
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

112

Abstract—In this article we present a java implementation of

video telephony using the SIP protocol (Session Initiation Protocol).
After a functional analysis of the SIP protocol, we relied on the work
of Italian researchers of University of Parma-Italy to acquire
adequate libraries for the development of our own communication
tool. In order to optimize the code and improve the prototype, we
used, in an incremental approach, test techniques based on a static
analysis based on the evaluation of the complexity of the software
with the application of metrics and the number cyclomatic of
Mccabe. The objective is to promote the emergence of local start-ups
producing IP video in a well understood local context. We have
arrived at the creation of a video telephony tool whose code is
optimized.

Keywords—Static analysis, coding, complexity, mccabe metrics,

Sip, uml.

I. INTRODUCTION

N this article we present a java implementation of video
telephony using the SIP protocol. This article aims, in

particular, the study of the protocols used in VoIP, the
different architectures proposed, and the development of a
VoIP application carrying out signaling using the SIP protocol
and facilitating the transport of voice and video. Indeed, there
are software such as Skype, and Lynk from Microsoft that do
multimedia communication. However, our objective is part of
the use and manipulation of standards developed by
telecommunications organizations such as the ITU-T and the
IETF. This will help facilitate the interoperability of
equipment and applications in this area. This application is
implemented with an object oriented approach using the Java
programming language for reasons of portability and reuse. It
is therefore a question of developing an application based on
the client-server model, of analyzing and processing the
messages exchanged between different entities. Another part
of our application is to use specific protocols that allow us to
route voice and video over IP.

Congolese companies, benefiting from our solution, will be
able to set up a fairly flexible, inexpensive, and secure VoIP
platform.

Basically our methodology is as follows:

Blaise Fyama Mwepu is with the UPL Université Protestante de

Lubumbashi, Congo, The Democratic Republic Of The (e-mail:
bfyama@gmail.com).

1. Analysis and comparison of multimedia communication
standards (H.323 and SIP) [1].

2. Vulnerability study VoIP and good security practices
3. Application architecture modeling
4. Object-oriented design (UML representation, class

diagram) [2].
5. Object oriented implementation using the Java

programming language [2].
6. Application of metrics from McCabe for source code

evaluation and optimization [3].
7. Application test and results. We also evaluated the

complexity of the software with the application of metrics
and the numbercyclomatic of Mccabe.

Ultimately, our approach gives Congolese companies the
opportunity to obtain an inexpensive messaging and VoIP
solution with local maintenance.

II. OVERVIEW OF THE SIP PROTOCOL

SIP is a signaling protocol defined by the IETF (Internet
Engineering Task Force) allowing the establishment, release
and modification of multimedia sessions (RFC 3261) [4]. It
inherits certain functionalities from the HTTP (Hyper Text
Transport Protocol) protocols used to navigate the WEB, and
SMTP (Simple Mail Transport Protocol) used to transmit
electronic messages (e-mails) [5].

SIP is based on a client/server transactional model like
HTTP. Addressing uses the concept of Uniform Resource
Locator (SIP) which resembles an e-mail address. Each
participant in a SIP network can therefore be addressed by a
SIP URL [4]. In addition, SIP requests are acknowledged by
responses identified by a digital code. In fact, most of the SIP
response codes have been borrowed from the HTTP protocol.
For example, when the recipient is not located, a response
code "404 Not Found" is returned.

A SIP request consists of headers like an SMTP command.
Finally SIP as SMTP is a textual protocol.

SIP has been extended to support many services such as
presence, instant messaging (similar to SMS service in mobile
networks), call transfer, conference, complementary telephony
services, etc.

The SIP protocol is only a signaling protocol. Once the
session is established, the participants of the session directly
exchange their audio/video traffic through the RTP protocol

Design, Development by Functional Analysis in UML
and Static Test of a Multimedia Voice and Video

Communication Platform on IP for a Use Adapted to
the Context of Local Businesses in Lubumbashi

Blaise Fyama, Elie Museng, Grace Mukoma

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

113

(Real-Time Transport Protocol). It is a call control protocol,
not media control. SIP is also not a file transfer protocol such
as HTTP, used to transport large volumes of data. It has been
designed to transmit short signaling messages in order to
establish, maintain and release multimedia sessions. Note that
SIP has the advantage of not being attached to a particular
medium and is supposed to be independent of the transport
protocol [5]. Fig. 1 shows the standard structure of the SIP
protocol.

Fig. 1 Standard structure of the SIP Protocol

Fig. 1 is the SIP protocol stack, according to which:

1. SIP initiates the multimedia session (audio, video).
2. RSVP: Internet resource reservation protocol for the

deployment of the real-time application.
3. SDP: Multimedia session description protocol.
4. RTP, RTCP participate in the transport of real-time data

exchanged between participants in an SIP session.
5. UDP, TCP, transport multimedia data.
6. IP represents the communication network used.

III. HOW A SIP MESSAGING SYSTEM WORKS

Fig. 2 represents the SIP protocol dialogue system and the
exchange of RTP/RTCP packets of the application between
two client-server user agents (UAC/UAS) through a proxy
server.

Fig. 2 represents: The initiation of SIP sessions, the
exchange of RTP/RTCP packets as well as the termination of
the application session between two client-server user agents
(UAC/UAS) through a proxy server

Succession of stages:
1. Client A who wishes to initiate a communication issues an

INVITE request containing the From, To and Via URLs.
This is sent to the proxy server.

2. The proxy receives the INVITE request from the client, it
extracts the URL “To”, consults its database to check if
the recipient exists and based on this verification it sends
a status message to the source client notifying it that the
recipient is not found in case this one does not exist.
Otherwise, it forwards the request to the recipient at the IP
address contained in the URL “To” to notify the recipient
of an invitation to communicate.

3. At the same time that the proxy routes the request to the

recipient, it also sends a status message to the client to
notify it that it is trying to establish contact with the
recipient.

Fig. 2 Operating principle of a SIP messaging system

4. Upon receipt of the INVITE request by the recipient
client, an invitation message is displayed on its screen
indicating the name of the client who wishes to establish a
communication [4]. A status message is automatically
sent to the proxy which will route it to the source client to
inform them that the recipient has successfully received
their invitation.

5. The proxy receives the response from the recipient, it
extracts the From URL from the message and in the same
way as in step 2, it routes it to the source client. A ringing
message is displayed on the latter's screen.

6. The recipient client responds with an Ok message to the
source client and accepts their invitation to communicate.
This response is sent to the proxy.

7. The proxy receives the response Ok, it routes it to the
source client in the same way as in step 5.

8. Upon receipt of the Ok response, an acknowledgment
message is sent to the proxy automatically containing the
same URLs “From” and “To” as the messages exchanged
previously.

9. In the same way as in step 2, the proxy routes this
acknowledgment message to the recipient.

10. Communication is established upon receipt of Ack
acknowledgment messages. At this stage the RTP and
RTCP packets are exchanged between the clients in
multicast. RTP and RTCP ports are assigned and managed
by the proxy server [6]. Whenever communication is
established, the proxy server assigns each client an even
RTP port and an immediately higher odd RTCP port.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

114

11. If a client wishes to end his participation in the
multimedia conference, he sends a Bye request to the
proxy, which in turn routes it to the other clients to inform
them of his departure.

12. Clients respond with an Ok message to the client who
wishes to terminate his connection via the proxy. This
frees up the RTP and RTCP ports that he assigned to this
client [7], [5].

IV. DIAGRAMS OF THE DESIGN CLASSES OF OUR

APPLICATION

Fig. 3 represents the fundamental class diagram of our SIP

application in which we present the relations between these
which make the system functional the key component of this
model is the UserAgent class, whose extract from the source
code is shown in Fig. 4.

The class in Fig. 4 represents the implementation of
methods according to the following import attributes:
1. The userAgent component profile
2. The SIP Provider
3. SIP client registration
4. SIP call

Fig. 3 Fundamental class diagram

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

115

Fig. 4 Implementation source code extract of the main class 'UserAgent'

V. APPLICATION ARCHITECTURE

Fig. 5 shows the architecture of our proposed application
and the interactions between the different components during
the process of exchanging SIP messages and multimedia data
(voice and video).

A. Description of the Components of the Architecture

1. Client-Server User Agent

The SIP Client is the component designed to initiate a
conversation session over IP. It is responsible for the creation
and termination of a dialogue. And this class takes care of the
generation of all client requests by highlighting all the

methods of requests via the proxy.
This client application is a server at the same time, which

processes the SIP responses that come from the proxy, and
generates other messages such as message ringing, and
acknowledgments [16], [17].

2. Multimedia Data Processing (Voice and Video)

This is the module responsible for capturing multimedia
data (voice and video), from sources such as the MIC (for
audio) and the Webcam (for images), and then the data are
processed for either sending over the network either for
hearing and viewing.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

116

Fig. 5 Architecture of our application: This architecture is separated into two logical parts, on the one hand the functions included in the SIP
application module and on the other hand by those of the Proxy server

3. Managing the SIP Contacts File

It is a file which should allow the persistence of SIP
contacts for users, in a way a directory system.

4. Graphic Interface

The graphical interface as the name suggests, allows hiding
the complexity of the implementation from the user, by
providing access to the SIP client at a higher level of
abstraction.

5. Proxy

This server was designed to provide service to the client, to
analyze and interpret session invitations based on the SIP
protocol and to generate responses to clients. It also allows
users to be registered. The successive tasks of the proxy in a
SIP signaling process consist in receiving UDP packets,
registering the client in the event that the latter connects for
the first time, then the packets are processed by the proxy to
decide on the response to be returned to the source client or
their routes to the recipient [5].

Fig. 6 Proxy server services, UDP packet reception, Registration of
UAs, Processing of SIP messages.

The Proxy server can also manage the RTP/RTCP ports in

audio/visual communication. In order to be able to realize this
model, we implemented our application with an object-
oriented approach using the Java language. We also used the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

117

framework javax.sound.sampled developed by Sun
Microsystems which includes classes such as
(TargetDataLine) which facilitates the implementation of the
recovery part of Stream (voice data flow) on the MIC.

VI. IMPLEMENTATION AND TESTING OF THE APPLICATION

In this section we describe in general the client-server
model in Java which forms the basis of our SIP structure. We
also present the different java classes that make up the
different programs of our application.

A. The Different APIs and Framework of the JAVA
Language Used

1. MJSIP

MjSip includes all the classes and methods for creating a
SIP application. It implements the full layered stack,
architecture as defined in RFC 3261, and is fully compliant
with the standard. In addition, it includes top-level interfaces
for call control [8]. It is made up of several packages
including:
- standard SIP objects such as SIP messages, transactions,

dialogs, etc.,
- various SIP extensions already defined in the IETF,
- call control API,
- a reference implementation of certain SIP systems

(servers and UA) [8].

Some Reasons to Use MjSip

There are several implementations available of SIP, in the
programming languages Java and C ++; MjSip is just another.

The main features of MjSip are:
- It is based on Java, so it is cross-platform,
- It is not just an API, but includes the full implementation

of the SIP stack,
- It is very powerful and complies with the IETF RFC 3261

standard and extensions,
- It is simple to use and very simple to extend,
- It is very light and can be used simultaneously for server

and light terminal implementations [8].

MjSip Architecture

According to the SIP architecture defined in RFC 3261, the
main MjSip is structured in three basic layers: Transport,
Transaction and dialog. In addition to these layers, MjSip also
provides levels of call control and application level, with the
corresponding API [8].

Fig. 7 The base layers of MjSip, Layers offer an easy-to-use interface
to manage incoming and future SIP calls, dialogs, transactions and

transport

The lowest layer is the Transportlayer which provides the
transport of SIP messages. It is responsible for sending and
receiving SIP messages via different lower layer transport
protocols and demultiplexing incoming messages to the
appropriate upper layer.

The second layer is the Transactionlayer. Transactions are a
fundamental component of SIP. In SIP, a transaction is a
request sent by a client (a transaction client) to a transaction
server with all responses to this request sent from the
transaction server returns to the client. This layer manages the
retransmissions of upper layers, the correspondence of
responses to requests and deadlines. It sends and receives
messages via the transport layer.

The third layer (above the transaction layer) is the Dialog
which links different transactions within the same "session". A
dialogue is a peer-to-peer SIP relationship between two user
agents that persists for some time. The dialog facilitates the
sequencing of messages and the smooth running of requests
between user agents.

INVITE () is the method that establishes a dialog (called an
invitation dialog) and that is implemented in MjSip by the
InviteDialog class.

The upper SIP layer is the call controller which implements
a full SIP call. The Call Control layer is implemented by
CallAPI, which provides an easy-to-use interface for
managing incoming and future SIP calls. In addition, a call
may have more than one dialog [8].

On these four layers, there are the SIP sessions which
connect two or more application entities (participants) to
different systems [8].

2. JAVAX.SOUND

It is a low-level API for manipulating audio input/output
streams. It allows the capture, the reading of the audio streams
and the manipulation of these (mixing effect etc.), unlike the
JMF API, it allows total control over it. It is made up of two
Packages related to the areas of java sound:
- javax.dound.Sampled which as its sound indicates is

dedicated to the processing of sampled sounds from
analog sources.

- javax.dound.midi which is dedicated to everything related
to sound synthesis.

Fig. 8 shows a part of the code which initializes the
parameters of sampling [11].

3. jna Bookstore

For the OPUS codec we made use of an interface between
its native implementation and the java language via the jna
library which is supported by the open source community on
github. In the source code the method that performs the
encoding is opus_encode () [9].

Fig. 9 is an extract from the code performing the imports.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

118

Fig. 8 Code extract for initializing sound sampling parameters. This
code describes the initialization process of the JAVAX.SOUND API

sampling parameters

Fig. 9 Importing elements from the jna library for interfacing the Java
language and the OPUS codec. These are imports of the various
modules via the JNA API for interaction with the OPUS codec

4. Netty

Netty is a java framework for developing asynchronous,
maintainable and efficient network applications. It contains a
well-designed API that deploys an abstraction layer on top of
java. It is simple to use and neatly splits the code into logical
pieces called "Handler", which makes it possible to develop
network applications that are simple to maintain. This
abstraction does not affect the performance of the application
because the configuration possibilities are very important [12].
Netty also has new optimized and easy to use buffers. It offers
many useful features on a daily basis for developers:
- Management of several transport layer protocols, such as

UDP and TCP.
- HTTP management: construction of headers,

transformation of messages into java objects.
- Websockets management.
- SSL management
- Compression management.

So in our application, we have used it up to now for the
management of transport protocols.

5. Webcam Capture API

It is a library that allows using the integrated or external
webcam directly from Java. It is designed to abstract
commonly used camera functions and support various capture
features [13].

6. Xuggler

Xuggler is a Java library that allows decoding and encoding
a variety of multimedia file formats directly from Java [10]. It
is built on the FFMPEG, but is designed with the following
objectives:
- Ease of use;
- Security;
- Portability.

Unlike most Java libraries, Xuggle has native code (for
example, a library shared by Windows DLL or Linux)
component that must be installed with it [10].

7. Sample of the Source Code Implementation of Certain
Entities

It should be remembered at this level that we carried out
fairly conclusive tests during the implementation of the
application. However, for the signaling module, we have
chosen to use the UDP transport protocol and port 5060 which
is the default port used by the SIP protocol, although it was
possible to choose any other public port.

Here are some extracts of source code for some entities of
the global architecture of the application architecture.

o Audio Transmission

The run () Method contained in ServerChannelHandler
allows writing audio data on the network.

Fig. 10 Extract of the code of the run () method for writing data on
the network. In this method we present the writing on the network of

real time data (audio) encoded by the OPUS codec

o Video Transmission

The encode () method is contained in the H264Encoder
class which allows compression of the data retrieved via the
webcam.

o Invitation

Here is the call method contained in the UserAgent class
which is used to launch the call with the invite method of the
sip specification.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

119

Fig. 11 Code extract of the compression of the data retrieved via the
webcam. The function implemented here presents the process of

compressing image data coming from the camera

Fig. 12 Code extract allowing to initiate an invitation in a call of the
SIP specification. The call method implements the process of

initiating an Apple via the two parameters including the address of
the called party and the description of the media through which the

data will pass.

o SIP Call Termination

A client who wants to end their connection sends a BYE
request to the proxy server. The proxy routes this request to all
participants, the transmission and reception of audio and video
packets are stopped and the proxy registers the client, updates
its client list and frees all multimedia transmission and
reception ports. We present on Fig. 13 the hangup method
contained in the UserAgent class which allows to end the call
with the Bye method of the SIP specification.

Fig. 13 Code extract for the termination of a SIP call. The hangup ()
method implements the media closure and release procedure during a

SIP session

VII. SOFTWARE COMPLEXITY ASSESSMENT (METRICS AND

MCCABE CYCLOMATIC NUMBER)

To quantify the complexity of software, the most used
measures are lines of code (LOC) since they are simple, easy
to understand and count [3]. A simple test using Eclipse
Metric allowed us to evaluate the cyclomatic complexity of
the code by calculating in particular the cyclomatic number of
McCabe. The metrics calculation was done by the eclipse
Metrics plugin which we integrated into the eclipse IDE. Too
high cyclomatic complexity (greater than 30) indicates that the
method must be refactored. A cyclomatic complexity of less
than 30 may be acceptable if the method is sufficiently tested.
Cyclomatic complexity is linked to the notion of "code
coverage", that is to say the coverage of the code by the tests.
Ideally, a method should have a number of unit tests equal to
its cyclomatic complexity to have a 100% "code coverage"
[3].

B. Eclipse Metric

Eclipse Metrics is an eclipse plugin which analyzes the
source code to calculate a certain number of metrics. It is also
capable of presenting a graph of dependencies between
packages in 3D [14], [15].

Eclipse Metrics is installed from the eclipse update manager
(URL: http://metrics.sourceforge.net/update). After
installation, it must be activated on each project to be
measured using the project properties configuration panel
(Metrics tab). Then, just display the Metrics view (Window/
Show View/Metrics View) to get the statistics of the selected
element in the Eclipse explorer. Fig. 14 shows the result of
running Metrics on the code "AudioOutputStream.java",
presented in the section "Cyclomatic Complexity".

public Object encode(Object msg) throws Exception {

 if (msg == null) {
 return null;
 }
 if (!(msg instanceof BufferedImage)) {
 throw new IllegalArgumentException("your need to pass
into an bufferedimage");
 }
 logger.info("encode the frame");
 BufferedImage bufferedImage = (BufferedImage)msg;
 //here is the encode
 //convert the image
 BufferedImage convetedImage =
ImageUtils.convertToType(bufferedImage, BufferedImage.TYPE_3BYTE_BGR);
 IConverter converter =
ConverterFactory.createConverter(convetedImage, Type.YUV420P);
 //to frame
 long now = System.currentTimeMillis();
 if (startTime == 0) {
 startTime = now;
 }
 IVideoPicture pFrame = converter.toPicture(convetedImage,
(now - startTime)*1000);

 iStreamCoder.encodeVideo(iPacket, pFrame, 0) ;
 //free the MEM
 pFrame.delete();
 converter.delete();
 //write to the container
 if (iPacket.isComplete()) {

 //iPacket.delete();
 //here we send the package to the remote peer
 try{
 ByteBuffer byteBuffer = iPacket.getByteBuffer();
 if (iPacket.isKeyPacket()) {
 logger.info("key frame");
 }
 ChannelBuffer channelBuffe =
ChannelBuffers.copiedBuffer(byteBuffer.order(ByteOrder.BIG_ENDIAN));
 if (frameEncoder != null) {
 return frameEncoder.encode(channelBuffe);
 }
 return channelBuffe;

 }finally{
 iPacket.reset();
 }
 }else{
 return null;
 }
 }

 /** Makes a new call (acting as UAC) with specific media
description (Vector of MediaDesc). */
 public void call(NameAddress callee, Vector media_descs)
 {
 // new media description
 if (media_descs==null) media_descs=ua_profile.media_descs;
 this.media_descs=media_descs;
 // new call

 printLog("DEBUG:
auth_user="+ua_profile.auth_user+"@"+ua_profile.auth_realm,Log.LEVE
L_HIGH);

 call=new
ExtendedCall(sip_provider,ua_profile.getUserURI(),ua_profile.auth_u
ser,ua_profile.auth_realm,ua_profile.auth_passwd,this);

 if (ua_profile.no_offer) call.call(callee);

 else
 { SessionDescriptor
local_sdp=getSessionDescriptor(media_descs);
 call.call(callee,local_sdp.toString());
 }
 progress=false;
 ringing=false;
 }

 /** Closes an ongoing, incoming, or pending call. */
 public void hangup()
 { // sound
 if (clip_progress!=null) clip_progress.stop();
 if (clip_ring!=null) clip_ring.stop();
 // response timeout
 if (response_to!=null) response_to.halt();

 closeMediaSessions();
 if (call!=null) call.hangup();
 call=null;
 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

120

Fig. 14 Capture the result of the metrics calculation of the complexity parameters of the "AudioOutputStream.java" source code. These are
statistics in terms of metrics from class AudioOutputStream

C. The Number of LOC for the Overall Project

Fig. 14 shows the code line number metrics for our project
(SageVp) in general including also the codes coming from the
MGSIP API. In total 27070 LOC in which we subtract 11395
LOC coming from the API MGSIP imported from the zoolu
project from where 15675 LOC produced by our team. So to
assess the complexity compared to this metric we are
interested in the number of LOC per .java source file, given
that a file must not exceed 400 LOC therefore must contain at
most 10 methods, because each method must have at most 40
LOC.

Code line of the files in the "com.ul.sagevp.local.ua"
package, which is the only package in which there is a file
(UserAgent.java) which contains more than 400 LOC, ie 539.

Since we have 39 packages and 10 classes on average per
package and only one class out of a total of 314 has 139 LOC
overflowed from the maximum value that a file must have a
maximum of 400 lines. In general, maintenance and testing of
the application is not a problem, and the fault rate is
negligible.

Fig. 15 Dependency graph centered on the
com.ul.sagevp.local.codec.audio package. We present here the degree
of dependence between the module of the application on the basis of

inheritance between classes

Finally, Fig. 15 is an example of a 3D dependency graph.

Metrics colors the cycles. It is possible to see only the
dependencies of a particular package by double-clicking on

that package, as shown in Fig. 13 in which we have chosen to
center the view on the com.ul.sagevp.local.codec package.
audio: Eclipse Metrics is a really useful tool for bringing out
the architectural flaws of a project.

VIII. CONCLUSION

The objective of this work is part of the appropriation of
new technologies in Africa by promoting the autonomous
design of local tools capable of providing reliable IT solutions
to companies in the DR Congo. We set a methodology that led
to the design of our tool and this methodology was articulated
first on the analysis and comparison of the standards of
multimedia communication (H.323 and SIP) and our choice
was based on the SIP protocol. We tackled the vulnerabilities
of VoIP and identified good security practices. We proceeded
to design the application architecture according to the UML
formalism followed by coding in Java language.

REFERENCES
[1] G. K., S. G. G Karopoulos, « Un cadre pour la confidentialité de

l'identité dans SIP, » Un cadre pour la confidentialité de l'identité dans
SIP, 2010.

[2] F. V. P Roques, « UML en action : de l'analyse des besoins à la
conception en Java, » Eyrolles, 2014.

[3] verifysoft, «McCabe Metrics,» Germany, 2016.
[4] J. R. H. S. C. J. P. S. H. a. E. S. G. Camarillo, « SIP : Session Initiation

Protocol, » RFC3261, 2018.
[5] R. R. V. P. H Agrawal, « Méthode et appareil pour SIP / H. 323

interfonctionnement, » IETF RFC 3261, 2011.
[6] J. C. E. S. J Ott, « Extensions RTCP (protocole de contrôle RTP) pour

les sessions de multidiffusion à source unique avec commentaires de
monodiffusion, » Extensions RTCP (protocole de contrôle RTP) pour les
sessions de multidiffusion à source unique avec commentaires de
monodiffusion, 2010.

[7] H. Schulzrinne, « RTP : un protocole de transport pour les applications
temps réel, » RFC3550, p. 36, Novembre 2018.

[8] mjsip, «MjSip stack 1.5.4 and reference applications with source files, »
Parma, 2012.

[9] U. Yamashita, « Évaluation de la capacité des odeurs de code à prendre
en charge les évaluations de maintenabilité des logiciels : enquête
empirique et approche méthodologique, » Évaluation de la capacité des
odeurs de code à prendre en charge les évaluations de maintenabilité des
logiciels : enquête empirique et approche méthodologique, 2012.

[10] Xuggle, «To encode, decode, and generally juggle audio and video files
in any way that you want. » 2010.

[11] A. RINIE, «javaSound_arnie/javasound/presentation.html,» (En ligne).
Available: http://www.igm.univ-mlv.fr. (Accès le 5 Juillet 2017).

[12] R. Cre, «Netty/introduction.html,» (En ligne). Available: http://www-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

121

igm.univ-mlv.fr. [Accès le 10 juillet 2017).
[13] swarm, «image-capture,» (En ligne]. Available: http://www.it-

swarm.dev. (Accès le 15 juillet 2017).
[14] A. Inc, «projects/sfnet_metrics/howto/install,» (En ligne). Available:

http://fr.osdn.net. (Accès le 15 juillet 2017).
[15] D. Revuz, «eclipse-metrics.html,» (En ligne). Available: http://www-

igm.univ-mlv.fr. (Accès le 20 juillet 2017).
[16] J. Rsenberg et H.Schulzrinne, Protocole d'initialisation de session, 2012.
[17] Z.Simon et Jean-Loui, Session intiation Protocol, 2010.

