
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

360

Index t-SNE: Tracking Dynamics of
High-Dimensional Datasets with Coherent

Embeddings
G. Candel, D. Naccache

Abstract—t-SNE is an embedding method that the data science
community has widely used. It helps two main tasks: to display
results by coloring items according to the item class or feature
value; and for forensic, giving a first overview of the dataset
distribution. Two interesting characteristics of t-SNE are the structure
preservation property and the answer to the crowding problem,
where all neighbors in high dimensional space cannot be represented
correctly in low dimensional space. t-SNE preserves the local
neighborhood, and similar items are nicely spaced by adjusting to
the local density. These two characteristics produce a meaningful
representation, where the cluster area is proportional to its size
in number, and relationships between clusters are materialized by
closeness on the embedding. This algorithm is non-parametric. The
transformation from a high to low dimensional space is described
but not learned. Two initializations of the algorithm would lead to
two different embedding. In a forensic approach, analysts would like
to compare two or more datasets using their embedding. A naive
approach would be to embed all datasets together. However, this
process is costly as the complexity of t-SNE is quadratic, and would
be infeasible for too many datasets. Another approach would be to
learn a parametric model over an embedding built with a subset of
data. While this approach is highly scalable, points could be mapped
at the same exact position, making them indistinguishable. This type
of model would be unable to adapt to new outliers nor concept drift.
This paper presents a methodology to reuse an embedding to create
a new one, where cluster positions are preserved. The optimization
process minimizes two costs, one relative to the embedding shape and
the second relative to the support embedding’ match. The embedding
with the support process can be repeated more than once, with the
newly obtained embedding. The successive embedding can be used
to study the impact of one variable over the dataset distribution or
monitor changes over time. This method has the same complexity as
t-SNE per embedding, and memory requirements are only doubled.
For a dataset of n elements sorted and split into k subsets, the total
embedding complexity would be reduced from O(n2) to O(n2/k),
and the memory requirement from n2 to 2(n/k)2 which enables
computation on recent laptops. The method showed promising results
on a real-world dataset, allowing to observe the birth, evolution
and death of clusters. The proposed approach facilitates identifying
significant trends and changes, which empowers the monitoring high
dimensional datasets’ dynamics.

Keywords—Concept drift, data visualization, dimension reduction,
embedding, monitoring, reusability, t-SNE, unsupervised learning.

I. INTRODUCTION

H IGH dimensional datasets are very rich sources of

information. Because of their wideness, they are difficult

Gaëlle Candel and David Naccache are with the Département
d’informatique de l’ENS, ENS, CNRS, PSL University, Paris (France)
and with Wordline Labs, Paris (France) (e-mail: gaelle.candel@ens.fr,
david.naccache@ens.fr).

to investigate, process, and represent in a simple manner. An

appropriate reduction of width would benefit from:

• Storage cost reduction;

• Computational cost reduction;

• Denoising / Information compression;

• Synthetic data visualization.

For a dataset X ∈ R
n×d0 , with n elements and d0

dimensions, a reduction into Y ∈ R
n×d1 offers a reduction

of the memory footprint of 100(1 − d1

d0
) %, which is

non-negligible for large datasets. For linear algorithms, the

computational cost is reduced by the same factor. The

core information in those wide datasets is hard to identify

because of the large number of features and correlation, and

redundancy. The use of methods that condense the information

enables to obtain a synthetic view of the dataset, which would

benefit post-processing algorithms or data analysts’ work. The

synthetic view can also be used to display results by coloring

items according to their predicted value.

A dimension reduction can be performed following different

approaches:

• Automatic feature selection;

• Human engineered feature;

• Automatic feature extraction;

Automatic feature selection selects some features among

all available according to some characteristics. The feature

importance can be evaluated using Shapley values [1] or

removing redundant features [2]. These approaches are

relatively straightforward to put into practice. Nonetheless,

some information may be lost if the signal is too weak, or

if the number of selected features is too small.

Feature engineering allows shaping human knowledge into

an algorithmic form. This approach is practical when a

minimal amount of data is available, preventing the use of

automatic algorithms. It is necessary in specific cases to

transform human data into processable information. Dates

are a good example: a computer cannot understand directly

that x = [28, 2] and y = [1, 3] represent dates and that

‖x − y‖ = 1 or 2} days, depending on this is a leap

year or not. Apart from this example with an exact answer,

there is no guarantee if the transformation would help or

prevent later algorithms from performing good predictions.

As these features are not learned from data, they are likely

to be stable, i.e., not tricked by outliers which could perturb

the learning. They offer some form of explainability, as the

engineer can describe the meaning of the transformation in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

361

the human language. In the absence of previous knowledge,

their development is costly in operating time, and on a large

dataset, an expert may miss some essential features.

Automatic feature extraction replaces handcrafted features

with algorithm-learned features. This is a broad research

area, with statistical compression methods such as Principal

Component Analysis [3], or methods based on deep neural

networks, like autoencoders [4], [5].

Automatic feature extraction can be decomposed into two

categories, based on reusability on new data:

• Parametric methods;

• Non-parametric methods.

Parametric methods, such as PCA [3], Self-Organizing

Maps [6], learn a mapping function f : X → Y , which

minimize a quantity of the form argf minCost(X, f(X)).
When learned, the function f can be reused on any new

input X ′. The inference time of most of these methods

is linear, such as f(X) = [f(x1), f(x2), ..., f(xn)]. For a

large input X , the computation can be distributed on several

machines, which enhance scalability to large datasets. In

contrast, non-parametric methods minimize a specific quantity

minY Cost(X,Y) directly by optimizing Y ’s values. No

function is learned, which prevents the reusability of a previous

computation for new data. This is the case of ISOMAP [7],

UMAP [8] or t-SNE [9]. Despite the non-reusability, the two

most recent methods, t-SNE and UMAP, have been extensively

used by the machine learning community. Those methods have

been successful at representing high dimensional datasets, by

adapting to disparate scaling and non-homogeneous densities

while letting appear clustering structures.

The strength of t-SNE comes from its ability to deal

with heterogeneous scaling and the crowding problem. In

high dimensional space, an item may have many neighbors

around, all distant from each other. By reducing the number of

dimensions, it is impossible to preserve the distance between

an item and its neighbors and between the neighbors. If

distance to the item is preserved, neighbours’ distance will

decrease, making them closer than in high dimensional space.

This corresponds to the crowding problem.

Instead of preserving all the distances, t-SNE preserves it

locally. The algorithm adapts for each item to the local density,

taking into account a small group of neighbors. This local

adaptation makes the power of t-SNE, as the points in a very

dense cluster are separated from each other. Consequently, the

number of items in a cluster is proportional to its visual area

on the embedding, which helps an analyst look at the dataset

composition. The other impact of the local adaptation is on

the ability to deal with heterogeneous data scaling. All items

fit together on the same visual space regardless their initial

distance to the dataset’s mean. These characteristics lead to

embeddings with excellent visual qualities.

Despite the high quality of the obtained embeddings, t-SNE

is a non-parametric method, where no function is learned.

The outcome of running t-SNE twice with the same input

X leads to two different embeddings Y (0) and Y (1), with

no equivalence between the positions. This is due to the

initialization, which starts with randomly generated vectors.

The initialisation process can be controlled to improve

determinism. Many works such as [10] proposed to initialize

the embedding with PCA coefficients. Starting with these

positions improves the repeatability, but does not ensure the

regeneration of large scale structures for different datasets, as

t-SNE preserves local neighborhood only. The work of [10]

proposes a method to create large scale structures using two

t-SNE steps, which enables to obtain embeddings with large

and low scale similarities. The algorithm starts with the PCA

coefficients as initial item positions, followed by a t-SNE step

adjusted to take into account far-range neighborhood. These

positions are reused by another t-SNE step, taking into account

small-range neighborhood, letting appear a finer structure.

This work was successful for visual analytics, allowing the

preservation of relative cluster positions over multiple datasets.

The embeddings are visually similar, but the preservation of

cluster positions is not exact, preventing the use of the same

algorithm on all embeddings.

A naive approach to compare two datasets using their

embedding is to compute the joint embedding over the

consolidated dataset X ′′ = [X,X ′]. There are two limitations

to this approach. The first one concerns the computational

cost, as the complexity of t-SNE is in O(n2) for the worst

case. The work of [11] proposes an approximation of the

different forces, claiming a linear complexity. Nonetheless,

the second limitation concerns the data availability. If the

two datasets are available now, but a third would arrive later,

the embedding corresponding to [X(0), X(1)] would not share

spatial correspondences with the embedding obtained with

[X(1), X(2)].
To obtain consistency in the item positioning, several works

[12], [13] proposed the use of deep neural networks to mimic

the behavior of t-SNE. As with any trained algorithm with no

memory nor update mechanism, the inference results is purely

deterministic. The algorithm would be able to map correctly

a dataset with a distribution similar to the training dataset.

However, for a dataset with a different distribution, the model

would not adapt to the new density, leading to overcrowded

and/or depleted areas. The neural network would not be able

to adapt to concept drift, nor as new outliers as these models’

generalizability is limited to their training set.

Instead of learning how to make an embedding, LION

t-SNE [14] proposed an answer to where new points should
be put, taking into account the points already present and

the empty areas left. New points are positioned nearby their

nearest neighbors without moving existing items from their

location. Items that do not have relevant neighbors in the

input space are positioned on an empty area of the embedding,

filled later with more relevant neighbors. This approach allows

adding a few points on the previous embedding, keeping the

possible visual quality of the embedding. While this work

deals correctly with item’s addition, normal or outlier, it does

not deal with update nor deletion. Last point concerns the

scalability. The addition of a few points is likely to preserve

the general aspect of the embedding. However, the shape of

the resulting embedding after a massive addition of items is

unknown.

Last work to mention is Dynamic t-SNE [15] which updates

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

362

the embedding Y (t) into Y (t+1) after a change from X(t) into

X(t+1). It assumes that there is a one-to-one correspondence

between items of X(t) and X(t+1). This setup corresponds to

a monitoring situation, where the data coming from a fixed

number of sensors arrives at each time step. To compute

Y (t+1), dt-SNE starts with the previous embedding positions

Y (t), and tries to minimize the cost defined by t-SNE relatively

to X(t+1). A penalty is added on the displacement of Y (t+1)

from the initial position, which enables to keep the embedding

coherent over multiple time steps. While this work addresses

the updatability, as no items can be added nor deleted,

the usability is restricted to particular use-cases, such as

multidimensional time series.

In this paper, we abort the problem of the reusability of

a t-SNE embedding. The proposed approach is inspired by

dt-SNE, concerning the idea of using the previous embedding

as a support to the new embedding. The support embedding is

not used to initialize the new item positions but to guide them

towards neighbors location. Compared to dt-SNE, the scope

is broadened because there is no constraint on the integrated

elements, nor on their number or distribution. By enlarging to

the addition, updating and deleting items, our method can be

used in many more real-world monitoring situations, such as

when some sensors are added to the system or removed due to

failure. The approach is not limited to the temporal dataset, but

to any index variable, a discrete or continuous variable, such

as temperature or speed. Dataset can be sorted according to

this variable, and successive embeddings can be issued to track

the impact of the index variable over the data distribution. In

other words, it allows to obtain embedding conditional to the

index variable of interest.nThe method is called index t-SNE,

abbreviated it-SNE, for this reason.

In the first section, the main equations governing t-SNE

optimization process are introduced. This section is followed

by the description of it-SNE, reusing part of the initial t-SNE

scheme. Then, the methods section describe the different

datasets and evaluation metrics, followed by the experimental

results. Last, this article finishes with a discussion followed

by its conclusion.

II. t-SNE FORMULATION

t-SNE [9] is a structure-preserving embedding algorithm

trying to preserve the local neighborhood of items in a low

dimensional space. Given a dataset X ∈ R
(n×d), of n items

lying in a d dimensional space, the goal is to generate its

corresponding embedding Y ∈ R
(n×de):

Y ← t-SNE(X; de, perp)

where de is the number of embedding dimensions, often set

to 2, and perp is the perplexity parameter. Two items i and j
neighbors in X must be neighbors in Y . The definition of

neighbors depends of two things: the local density around

an item, and the user-defined perplexity parameter which

represents the average number of neighbors to consider. Rather

than reasoning in terms of distances, the algorithm uses

probabilities, computed from pairwise distances, to optimize

Y .

A. Interaction Probability

t-SNE tries to adapt the embedding vector Y to X
using their respective probability matrices P and Q, both of

dimension n × n. These probabilities represent the degree of

relatedness of two items in their respective space. A large

probability corresponds to a high proximity, while a smaller

to a large distance. The input and output probability matrices

are computed differently to create a small asymmetry.

1) Input Probability Matrix: The conditional probability of

item j with respect to i is defined as:

pj|i =
1

Zi
exp

(
−‖xi − xj‖2

2σ2
i

)
(1)

By convention, pi|i = 0 as an item does not interact with

itself, and Zi =
∑

j �=i exp
(
−‖xi−xj‖2

2σ2
i

)
is the normalization

constant of item i, such as
∑

j pj|i = 1.

The standard deviation parameter σi adapts the kernel range

to the local density around item i. The optimal value of

σi is obtained by binary search to match the perplexity.

The perplexity is a user-defined parameter that represents the

average number of neighbors of an item, defined formally as:

Perp(Pi) = 2H(Pi)

where H(Pi) is the Shannon entropy calculated as:

H(Pi) = −
∑
j �=i

pj|i log2(pj|i)

The joint probability between i and j is defined as pi,j =
pi|j+pj|i

2n . These equations enable the computation of the

symmetric probability matrix P given a particular dataset X
and a perplexity target.

2) Output Probability Matrix: The output probability

matrix Q is obtained in a similar manner using the

embedding vector Y . As the goal is to obtain homogeneous

distances between neighbors, there is no adaptation to local

neighborhood. Another difference concerns the kernel choice.

Instead of an exponential kernel, a t-student kernel with one

degree of freedom is used. This kernel asymmetry allows

modifying the long-range interactions, which leads to repulsive

forces between non-neighbors items.

The joint probability between item i and j is calculated as:

qi,j =
1

V
(1 + ‖yi − yj‖2)−1 (2)

with qi,i = 0 and V =
∑

k �=�(1 + ‖yk − y�‖2)−1 the global

normalization constant, which lead to
∑

i,j qi,j = 1.

B. Cost Minimization

The dissimilarity between the two probability matrices P
and Q is measured using the Kullback-Leibler divergence:

KL(P‖Q) =
∑
i

Ci =
∑
i

∑
j �=i

pi,j log
pi,j
qi,j

(3)

where Ci the cost associated to item i.
By deriving (3), a simple form of the gradient is obtained:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

363

∂Ci

∂yi
= 4

∑
j

(pi,j − qi,j)
yi − yj

1 + ‖yi − yj‖2 (4)

The algorithm uses the gradient descent approach to

minimize the cost by updating the initial Y (0) solution:

Y (t) = Y (t− 1)− α(t) ∂C∂Y (t)
+η(t) (Y (t− 1)− Y (t− 2))

(5)

with α(t) the learning rate, adjusted over time, and η(t) the

momentum rate. The matrix Q is recomputed at each update

step according to the newly obtained Y (t), while the matrix P
is not as the input vector is left unchanged. The computation

of Q at each step is the most costly operation, which leads to

a complexity in O(n2) without optimization.

In the original paper [9], many optimization tricks are used.

For instance, early exaggeration replaces temporary (pi,j −
qi,j) by (kpi,j − qi,j), where k > 1. This trick amplifies the

attraction forces between nearest neighbors, which fasten the

formation of separated clusters. After some steps, the factor

is set back to k = 1 which lets nearest neighbors to separate

from each others.

Another trick is to add Gaussian noise of small amplitude

to the gradient to get out of local minima at start.

The last point to be made is the α(t) learning rate. This rate

is updated at each step to boost it in the right directions and

slow it down in uncertain situations.

III. INDEXED t-SNE

The initial formulation of t-SNE leads to a different

embedding for each new initialization. Instead of learning a

new embedding from scratch, it-SNE takes advantage of prior

embedding to optimize the new embedding.

Given a support dataset X(0) ∈ R
n0×d of n0 items and

its corresponding embedding Y (0) ∈ R
n0×de , the goal is

to generate an embedding Y (1) ∈ R
n1×de corresponding to

X(1) ∈ R
n1×d of n1 items.

Y (1) ← it-SNE(X(1), X(0), Y (0); perp)

Two items i and j neighbors in the input space must be

neighbors in the embedding space, regardeless of their origin

dataset.

A. Cost

To achieve this goal, it-SNE minimizes two independent

costs:

• the intra cost, C(1), defined as in t-SNE using

(X(1), Y (1));
• the inter cost, C(0,1), corresponding to joint interactions

between (X(0), Y (0)) and (X(1), Y (1)).

The total cost to minimize is:

C
(1)
tot = C(1) + C(0,1) (6)

B. Interaction Probability

Similar to t-SNE, the probability matrices are defined to

represent items relationships. P (0,1) denotes the probability

matrix between input data X(0) and X(1), and Q(0,1) for their

respective embeddings Y (0) and Y (1).

1) Input Interaction: For two items xi ∈ X(0) and xj ∈
X(1), the input probability is defined as:

p
(0,1)
i|j =

1

Z ′
j

exp

(
−‖xi − xj‖2

2σ2
j

)
(7)

where σj corresponds to the optimal parameter for j obtained

with t-SNE on X(1), and Z ′
j =

∑
i exp

(
−‖xi−xj‖2

2σ2
j

)
is the

normalization constant to obtain
∑

i p
(0,1)
i|j = 1.

The joint probability between i and j is defined as:

p
(0,1)
i,j = p

(1,0)
j,i =

1

2

⎛
⎝p

(0,1)
i|j
n1

+
p
(1,0)
j|i
n0

⎞
⎠ (8)

The symmetrization allows taking into account the density

of the two datasets on a given location. Additionally, the

normalization allows to equalize the dataset influence. If one

dataset is larger than the other, it would contribute more are

the total forces from each of its items would be larger than for

the smaller dataset. The normalization by dataset size allow

to obtain equivalent contribution.

2) Output Interaction Probabilities: The goal of it-SNE is

not to place new items Y (1) on existing holes of Y (0), but

to have Y (1) on a parallel layer of Y (0). To relax forces,

and to take into account embedding separation, a penalty

factor ε is introduced to artificialy separate points belonging

to different embeddings. It could be seen as new embedding

dimension de + 1, such as y
(0)
i = [y

(0)
i,1 , y

(0)
i,2 , ..., y

(0)
i,de

, 0] and

y
(1)
j = [y

(1)
j,1 , y

(1)
j,2 , ..., y

(1)
j,de

, ε]. The distance between two items

is then ‖y(0)
i − y

(1)
j ‖ = ‖yi − yj‖+ ε2.

The kernel used for the definition of output probabilities is

kept unchanged, up to the addition of ε:

q
(0,1)
i,j =

1

V ′
(
1 + ‖yi − yj‖2 + ε2

)−1
(9)

where V ′ =
∑

i,j

(
1 + ‖yi − yj‖2 + ε2

)−1
is the

normalization constant, which ensures
∑

i,j q
(0,1)
i,j = 1.

3) Cost Minimization: The modification of t-SNE

algorithm has a limited impact on the cost derivative

formulation. The only change impacts the strength of the

gradient by the addition of the term ε2:

∂C(0,1)

∂y
(1)
i

= 4
∑
j

(p
(0,1)
i,j − q

(0,1)
i,j)

yj − yi

1 + ‖yi − yj‖2 + ε2
(10)

The initial solution Y (1)(0) is optimized following equation

(5), replacing ∂C
∂Y by ∂C(1)

∂Y (1) +
∂C(0,1)

∂Y (1) .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

364

IV. EXPERIMENTAL SETUP

A. Algorithm Parametrization

For all experiments, the target perplexity is set to 30. The

initial vector of Y , used to start the optimization process is

drawn from a Gaussian distribution N (0, σ2) with σ = 10−4.

At each iteration step, a gaussian noise of standard deviation

σ = 10−4 is added to the gradient.

The initial learning rate α(0) = 10 is adapted at each

timestep for each item i and dimension k according to the

similarity between the gradient and the previous displacement

direction δi,k(t) = − ∂C
∂yi,k

(t).(yi,k(t− 1)− yi,k(t− 2)):

αi,k(t) =

{
αi,k(t− 1) + 0.2 if δi,k(t) > 0
αi,k(t− 1)× 0.8 else.

The momentum rate η(t) is adapted over learning, such as

η(t) = 0.5 if t < 250 else 0.8.

For t-SNE, the early exaggeration trick is used for the 100
first steps, with an exaggeration factor of 2. For it-SNE, the

early exaggeration was disabled.

The number of training steps for a t-SNE embedding and

it-SNE is fixed to 300 and 200 respectively. Unless specified,

ε = 1.

t-SNE and it-SNE were implemented in Python, using

NumPy library [16].

B. Datasets

We propose to illustrate the results it-SNE over two types

of datasets:

• A synthetic dataset, where all parameters can be

controlled at ease;

• A real-world dataset to look at its capabilities on

unknown distributions.

1) High Dimensional Gaussians: High dimensional

Gaussians are good study candidates, as all dimension are

equivalent, preventing the use of renormalization methods.

The dataset was constructed inspired from the protocol

described in [15].

A dataset of 100 dimensions is created by generating

Gaussian clusters. 10 Gaussian center positions {μμμg}g=1:10

are generated uniformly at random in μμμg ∈ [−0.5, 0.5]100. For

each Gaussian g, 100 items are sampled from the multivariate

normal distribution of mean μμμg and standard deviation σ. This

process leads to a dataset of 1000 items.

In the paper Dynamic t-SNE [15], the authors proposed to

build a temporal dataset made of shrinking Gaussians. For each

item x associated with the Gaussian g, the distance between

the item and the center is reduced by 10 % at each timestep,

such as ‖x(t)−μμμg‖ = 0.9t‖x(0)−μμμg‖. Mechanically, σ(t) is

reduced in the same proportion, such as σ(t) = 0.9tσ(0). For

this experiment, σ(0) = 1.0. The shrinking process is followed

for 9 steps, which leads to σ(10) ≈ 0.4.

By changing the time direction, a similar experiment with

growing Gaussians is generated, starting with σ(0) = 0.4, and

growing at the rate of σ(t) = 0.9−tσ(0).
While these two introductive experiments keep the total

number of point stable and homogeneous density for each

Gaussian, we propose to build a temporal dataset where

heterogeneity appears over time. For each Gaussian g, an

expansion rate is sampled uniformly at random from rg ∈
[0.5, 1.5], where 1. leads to an invariance of the element

number. In contrast, 0.5 leads to a 50 % step reduction in the

number of elements. Each Gaussian starts with ng(0) = 100
points. The number of points for Gaussian g at step t is

ng(t) = �n(0)rtg�, but the standard deviation is kept stable

with σ = 0.4. A temporal dataset is generated for 4 successive

update steps.

2) Citation Graphs: A citation graph G = (V,E) is a

directed acyclic graph (DAG). V represents the a set of

documents, like scientific papers, patents, law articles, blog

posts, which are supposedly immutable. E is the set of directed

edges, with e = (a, b) ∈ E meaning that the document a
is referring to document b, implicitly but assuming that a is

newer than b.
Graphs are data structure that are difficult to represent in 2D,

because they of their sparsity and the distribution in power-law

of their node degree, which leads to a small number of strongly

connected nodes, and a large number of weakly connected

nodes. Nonetheless, citation graphs, as well as other real-world

graphs, organise into local communities which are interesting

to study.

We propose to study the evolution of research communities

over time by embedding the documents published each year.

The embedding obtained for year t is reused for year t +
1, which would be used in turn to build the following

embedding. The DBLP dataset version 12 [17] was used for

this purpose. This dataset corresponds to the citation graph

of scientific papers around the topic of computer science. It

contains 4.894.081 papers and 45.564.149 citing relationships.

Metadata are available for the majority of the documents,

providing information such as title, publication date, abstract,

authors information, conference or journal reference, reference

links, and keywords. Keywords also called field of study, are

automatically extracted according to the method described in

[18].

a) Graph preprocessing: A preprocessing removes all

existing cycles, as some papers are updated after the official

publication date, adding a few citations. This phenomenon

concerns a minority of papers, but creates undesirable loops.

The cycles are removed using a DFS approach, removing

any edges accessed twice by a DFS branch. The main

connected component is then kept, removing all papers with

no bibliography or belonging to an isolated community.

b) Node Sampling: The citation graph considered is too

large to be processed at once. We took advantage of the

keywords to select a subset of papers related to a particular

topic. We selected all documents related to cryptography
and related topics, which corresponded to around 100.000

documents published between 1953 and 2020. The documents

with less than one reference and less than one citation were

removed, which left 70.000 documents published between

1953 and 2020, with the majority published between 2005

and later.

c) Extracting Distance Matrix from a Citation Graph:
A graph cannot be converted to tabular data used by t-SNE.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

365

Nonetheless, t-SNE and it-SNE use the distance between

items and do not focus on particular features. Even if it is

not possible to measure the euclidean distance between nodes

on a graph, a distance matrix can be obtained.

The distance between nodes is not a great distance measure.

The possible integer values are coarse measures, and the

distance is not correctly defined for all pairs in a DAG. Plus,

a document may quote unrelated documents from another

discipline for illustrating its argumentation with other scientific

views. The node could be at distance 2 of many papers on a

completely unrelated field, just because of a single example.

A way to measure the document similarity is through

bibliographic coupling [19]. Two documents sharing some

of their references are coupled, even if there is no direct

path from one to the other in the DAG. The strength of the

coupling depends on the overlap size. As the graph is sparse,

we extend the bibliographic coupling to indirect reference until

distance 3. This strategy reduces the sparsity and improves the

sensibility of the coupling.

The coupling strength is measured using the Jaccard

similarity measure. For two documents, a and b, with

respective reference sets A and B, the similarity between these

two documents is defined as:

Sim(a, b) =
|A ∩B|
|A ∪B| (11)

A similarity is a value s ∈ [0, 1], while a distance is a

value d ∈ R
+. A distance close to 0 is equivalent to a

similarity of 1, while a large distance to a similarity close to 0.

Because the similarity behavior is the opposite of the one of a

distance, a form of distance can be obtained by transforming

the similarity:

D(a, b) =
1

Sim(a, b) + ξ
− 1

1 + ξ
(12)

where ξ = 10−5 is a small constant, which avoids division by

zero and limit the maximal distance to 105. Using (11) and

(12), the citation graph can be appropriately transformed for

the embedding algorithms.

C. Metrics

1) Cost: The configuration of the embedding is evaluated

in terms of cost, which is the quantity minimized by t-SNE:

∑
i �=j

pi,j log
pi,j
qi,j

where P and Q correspond to the intra-probability matrices

without considering the interaction with the previous

embedding.

2) Distortion: For an experiment where the items in

X(0) ≈ X(1), a way to measure how well it-SNE places the

point is to measure the distance between the initial and new

position Y (0) and Y (1) and new position Y (1).

Err(Y (0), Y (1)) =
∑
i

|y(0)
i − y

(1)
i |

V. EXPERIMENTAL RESULTS

A. Evolution of Gaussians

a) Shrinking Gaussians: This experiment reproduces the

protocol proposed in [15], were points are progressively

attracted toward their Gaussian center of reference. The

initial embedding Y (0) corresponding to X(0) is obtained

with t-SNE, while all following embedding Y (t) for t ≥
1 are obtained with it-SNE using as a support the pair

(X(t−1), Y (t−1)).
Fig. 1 shows the result with it-SNE, which transforms

undistinguishable groups into well-defined groups. Our

approach works as well as dt-SNE, but while dt-SNE uses the

Y (t−1) position to initialize Y (t), it-SNE restarts from random

vectors. This difference frees our model from restrictions on

the size and content of the dataset. This experiment was

performed on freshly generated points sampled at each time

step, leading to the same results as those presented in Fig. 1.

b) Growing Gaussians: By reversing time direction, we

get another set of experiments. The dataset starts with 10
Gaussians with σ(0) = 0.4, progressively increased to σ(9) ≈
1.0

The results are represented on Fig. 2. This task is easier than

the previous, as the first embedding starts with well-separated

clusters. The next embedding support is of higher quality than

in the previous experiment where the variance was larger. Even

after moving to a noisier dataset (the last plot of growing
Gaussians has almost the same variance as the first plot

of shrinking Gaussians), the separation between items of

different clusters is preserved even if clusters are not spaced

from each other. A support embedding of good quality helps

to guide items belonging to a noisy dataset, building a better

embedding.

c) Change in Density: The last visual result to present

with Gaussians focuses on density changes with a fixed σ. The

number of samples per Gaussian changes at each step. For

Gaussian g at step t, the number of items generated around

μμμg is calculated as ng(t) = �n0r
t
g�.

Fig. 3 illustrates the result of this process. At the start,

all clusters have the same size and density and are spaced

equally from each other. As time passes, some of the Gaussians

grow in size, while others shrink. The area used by shrinking

Gaussians decreases while growing Gaussians expand over the

space available. The cluster positions are preserved despite the

change of density unless too few items are present to allow

the cluster aggregation.

B. Influence of ε

In this subsection, we discuss the impact of ε on the applied

forces. For simplicity of the notation, the elements pi,j and

qi,j correspond to p
(0,1)
i,j and q

(0,1)
i,j , with i an element of the

support dataset (0) while j an element of the dataset to embed

(1). The same simplification is applied to y
(0)
i and y

(1)
j .

1) Forces: The factor ε has an impact on Q and the

gradient. The strength of the gradient is reduced, as ε plays in(
1 + ‖yi − yj‖+ ε2

)−1
. As ε grows, the forces coming from

the support embedding vanish.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

366

Fig. 1 Shrinking Gaussians. From left to right, steps 1, 3, 5, 7 and 9 are represented. Points are colored according to their Gaussian center of reference.
ε = 1.0

Fig. 2 Growing Gaussians. From left to right, steps 1, 3, 5, 7 and 9 are represented. Points are colored according to their Gaussian center of reference. The
penalty factor is set to ε = 1.0

Fig. 3 Evolving Gaussians. 10 Gaussians of various size with σ = 0.4. From left to right, time steps 0 to 4 are displayed. The penalty parameter is set to
ε = 1.0. Points are colored according to their Gaussian center of reference

The ε factor has an impact on the influence of items

by changing the numerator and denominator of Q. When ε

increases, the numerator
(
1 + ‖yi − yj‖+ ε2

)−1
decreases

for all item pairs. This value decays faster for items i and

j that are close to each other than those which are not. The

denominator of Q in (9), V ′ =
∑

i,j

(
1 + ‖yi − yj‖+ ε2

)−1

decreases when ε increases. As both numerator and

denominator of Q decrease, the effective variation depends on

the item proximity. Q increases for a pair of distant items and

decreases for items that are close. The growth of ε reduces the

variance, converging to limε→∞ V(Q) = 0, and homogenizes

the value of qi,j to limε→∞ qi,j =
1

n0n1
.

Fig. 4 illustrates the evolution of Q values with ε, using the

dataset with 10 Gaussians. For the low value of ε, only items

belonging to the same Gaussian interact together (i.e., 10% of

the points). As ε grows, the weights of the nearest neighbors

decrease to the profit of more distant neighbors.

Because of the kernel asymmetry between P and Q, the

reduction of variance and the convergence to the mean of Q
leads to two different behaviors, depending on the closeness

of two items. The items are divided into two classes based on

the value of pj,i. The closer neighbors with pj,i >
1

n0n1
are

considered as the nearest neighbors while the other distant

Fig. 4 Percentile values of the qi,j for different values of ε. Colors are
linear with the value of Q: dark colors correspond to value close to 0 while

bright color to high value. The color saturates in yellow at 3n−2

neighbors. For nearest neighbors, the artificial distancing

created by ε lowers the output probability q > qε, for

qε = q(ε > 0) and q = q(ε = 0). P and Q’s difference

is p − qε > p − q is then larger, which leads to larger

attractive forces from the close neighborhood. The opposite

effect happens for distant neighbors where q < qε, which leads

to p− q > p− qε, generating repulsive forces.

To summarize, on the one hand, the forces are globally

lowered as ε impacts the gradient, and on the other hand, the

discrimination between nearest and distant neighbors grows as

ε amplifies the asymmetry.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

367

Fig. 5 Mapping of Gaussians with standard deviation σ = 0.4. The
embedding Y (0) is colored in light blue on each plot, while items of Y (1)

are colored according to their cluster of reference. Left: ε = 1, right: ε = 25

Fig. 6 Evolution of the embedding error Err(Y (0), Y (1)) with ε using 10
Gaussians with standard deviation σ = 0.4

2) Displacement from Origin: A way to study the two

contributions can be done by looking at the ability of it-SNE

to recover the exact embedding positions. For a dataset X(0),

first is computed Y (0) with:

Y (0) ← t-SNE(X(0))

followed by:

Y (1) ← it-SNE(X(0), X(0), Y (0))

Fig. 5 shows the cluster conformation for two different ε.
The clusters are correctly matched, both in classes and in

positions for ε = 1, as Y (1) masks Y (0). However, for ε = 25,

while the cluster classes are correctly matched, they are distant

from the original position.

To study the transition between the two conformations, we

look at the distortion Err(Y (0), Y (1)), which measures the

distance between the initial and final position.

Fig. 6 shows the impact of an increase of ε over the item

locations. For low ε, the error is almost 0. The average distance

error for ε = 0 is 0.204, while the average distance to the

first nearest neighbor is 0.218, for an embedding of diameter

32.1. With increasing values of ε, the distances between initial

and final positions grow. The right part of Fig. 5 illustrates

the situation. The repulsive forces between distant neighbors

are stronger than the attraction of the nearest neighbors.

This pushes the clusters even further away from each other,

increasing the distance from the initial position. The maximal

Fig. 7 Evolution of Kullback-Leibler cost with increasing ε. Gaussians with
standard deviation σ = 0.4. The dashed line corresponds to the cost of

embedding Y (0) obtained with the regular t-SNE

distortion is reached around ε = 25, a value of the order of

the embedding diameter.

After this maximum, the distortion error decreases to

stabilize at a value of 2.6. Compared to the diameter of one

cluster presented in 5, the value is relatively similar, around

2.88. The clusters overlap, but the forces are not strong enough

to accurately bring them to their exact location.

3) Cost: it-SNE tries to minimize two costs at the same

time. They might not be compatible, with opposite gradient

directions. The intra cost allows assessing the embedding

quality to see if the embedding could reach a correct

minimum, or if the inter forces constrained the embedding

to a non-optimal state.

Fig. 7 presents the results for the same conformations as in

Fig. 6. The cost is slightly higher to start with, but it decreases

as ε increases to arrive at a local cost minimum. This local

minimum corresponds to the distortion maxima of Fig. 6. The

conformation ε = 25 is a more stable configuration than the

initial one. For larger values, the forces’ strength decrease,

but stay below the baseline cost, corresponding to the support

configuration. It is to note that the cost difference between the

lowest and highest cost value in Fig. 7 is relatively small. All

conformations are relatively good, some a little bit more than

others.

4) Convergence Speed: In our protocol, the number of

training step was fixed to control the computational time. For a

support embedding of n0 items and a new dataset to embed of

n1 items, the t-SNE cost is proportional to n2
1, while the cost

for it-SNE is proportional to n2
1 + n0n1. In our experiments

n0 = n1 = 1000 which means that the number of operations

performed by it-SNE is twice the number of t-SNE.

Fig. 8 shows the cost evolution for several values of ε.
All curves start with a plateau, which corresponds to when

the learning rate is not boosted enough to lead to significant

changes per steps. The lower ε is, the shorter the time spent

on the plateau is. A decay part follows the plateau, which

smoothly slowed down until convergence.

The dotted orange line allows comparing t-SNE with

it-SNE on the number of computational operations. t-SNE

is faster than it-SNE, but the difference between the two is

not very large.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

368

Fig. 8 Evolution of the Kullback-Leibler cost over training time, with 10
Gaussians of standard deviation σ = 0.4. The yellow to dark lines
correspond to it-SNE for several value of ε The blue dashed line

corresponds to the cost evolution for t-SNE. The dotted line corresponds to
baseline with t-SNE, speeded by a factor 2

Fig. 9 Citation graph of cryptographic papers in 2010, with some
highlighted clusters. A: Hashing, B: Network Code, C and C′: Biometry,
D: Watermarking/Data Hiding, E: Passwords. The item size is proportional

to the number of citations

C. Citation Graph Embedding

Gaussian clusters are easy to study as the parameters are

fully controlled. Citation graphs are selected to illustrate a

real-world example of it-SNE capabilities.

Because a scientific article refers to relevant papers in its

field, this type of dataset presents local community structures.

The evolution of the number of researchers is leading to an

expansion of knowledge in many fields, and the creation of

new ones. Other fields tend to disappear, because of a lack of

support from the scientific community or an absence of new

discoveries. The study of these phenomena allows to retrace

history and reconstruct the science phylogeny [20].

Fig. 9 represents the papers published in the

cryptography/security field in 2010. Papers group together

to form connected clusters with various shapes, sizes and

densities. To the default of a clustering algorithm, some

groups have been highlighted and labelled by hand with the

help of documents’ title and keywords.
Cluster A, with Hashing’s general topic, is compact

with items well connected to each others. Cluster D about

Watermark is more diffuse than A, but items are still grouped

together. The Biometry cluster C is composed of several

sub-units of various density. Cluster B and E about Network
Code and Password respectively are much more compact than

the other presented.
The papers in each cluster are mostly in phase with the

general cluster topic, showing local unity. Nonetheless, the

reverse is not valid: a cluster about a particular topic does not

enclose all documents related to it. A keyword may correspond

to two different ideas, or two distinct communities may work

on different aspects of the problem. For instance, this is the

Biometry field case, which occurs twice in various embedding

locations. There is one large cluster on the right and a smaller

one on the left (denoted C and C ′ respectively). While the

large cluster C is about general biometric recognition methods,

the C ′ is focused on authentication scheme, mixing Biometry,

Password and Authentication topics together.
Scientific communities are dynamic and adapt to new trends.

Fields emerge, grow, interact, split, and disappear. it-SNE

allows reusing these initial cluster positions for the next

subsequent embedding, which allows tracking such dynamics.
Fig. 10 presents the evolution of the embedding 9 from

2010 to 2017, with the same color highlighting. The general

shape of the embedding is stable over time, with clusters’

positions preserved. A small drift of the clusters occurs, which

is noticeable after a few embedding steps. The growth and

shrink of some clusters is visible, such as for the second

biometry cluster on the left which expands over the years.

Merges are also visible, such as for the Biometry and Password
clusters, which first merge in 2013.

To have a better view of the evolution, Fig. 11 shows an

enlarged view of the top right area of the embedding, where

Biometry and Password field of study clusters are. In this area,

different types of phenomena occur. There are stable clusters

present, such as the Hashing, Biometry, and Watermark, with

constant size and density. Password cluster growths in size,

while Network Coding disappeared in 2015. The Biometry and

Password groups have been interacting with each other and

began merging in 2017.
As the clusters have been human extracted, no metric

measure has been tested. Tables listing the most cited paper

for each year for the different clusters are presented in the

appendix (Tables I, II, III, IV, V, VI). The articles presented

in these tables are very consistent with the theme of the cluster

from which they originate.

VI. DISCUSSION

A. Complexity
The normal complexity of t-SNE is in O(n2), where n is

the number of items. While some optimization exists when

the dataset is tabular, like the Barnes-Hut optimization [21]

which reduces the cost to O(n log n), for data like graphs

from which a distance matrix can be obtained, this quadratic

cost is prohibitive.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

369

Fig. 10 Citation graph of cryptographic papers, published between 2010 to 2017. Clusters are highlighted according to the previous figure coloring scheme.
Size of points is proportional to the logarithmic number of citations. Dark areas correspond to highly grouped papers. The fusion between Biometry and

Password clusters in 2013 is shaded in grey

If the dataset is cut into k equivalent pieces of m = n
k

pieces, the algorithm would run in O(2km2) = O(2kn
2),

where the 2× stands for the two gradient parts. This reduces

by a factor k
2 the complexity. The complexity here measures

the average number of operations for one run of an iteration

step. However, as the algorithm uses gradient descent, a

convergence criterion governs the total number of steps.

Intuitively, the number of steps required to converge for a

large dataset seems larger than for a smaller dataset. The

decomposition of the dataset into pieces would reduce the

effective computational time.

Concerning the memory requirements, the normal t-SNE

requires a storage space of 2n2, necessary for the matrix P and

Q. Using it-SNE with a dataset split into k pieces, 4 matrix of

size m2, (P (t), Q(t), P (t−1,t), Q(t−1,t)) are needed to compute

the embedding. The total amount of memory required is then

4m2 = 4
(
n
k

)2
, which is more interesting, as k2

2 reduces its

cost. The computational time can be extended on a machine,

but not its memory. Our proposed method can be helpful as

way to map large datasets by cutting them into smaller pieces.

B. Selecting ε

1) Speedup: The parameter ε controls the applied forces

and the gradient strength. A low value of ε creates strong

forces which leads to fast convergence. Nonetheless, forces

prevent items to move to other locations. An increase of ε
would relax the system and help an item to arrive on a low

energy state. As for the early exaggeration trick, it would be

benefical to start with a small value of ε and then finish with

a larger value.

2) ε and Perplexity: The perplexity governs the number of

neighbors taken into account. The numerator of P in equations

(1) and (7) grows with a perplexity increase for all items. The

denominator grows too, and leads to a decrease of P for the

nearest neighbors. It affects on Q which needs to decrease.

The distances between Y ’s increase with larger perplexity.

If the support embedding has a different perplexity than

the target perplexity, a large ε may help to adapt to the new

perplexity, by relaxing forces strength. The clusters would be

attracted to nearby position, and the intra forces would arrange

the local shape.

C. Adaptation to Large Changes of Density

Our experiments have been done with temporal datasets

with constant or slowly evolving size. The use of a support

dataset of highly different size may constrain the system

optimization. For a fixed perplexity, the diameter of an

embedding grows with the size of the dataset in (n)
1
de . Two

datasets of different size would have a radius of r(0) and

r(1). The items located in the middle of the embedding can

be correctly matched with the support items. However, for

peripheral items, there would be a gap of |r0 − r1|. it-SNE

would create a distortion, constraining items of (1) to expand

if r0 > r1, which would increase the interdistances between

items in Y (1). For r0 < r1, a shrinking would occur leading

to the same distortion. As intra forces of (0) do not play any

role, a trick to free from this constraint would be to scale

Y (0) into Y (0∗), using the scaling ratio s =
(

n1

n0

) 1
de

, such

as Y (0∗) = sY (0). This would help for datasets of similar

densities. For different densities, local distortions would still

occur.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

370

Fig. 11 Citation graph of cryptographic papers, published between 2010 to 2017. Clusters are highlighted according to the previous figure coloring scheme.
The size of points is proportional to the logarithmic number of citations. Dark areas correspond to highly grouped papers. The fusion between Biometry and

Password clusters in 2013 is shaded in grey

D. Using More than One Support Embedding

The method proposed to use one embedding to support the

generation of a new one. A natural question arises about the

possibility of using the support of two or more embeddings.

This case may happen if two embeddings for t0 < t2 have

been obtained but not for t1 yet, with t0 < t1 < t2. Intuitively,

the constrains engendered by the two embeddings might be

equivalent to a single one. If more embeddings were to be

taken into account, all grouped embedding cost must not

prevent the intra forces from playing their role.

For a dataset X(k) taking support of datasets

X = {X(i)}i=1:k−1 with respective embeddings

Y = {Y (i)}i=1:k−1, the cost could be rewritten as:

C
(k)
tot = C(k) +

1

k − 1

k−1∑
i=1

C(i,k)

This adaptation allows generating embedding in between

two existing embeddings. Another use of this adaptation is

the multivariate case, like for geolocation coordinates, where

the new embedding might take the support using multiple

non-equivalent datasets. For X = {X(i)}i=1:k−1 with relative

importance W = {wi|wi > 0}i=1:k−1, the weighted cost

would have the form:

C
(k)
tot = C(k) +

1∑k−1
i=1 wi

k−1∑
i=1

wiC
(i,k)

Note that the use of multiple support embeddings increases

the cost linearly with the total number of items. Nonetheless,

if the nearest datasets are too small to serve as a support,

the use of more than one embedding may helps to preserve

embedding knowledge and enhance long term coherency.

E. Binary Computation

To create several coherent embeddings for a succession of

datasets, the process can be speeded-up by distributing the

embedding tasks. If there are k datasets to embed, instead

of computing the embeddings in a sequential way, using the

support of t − 1 to compute t, the use of another more

distant support would help. The closer the support, the better it

would be, as the distribution difference between two neighbor

datasets is expected to be lower than for distant datasets.

The computation starts with an initial embedding for �k
2 �.

Then, the left and right intervals are divided in their middle. An

embedding is issued for �k
4 � and � 3k

4 �. Then, the embedding

for subset � 1
8k� can be computed using the support of �k

4 �,

and � 7k
8 � using the support of � 3k

4 �. For the middle parts

� 3
8k� and � 5

8k�, their respective embedding is computed using

two support embeddings, respectively using (�k
4 �, �k

2 �) and

(�k
2 �, � 3k

4 �). The procedure is repeated recursively until all

embeddings have been obtained. This decomposition allows

to speedup the process from O(k) to O(log2(k)).

VII. CONCLUSION

This paper presents a method adapting t-SNE algorithm to

reuse a previous embedding to generate a new one. Compared

to the base method t-SNE, an additional cost term is added.

This cost links the new items to embed to the support

embedding, creating attractive forces. These forces enable the

similar items from the support and current datasets to be

located on the same embedding area. Clusters are coherent

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

371

in the location from one embedding to the other, enabling the

reuse of a classification algorithm on both.

it-SNE was tested on two datasets. The first used synthetic

Gaussians forming dense clusters, evolving in density and

size over time. The second was the scientific citation graph

restricted to cryptography related papers, with small, sparse

communities. The algorithm was successful at preserving the

cluster locations in both experiments, while preserving t-SNE

embedding aspect.

Compared to t-SNE, the computational complexity and the

memory requirement of it-SNE are doubled. Nonetheless, the

use of a support embedding speedups the convergence process

of it-SNE. The total number of operations of it-SNE is, in

practice, equivalent to t-SNE.

We proposed two extensions: the first to the multivariate

case and the second to distribute the embedding computation.

One unsolved problem yet is the adaptation to highly different

densities, as t-SNE mechanism tries to keep average distance

between neighbors constant, which leads to an expansion of

the embedding with increasing dataset size.

it-SNE can be used for many purposes, such as monitoring,

anomaly detection, network analysis, allowing to track the

evolution of clusters in a low dimensional space. The method

is not restricted to temporal datasets and could be used to study

the impact one variable’s impact on the dataset distribution.

APPENDIX

MOST CITED PAPERS

Tables I-VI list the most cited document per year per topic.

Some titles have been truncated.

TABLE I
HASHING

Year Title
2010 Semi-supervised Hashing for Scalable Image Retrieval
2011 Minimal Loss Hashing for Compact Binary Codes
2012 Image Signature: Highlighting Sparse Salient Regions
2013 Inter-media Hashing for Large Scale Retrieval
2014 Supervised Hashing for Image Retrieval
2015 Supervised Discrete Hashing
2016 Deep Supervised Hashing for Fast Image Retrieval
2017 Learning Discriminative Binary Codes

TABLE II
NETWORK CODING

Year Title
2010 Secure network coding over the integers
2011 Secure Network Coding on a Wiretap Network
2012 Cooperative Defence Against Pollution Attacks
2013 An Efficient Homomorphic MAC with Small key Size
2014 A Lightweight Encryption Scheme for Network-Coded Mobile

TABLE III
BIOMETRY

Year Title
2010 Unobtrusive User-Auth on Mobile Phone
2011 A survey on Biometric Cryptosystems and cancelable biometrics
2012 Touch me once and I Know it’s you
2013 Touchalytics: On the Applicability of Touchscreen Input
2014 Image quality Assessment for Fake Biometric Detection
2015 Deep Representation for Iris, Face and Fingerprint
2016 Continuous User Authentication on Mobile Devices
2017 MagNet: A Two-Pronged Defense against Adversarial Examples

TABLE IV
BIOMETRY AND AUTHENTICATION SCHEMES

Year Title
2010 An Efficient Biometrics-based Remote User Authentication Scheme
2011 Cryptanalysis and Improvement of a Biometrics-based Remote
2012 A secure Authentication Scheme for Telecare Medecine
2013 A Temporal-Credential-Based Mutual Authentication
2014 A Novel User Authentication and Key Agreement Scheme
2015 Robust Biometrics-Based Authentication Scheme
2016 An efficient User Authentication and Key Agreement Scheme
2017 Anonymous Authentication for Wireless Body Area Networks

TABLE V
WATERMARK

Year Title
2010 Review: Digital Image Steganography
2011 Reversible Data Hiding in Encrypted Image
2012 Separable Reversible Data Hiding in Encrypted Image
2013 Digital Image Forgery Detection using Passive Techniques
2014 Reversibility improved data Hiding in Encrypted images
2015 RAISE: a Raw Images Dataset for Digital Image Forensics
2016 Reversible Data Hiding: Advances in the Past Two Decades
2017 Fragile Image Watermarking with Pixel-wise Recovery

TABLE VI
PASSWORD

Year Title
2010 Encountering Stronger Password Requirements
2011 Of Passwords and People: Measuring the Effect of Passwords
2012 The Quest to Replace Passwords
2013 Patterns in the Wild: a Field Study of the Usability of Pattern
2014 It’s a Hard Lock Life: A Field Study of Smartphone Unlock
2015 ”... No one Can Hack My Mind”: Comparing Expert
2016 Who are you? A Statistical Approach to Measuring User Auth.
2017 Zipf’s Law in Passwords

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

372

REFERENCES

[1] S. Cohen, E. Ruppin, and G. Dror, “Feature selection based on the
shapley value.” 01 2005, pp. 665–670.

[2] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, 1999.

[3] I. Jolliffe, Principal Component Analysis. John Wiley & Sons, Ltd,
2005.

[4] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extraction,” 06 2011,
pp. 52–59.

[5] M. Maggipinto, C. Masiero, A. Beghi, and G. A. Susto, “A convolutional
autoencoder approach for feature extraction in virtual metrology,”
Procedia Manufacturing, vol. 17, pp. 126–133, 2018, 28th International
Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2018), June 11-14, 2018, Columbus, OH, USAGlobal Integration
of Intelligent Manufacturing and Smart Industry for Good of Humanity.

[6] T. Kohonen, Self-organizing maps, 3rd ed., ser. Springer series in
information sciences, 30. Berlin: Springer, Dec. 2001.

[7] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, p. 2319, 2000.

[8] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” 2018, cite
arxiv:1802.03426Comment: Reference implementation available at
http://github.com/lmcinnes/umap.

[9] L. van der Maaten and G. Hinton, “Visualizing data
using t-SNE,” Journal of Machine Learning Research,
vol. 9, pp. 2579–2605, 2008. [Online]. Available:
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[10] D. Kobak and P. Berens, “The art of using t-sne for single-cell
transcriptomics,” bioRxiv, 2019.

[11] N. Pezzotti, A. Mordvintsev, T. Höllt, B. P. F. Lelieveldt,
E. Eisemann, and A. Vilanova, “Linear tsne optimization for
the web,” CoRR, vol. abs/1805.10817, 2018. [Online]. Available:
http://arxiv.org/abs/1805.10817

[12] L. van der Maaten, “Learning a parametric embedding by preserving
local structure,” in Proceedings of the Twelth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, D. van Dyk and M. Welling, Eds., vol. 5.
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA:
PMLR, 16–18 Apr 2009, pp. 384–391. [Online]. Available:
http://proceedings.mlr.press/v5/maaten09a.html

[13] M. R. Min, H. Guo, and D. Shen, “Parametric t-distributed stochastic
exemplar-centered embedding,” CoRR, vol. abs/1710.05128, 2017.
[Online]. Available: http://arxiv.org/abs/1710.05128

[14] A. Boytsov, F. Fouquet, T. Hartmann, and Y. L. Traon,
“Visualizing and exploring dynamic high-dimensional datasets with
lion-tsne,” CoRR, vol. abs/1708.04983, 2017. [Online]. Available:
http://arxiv.org/abs/1708.04983

[15] P. E. Rauber, A. X. Falcão, and A. C. Telea, “Visualizing time-dependent
data using dynamic t-sne,” in Proceedings of the Eurographics / IEEE
VGTC Conference on Visualization: Short Papers, ser. EuroVis ’16.
Goslar, DEU: Eurographics Association, 2016, p. 7377.

[16] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[17] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
Extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 990998.

[18] K. Wang, Z. Shen, C. Huang, C.-H. Wu, D. Eide, Y. Dong, J. Qian,
A. Kanakia, A. Chen, and R. Rogahn, “A review of microsoft academic
services for science of science studies,” Frontiers in Big Data, vol. 2,
p. 45, 2019.

[19] B. H. Weinberg, “Bibliographic coupling: A review,” Information
Storage and Retrieval, vol. 10, no. 5, pp. 189–196, 1974.

[20] D. Chavalarias and J.-P. Cointet, “The reconstruction of science
phylogeny,” 04 2009.

[21] L. van der Maaten, “Barnes-hut-sne,” in ICLR, Y. Bengio and Y. LeCun,
Eds., 2013.

