to the interface. If this 
propagating interface is embedded as the zero level set of a 
higher dimensional functionϕ , that is, let ( )0, =tXϕ , 
where NX ℜ∈ is defined by: 

( ) )1(0, dtX ±==ϕ
then an initial value partial differential equation can be 
obtained for the evolution of ϕ , namely 

)2(0 M=∇+ ϕϕ Ft

( ) )3(0, giventX =ϕ

This is the implicit formulation of front propagation given in 
[5]. As discussed in [6, 7]. 

There are certain advantages associated with this 
formulation. First, it is unchanged in higher dimensions; that 
is, for surfaces propagating in three dimensions and higher. 
Second, topological changes in the evolving front )(tΓ  are 
handled naturally; the position of the front at time t is given by 
the zero level-set ( )0,,, =tzyxϕ of the evolving level set 
function. This set need not be connected, and can break and 
merge as t  advances. Third, terms in the speed function F   
involving geometric quantities such as the normal vector n 
and the curvature k  may be easily approximated through the 
use of derivative operators applied to the level set function, 
that is, 
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Fourth, the upwind finite difference technology for 
hyperbolic conservation laws may be used to approximate the 
gradient operators. 

B. Level-sets method: Stop function 
The original formulation of speed function is, 

( )( ) ( )6kvIgF ε+=
 

v: is a constant term which makes the surface contract or 
expand. 

k : is the mean curvature of the evolving front. 
ε : is the entropy condition expressing the importance of 

regularization. 
( )Ig : is the data consistency term which ensures the 

propagating front will stop in the vicinity of the desired object 
boundaries. ( )Ig  Represents a “stop function” depend on the 
contents of the image and makes it possible to stop the 
evolution of the curve when this one manages on the borders 
of the object to detect.   

( ) ( )7
ˆ1

1
p

I
Ig

∇+
=

 
Originally Î being the image settled by a Gaussian operator 

and p = 1 or 2. The values of ( )Ig  are near to 0 in the regions 
where the gradient is high and near to 1 in the regions of 
relatively constant intensity. 

In some image slices, the boundary feature of the tumor is 
not salient enough and the image gradient information is 
weak. It usually causes the “boundary leaking” problem when 
we apply the level set method to detect the 3D tumor surface. 

The problem of the Gaussian filtering is the smoothing of 
the entire image, destroys and moves edges. 
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Fig. 1 Gaussian filters: destroys and moves edges. (a) Original 

image, (b) image smoothed by a Gaussian filter 

We chosen then a filter which preserve the outline and 
limits the operation of smoothing to remedy the leaking 
problem, it is a non linear diffusion filter, proposed by P. 
Perona and J. Malik [19]. The action of such filter is given by 
the following not linear equation: 

* ( )( ) ( )8),(.,),( tXItXcdiv
t

tXI
∇=

∂
∂  

),( tXc , is called conduction coefficient. 

 
Fig. 2 Non linear diffusion filters: Preserves edges. (a) Original 

image, (b) image smoothed by an non linear diffusion filter 

The following illustrations, shows the variation of the stop 
function given by the equation ( 7 ), where we apply a 
gaussien filter (a) and where we apply an anisotropique 
filtering (b). 

 

 
Fig. 3 Stop function g(I). (a) Using Gaussian filter, (b) using an 

anisotropic diffusion filter 

C. 3D tumor reconstruction using 2D deformation 
In this part, we start from small circle through the border of 

the brain tumor initialized in only one slice.  Then, the level 
sets model evolves according to related boundaries 
information in the image in order to plate itself on the tumor 
boundary. The result is propagated towards the other slices by 
taking as initial data the result of the preceding slice.  

 
Fig. 4 Result of 2D segmentation: (a) slice 80, (b) slice 75, (c) slice 

70, (d) slice 60 

 
Fig. 5 3D brain tumor surface visualization stacking of 2D 

boundaries 
 
The first approach used, is the 3D reconstruction from 2D 

contours using a sequence of 2D contours, detected by 2D 
level-sets method in the parallel cross-sectional MRI images. 
This method is simplest that one can make.  It makes it 
possible to use active contours in the field 2D method which 
showed its robustness. 

In this paper, only MRI data will be considered.  Each MRI 
image dataset is 256 x 256 x 124. In addition, each pixel is 
represented by 8 bits. Different brain tumor cases are 
considered. Those data sets are provided from the new 
medical image and signal database, Medical Database for the 
Evaluation of Image and Signal processing (MeDEISA) [10]. 

III. 3D SURFACE MESHES SIMPLIFICATION 
The segmentation of volumetric brain MR image supplied 

with the 3D representations of the popular structures, adapted 
to computing post-treatments as the compression and the 
transmission. The quantity of information in a volumetric MR 
images can be enormously reduced by modeling this volume 
by a set of surfaces representing border enter the various 
objects in this 3D image [11]. In fact the size of volumetric 
volume MR images 256*256*124 voxels can be remembered 
by a set for vertex ant faces represents the surface meshes of 
3D brain tumor. Surface mesh simplification [12,13,14] is the 
process of reducing the number of faces used in the surface 
while keeping the overall shape, volume and boundaries 
preserved as much as possible. 

The simplification meshes algorithm which we used in this 
work it is the halfedge collapse method [15,16]. Roughly 
speaking, the method consists of iteratively replacing an edge 
with a single vertex, removing 2 triangles per collapse. Given 
an edge 'FE' joining vertices 'F' and 'E', the edge-collapse 
operation replaces 'FE','F' and 'E' for a new vertex 'R', while 
the halfedge-collapse operation pulls 'F' into 'E', dissapearing 
'e' and leaving 'E' in place. In both cases the operation 
removes the edge 'e' along with the 2 triangles adjacent to it. 

Edges are collapsed according to a priority given by a cost 
function [17,18], and the coordinates of the replacing vertex 
are determined by another placement function. The algorithm 
terminates when a stop predicate is met, such as reaching the 
desired number of edges. 
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Fig. 6 Edge collapse principle  

 
The purpose of meshes simplification of the meshing is to 

guarantee a weakest coding cost to accelerate some tasks as 
the 3D graphic reconstruction, the transmission on a 
communication channel by preserving the geometrical 
characteristics of the tumor so that it remains adapted to later 
treatments. 

The simplification process is controlled by the tumor 
geometrical measure of the tumor in the 3D MR images, we 
notice a light variation of the tumor volume, the area of the 
surface, the area of the convex surface as well as a small 
movement of the centre of the meshes gravity center, From a 
compression ratio superior to 50, the variation of these 
geometrical characteristics become unacceptable and the 
meshing tends to lose its original shape. 

 

 
Fig. 7 Exemple of 3D tumor surface meshes simplification, (a) 

original 3D tumor surface meshes (= 6834 vertices 13672 faces), (b) 
49% (3484 vertices 6972 faces), (c) 79% (1433 vertices 2870 faces), 
(d) 87% (749 vertices 1502 faces), (e) 97% (203 vertices 410 faces), 

(f) 98% (134 vertices 272 faces) 

 

 

 
Fig. 8 Influence of the meshes simplification on the geometrical 

characteristics of the tumor and the meshes size 

IV. CONCLUSION  
We have presented a variational method, 3D level-set 

applied to automatic segmentation of brain tumor in MRIs. 
The segmentation of volumetric brain MR image supplied 
with the 3D representations of the popular structures, adapted 
to computing post-treatments as the compression and the 
transmission. We have presented surface simplification; we 
maintain that the topology and sharp surface features of the 
model should be preserved adaptively. The simplification 
meshes algorithm which we used in this work it is the half 
edge collapse method controlled by the tumor geometrical 
measure as meshes area and volume considered an important 
parameter such as, storage, transmission, visualization, and 
quantitative analysis. 
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