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Abstract—Chain Ladder (CL) method, Expected Loss Ratio 

(ELR) method and Bornhuetter-Ferguson (BF) method, in addition to 
more complex transition-rate modeling, are commonly used actuarial 
reserving methods in general insurance. There is limited published 
research about their relative performance in the context of Mortgage 
Insurance (MI). In our experience, these traditional techniques pose 
unique challenges and do not provide stable claim estimates for 
medium to longer term liabilities. The relative strengths and 
weaknesses among various alternative approaches revolve around: 
stability in the recent loss development pattern, sufficiency and 
reliability of loss development data, and agreement/disagreement 
between reported losses to date and ultimate loss estimate. CL 
method results in volatile reserve estimates, especially for accident 
periods with little development experience. The ELR method breaks 
down especially when ultimate loss ratios are not stable and 
predictable. While the BF method provides a good tradeoff between 
the loss development approach (CL) and ELR, the approach 
generates claim development and ultimate reserves that are 
disconnected from the ever-to-date (ETD) development experience 
for some accident years that have more development experience. 
Further, BF is based on subjective a priori assumption. The 
fundamental shortcoming of these methods is their inability to model 
exogenous factors, like the economy, which impact various cohorts at 
the same chronological time but at staggered points along their life-
time development. This paper proposes an alternative approach of 
parametrizing the loss development curve and using logistic 
regression to generate the ultimate loss estimate for each 
homogeneous group (accident year or delinquency period). The 
methodology was tested on an actual MI claim development dataset 
where various cohorts followed a sigmoidal trend, but levels varied 
substantially depending upon the economic and operational 
conditions during the development period spanning over many years. 
The proposed approach provides the ability to indirectly incorporate 
such exogenous factors and produce more stable loss forecasts for 
reserving purposes as compared to the traditional CL and BF 
methods. 
 

Keywords—Actuarial loss reserving techniques, logistic 
regression, parametric function, volatility. 

I. INTRODUCTION 

OSS reserving, a key actuarial function, involves the 
estimation of the unpaid losses (ultimate losses) that an 

insurer is liable to pay in the present and future time periods. 
An insurer must carry enough reserves to fulfill the claim 
obligations as per the insurance contract, against both reported 
and unreported claims for all the policies in force as of a given 
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accounting date. Typically, there is a delay between reporting 
and claim payment, during which the contractual obligation is 
known as an outstanding claim. The two types of outstanding 
claims are, Reported But Not Settled (RBNS), and Incurred 
But Not Reported (IBNR). The focus of this paper is on the 
RBNS claims, which are the predominant in MI [3]. Claims 
are estimated on a paid basis as ultimate losses on a 
delinquency inventory categorized into homogenous groups of 
delinquencies based on their delinquency development history. 
This step is critical for estimation of the insurer’s underwriting 
income as well as the valuation of the insurer, which supports 
various management and strategic decisions. While the insurer 
might hold and report reserves (case reserve or carried loss 
reserve) to reflect the potential liability against the known 
claims, this number might not be the best estimate. 

Actuaries apply various reserving techniques on 
homogeneous groups of data in the reserve estimation process. 
Estimates generated by such methods are known as indicated 
loss reserves, and actuarial judgement is used in selecting an 
indicated loss reserve from one method or a combination of 
the methods. Once the best estimate is generated through the 
process, either a reserve deficiency or surplus can result from 
the difference between the selected (indicated) loss reserve 
and the carried loss reserve. This paper uses a Private 
Mortgage Insurance (PMI) example for the loss reserving 
application. PMI is an insurance policy which protects the 
mortgage lender or titleholder when a borrower defaults on the 
mortgage. The PMI provider pays the lender’s first loss, up to 
the covered amount in the event of a loss/default from the 
borrower. Borrowers pay the PMI premium as a part of their 
mortgage payments for access to credit with low down 
payment. After a borrower misses monthly payments on the 
covered mortgage for 1-3 months, the mortgage servicer 
reports the delinquency to the PMI provider, which records it 
as a delinquency. Reserves need to be held against these 
delinquencies because the loan is impaired and has a higher 
probability of ending up as a claim and eventual loss to the 
PMI provider. Some of the reported delinquencies in a 
development period cure (i.e., the borrower resumes the 
monthly payment) and become current, while a small fraction 
eventually go to foreclosure with possibility of a claim and 
loss. The whole process can take several years. The reserve 
estimation process considers historical ETD claim experience 
to generate estimates of ultimate losses on each delinquency 
group. 

II. METHODOLOGY 

The most common reserving techniques used by General 
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Insurance actuaries are: CL method, ELR Method, and BF 
method. In general insurance, outstanding claim liability is 
represented in the form of run-off triangles (claim counts and/ 
or claim amounts) by actuaries for depicting, assessing, and 
estimating ultimate claim liability. Although the depiction in 
the loss development triangle can be on a paid basis or 
incurred basis, this paper uses the paid loss development 
triangle rather than the incurred or the reported one. For the 
Paid Loss Triangle, losses are grouped in rows by the 
delinquency period (referred to as Accident Year in P&C) in 
which the delinquency is reported by the lender. The claim 
payments for any delinquency period (row) are summed and 
organized by development periods in columns. For this paper, 
the delinquency period and development period are defined at 
a regular interval. As of a given valuation date, only the upper 
left triangle information is known, and the lower right triangle 
and the ultimate cumulative losses are not known and must be 
estimated through one of the methods described. 

A general mathematical framework following the notation 
as in [1], [4] is developed for exploring the approaches. In this 
paper, 100% severity on the covered risk is assumed once a 
reported delinquency is paid out as a claim, meaning the PMI 
provider will indemnify the lender for 100% of the covered 
loss amount. Hence the loss development triangle for paid 
claim count (frequency) is used for the purpose of this paper. 
So, the estimation problem resolves to delinquency to ultimate 
claim roll rate estimation and development. 

Let 𝑍𝑖𝑗 be a random variable representing the paid claims 
from a delinquency period 𝑖 with 𝑖 𝜖 {1, … , n} paid in 
development period 𝑗 with 𝑗 𝜖 {0, … , n − 1}. Given this, the 
claim dataset can be represented by {𝑍𝑖𝑗 ∶ 𝑖 = 1, … , n; 𝑗 = 0, 
… , n − 1}. As shown in Fig. 1, incremental paid claims are 
tabulated in a Run-off Triangle, where row represents the 
delinquency period/cohort, and column represents the 
development period.  

 

 

Fig. 1 Incremental Claim Run-off Triangle Data 
 

To facilitate the estimation process, the incremental claim 
run-off triangle is converted into a cumulative form as shown 
in Fig. 2, such that 𝐶𝑖𝑗 is a random variable representing the 
cumulative claims paid from delinquency period i, and 
development period j. Such that, C  ∑ Z  ; 𝑍𝑖j, 𝑖 = 1, … , 
n. Claims are accumulated until period n for each delinquency 
period i such that C  ∑ Z  represents the Ultimate 

Claim (Observed or Estimated). Given the construct, the CL 
method utilizes the loss development method through loss 
development factors defined by: 

 

f  
∑

∑ ,
 , for j = 1, 2, ..., n-1          (1) 

 

 

Fig. 2 Cumulative Claim Run-off Triangle Data 
 

Given a set of loss development factor estimates (f  for each 
development period j, and observed cumulative claim 
development in the upper triangle captured by 𝐶𝑖1, 𝐶𝑖2, …, 
𝐶𝑖,𝑗−1, for delinquency period i, the Cumulative Claim 
Estimate for delinquency period i and development period j is 
given by C , f . C , , and the expected outstanding c claims 
estimate for delinquency period i is given by, E C ,

∏ f . C ,  for j = 1, 2, . n-1, and i+j ≤ n. The 
estimate for incremental claims from delinquency period i, for 
development period j, is given by Z  C  C ,  

ELR approach is another commonly used approach in 
general insurance when adequate historical claim experience is 
lacking. In this approach, the assumption is that the ELR is the 
best available information for estimating the reserves. This 
approach also requires information on earned premium, which 
is multiplied by ELR to obtain the estimate of ultimate 
cumulative losses for any delinquency period, which is given 
by: C , E s . P , where P  is the earned premium for the i’th 
delinquency period (group/Cohort), and E(s) is the selected (or 
predicted) loss ratio either from internal data or external 
benchmarking. Total Reserves = Estimated Ultimate 
Cumulative Losses – Ever to Date Paid Losses. Case reserves 
for RBNS, and IBNR make up total reserves. One of the 
drawbacks of this approach is that it can result in negative 
reserves when ETD claim (or loss) development experience is 
less than the estimated ultimate claims (losses) under the ELR. 
Since a single value is targeted, variability in the ultimate loss 
rates for reserving is dampened.  

BF method serves as a hybrid between the ELR approach 
and CL technique. In this method, an initial Loss estimate (a 
priori) is generated as under the ELR approach. A pro-rated 
remaining percentage of this expectation is added to the ETD 
Loss Rate, to generate the Ultimate Loss Rate for Reserving, 
which varies by delinquency cohort due to difference in 
seasoning. The Pro-Rating can be based on the IBNR factor 

Delinquency 

Period (i) 1 2 3 j . . . n‐1 Ultimate

1 Row‐1 ∑

2 Upper Triangle Row‐2 ∑

3 (Incremental Paid Claims) Row‐3 ∑

i ( Zi,j ) Row‐i ∑

. .

. Lower Triangle .

. (Estimated) .

n Row‐n ∑

Grand ∑

Claim Development Period (j)

Delinquency 

Period (i) 1 2 3 j . . . n Ultimate

1 n1

2 Upper Triangle n2

3 (Cumulative Paid Claims) n3

i ( Ci,j ) ni

. .

. Lower Triangle .

. (Estimated) .

n nn

∑

Claim Development Period (j)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:15, No:1, 2021

3

 

that has been developed using CL approach.  
IBNR Factor = 1 – 1/(LDFj), where LDFj is the Loss 

Development Factor Selected under the CL approach for j’th 
development period. While the BF approach offers a good 
compromise between the CL and ELR approaches, it still 
suffers the subjectivity bias from the a priori selection of 
Ultimate Loss Rate. While the Loss Development is muted, 
compared to CL approach, BF approach still does not mean-
revert to a single ultimate loss rate. Both the CL and BF 
approaches address the estimation problem using linear 
assumptions, while loss development might not be a linear 
process. More sophisticated approaches use stochastic 
modeling, including multivariate regression-based approaches 
that are complex and difficult to understand [5]. The more 
complex multivariate regression-based techniques also make 
use Markov Chain transition framework based Generalized 

Linear Models (GLM) that leverage information on predictor 
variables like economic conditions [5], which is beyond the 
scope of this paper. 

We propose an alternative to the CL, ELR, and BF 
approaches by explicitly modeling the non-linearity through 
parametric approach to generate an asymptote for ultimate loss 
rate by accident year. The Logistic function or a Sigmoid 
Curve (S-shaped) was extensively used in population growth 
modeling [6] as illustrated in Fig. 3. The function addresses 
the problem at hand elegantly because the function exhibits an 
initial geometric (exponential) rate of growth, followed by an 
arithmetic (linear) rate of growth, approaching the asymptote. 
The function is also governed by few parameters that address 
the non-linearity in loss development, while generating an 
asymptote for ultimate loss estimate for reserving. 

 

 

Fig. 3 Logistic Function Describing Population Growth over Time 
 

The parametric form of a Logistic equation can be 
represented by [7], 

 

f x                   (2) 

 
where a = Maximum Value of the Function or the upper 
asymptote, f is the mid-point of the curve, and d is the growth 
rate or steepness of the curve. However, to have more control 
over the sigmoid function, a generalized logistic function [4] 
that better controls the scale and shape of the function is used, 
as in (3). 
 

f x  
.

              (3) 

 
where, ‘c’ is a value which depends on the value of the 
function when f(x) = 0; Parameters b, c, and f govern the scale 
and shape of the function. 

The optimal set of parameter values (a, b, c, d, f) can be 
generated by non-linear optimization on the historic Loss-

Triangle data, which can then be used for generating the loss 
rate projection to ultimate, at which point the function is an 
asymptote. Borrowing from the Spline-fitting method, we also 
force the calculated f(x) to be >= the observed last available 
roll rate to ensure that there is no inconsistency between the 
last diagonal of the triangle and the projected part of the 
sigmoid curve. For our case, the loss triangle data for each of 
the accident period and development period is used. The 
optimal set of parameters are fit on the observed cumulative 
claim roll rate or frequency f(x) based on the observed historic 
claim rate, expressed as a function of development, or 
seasoning of the cohort ‘x’. 

Although a logistic function addresses the non-linearity and 
asymptote (mean reversion) features, the approach might still 
generate an asymptote that is either too low or too high, 
especially for accident years with little seasoning and (or) 
abnormal ETD loss development. To overcome this problem, 
we tried two approaches: leveraging the first derivative of the 
logistic function and forcing four prior cohort average 
asymptotes as an additional constraint during optimization for 
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cohorts that are seasoned less than eight periods. The first 
derivative of the logistic is also known as the Hubbert’s Curve 
[7], which was used during the 1950’s to model the production 
and growth rates of oil. Hubbert used the first derivative of the 
logistic function to model production rate as a function of 
time. The justification is that curve fitting to model physical 
phenomena is subjective, unless the resulting functions are 
useful and meet some first principles based on fundamental 
dynamics [7].  

The first derivative of the logistic function (3) is: 
 

𝑓 . . .

.
               (4) 

 
For the Loss Rate Projection of each development period 

for each cohort, we first compute the projected loss rate using 

both the logistic function, as well as the derivative of the 
logistic function. Taking the maximum of the two values at 
each projection point ensures that ETD Loss Rate at 
development period j is always less than the projected loss rate 
at development period j+1.  

After careful comparison and review of the results from the 
two approaches, we ended up using the second method of 
forcing a priori asymptote for unseasoned cohorts, as this 
ensured the best fit for all the available historic data points, 
while tracking a sigmoid function with an a priori asymptote 
reflecting recent mature cohort experience. We call this the 
Hybrid Sigmoid approach (HS), which models the asymptote 
for the ultimate while capturing the impact of exogenous 
economic factors that can impact roll rates at different points 
in time for the various cohorts. 

 

 

Fig. 4 Cumulative Delinquency-to-Claim Roll Rate Triangle (Training and Testing Data) 
 

 

Fig. 5 Cumulative Delinquency-to-Claim Roll Rate Development by Delinquency Cohort 
 

Per‐0 Per‐1 Per‐2 Per‐3 Per‐4 Per‐5 Per‐6 Per‐7 Per‐8 Per‐9 Per‐10 Per‐11 Per‐12 Per‐13 Per‐14 Per‐15 Per‐16 Per‐17 Per‐18 Per‐19 Per‐20 Per‐21 Per‐22 Per‐23

Cohort‐1 0% 0% 0% 2% 5% 8% 15% 27% 31% 34% 35% 36% 36% 38% 39% 39% 40% 42% 43% 44% 44% 44% 44% 44%

Cohort‐2 0% 0% 2% 5% 7% 12% 22% 27% 29% 30% 32% 35% 37% 38% 39% 39% 41% 43% 44% 44% 45% 45% 45% 45%

Cohort‐3 0% 1% 4% 5% 9% 16% 20% 23% 25% 27% 33% 36% 38% 39% 39% 41% 43% 43% 43% 45% 46% 46% 47% 48%

Cohort‐4 0% 0% 1% 4% 10% 13% 16% 18% 21% 28% 33% 35% 36% 37% 38% 40% 41% 42% 43% 45% 45% 46% 46%

Cohort‐5 0% 0% 2% 6% 11% 15% 17% 19% 26% 30% 32% 34% 36% 37% 39% 40% 41% 44% 45% 46% 47% 47%

Cohort‐6 0% 0% 3% 7% 10% 12% 14% 17% 21% 24% 26% 29% 30% 33% 36% 39% 41% 43% 43% 44% 46%

Cohort‐7 0% 1% 3% 5% 8% 9% 11% 14% 16% 19% 23% 25% 29% 34% 36% 39% 41% 42% 44% 45%

Cohort‐8 0% 0% 2% 5% 6% 9% 11% 14% 18% 22% 26% 30% 35% 38% 40% 42% 43% 45% 46%

Cohort‐9 0% 0% 2% 4% 6% 8% 12% 17% 23% 27% 31% 36% 40% 41% 42% 44% 46% 47%

Cohort‐10 0% 0% 1% 3% 4% 7% 12% 19% 22% 27% 33% 38% 39% 41% 42% 43% 44%

Cohort‐11 0% 0% 0% 1% 2% 7% 14% 17% 22% 28% 33% 36% 37% 39% 41% 41%

Cohort‐12 0% 0% 1% 2% 7% 16% 18% 24% 30% 34% 36% 37% 40% 42% 43%

Cohort‐13 0% 0% 1% 5% 14% 21% 29% 36% 41% 43% 45% 46% 49% 50%

Cohort‐14 0% 1% 5% 14% 23% 35% 44% 49% 52% 54% 56% 57% 58%

Cohort‐15 0% 1% 5% 14% 25% 41% 47% 50% 52% 55% 57% 57%

Cohort‐16 0% 1% 6% 13% 32% 42% 47% 49% 51% 54% 54%

Cohort‐17 0% 0% 2% 17% 27% 36% 40% 42% 44% 44%

Cohort‐18 0% 1% 7% 13% 20% 26% 29% 32% 33%

Cohort‐19 0% 2% 5% 10% 17% 22% 26% 28% Training

Cohort‐20 0% 1% 4% 10% 18% 24% 26% Testing

Cohort‐21 0% 1% 6% 13% 21% 25% Excluded

Cohort‐22 0% 2% 8% 16% 20%

Cohort‐23 0.0% 1.9% 8.9% 14.0%

Cohort‐24 0.0% 2.7% 6.0%

Cohort‐25 0.0% 0.7%
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Fig. 6 Incremental Delinquency-Claim Roll Rate Development by Delinquency Cohort 
 

 

Fig. 7 GRG Solver Optimal Parameters – Summary Statistics 

III. DATA AND ASSUMPTIONS 

Comparative analysis of the claim frequency projections 
under the CL, BF, and proposed approach (HS) was performed 
on the MI delinquency and claim data. The Loss Development 
Triangle (Cumulative Delinquency-to-Claim Roll Rate), as 
shown in Fig. 4, comprises of 25 accident periods, and 23 
development periods for the oldest accident cohort. While all 
the data are used for finding the optimal parameters, last three 
diagonals (3 periods) are removed for back testing the 
projected cumulative claim rate under the three methods. Out 
of the 22 delinquency cohorts, about 2-3 cohorts are fully 
developed to ultimate, exhibiting an asymptote; however, 
evaluating the claim triangle reveals that the more recent 
cohorts have adverse early development compared to the 
earlier cohorts. 

 

 

Fig. 8 Optimized Sigmoid Roll Rate Function & Sigmoid Derivative 
 

The last three cohorts (cohort 23, 24, 25) have been 
excluded from the training purpose as they are extremely low-
seasoned. The corresponding Cumulative Delinquency-to-
Claim Roll Rates are illustrated in a Vintage Analysis Chart in 
Fig. 5. 

It is evident that the recent cohorts have less development 
experience but have higher roll rate, and most of the cohorts 
that are seasoned beyond 10 periods are exhibiting signs of an 
asymptote. The corresponding incremental Roll Rate is 
illustrated in Fig. 6.  

As noted earlier, the incremental roll rate development also 
exhibits volatility, especially stemming from the recent 
delinquency cohorts. 

CL and BF projections of the lower triangle are developed 
as discussed in the methodology section earlier. The optimal 
HS parameters were obtained by using the Upper Triangle 
data in MS Excel by applying the Generalized Reduced 
Gradient (GRG) solver. Since GRG is a smooth nonlinear 
method [2], which is sensitive to initial conditions, appropriate 
bounds were placed on the parameter values through iterative 
testing to ensure a global minimum is reached (Engineer 
Excel, 2016) rather than the local minimum. The GRG method 
evaluates the gradient or slope of the objective function as 
inputs to determine the optimum solution by setting partial 
derivative(s) = 0. The optimal parameter values are obtained 
by minimizing the sum of squared errors (SSE) between the 
observed and calculated delinquency to claim roll rate for all 
the data points in the upper claim triangle. Also, the 
parameters were relatively stable, as illustrated by the 
summary statistics in Fig. 7, especially the coefficient of 
variation. Of all the parameters, parameter d, which reflects 
the growth rate or steepness of the sigmoid function, had the 
highest coefficient of variation. This is precisely the reason 
that linear approaches like CL and BF fail to accurately model 
the loss development pattern more accurately. 
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Fig. 9 Comparison of Model Projections (CL, BF, HS) & ACT 
 

 

Fig. 10 Comparative of Projections from Various Techniques (CL, BF, HS) by Varying Seasoning 
 

Although parameters were developed and used at a cohort-
level, for the illustration of generalizability, the average 
parameter set is used for sigmoid and sigmoid-derivative 
functions. The average parameters for the logistic function 
result in an asymptote for ultimate roll rate at about 48% (38th 
development period), and peak roll rate change of 2.26% at 
18th development period. The asymptote of ~ 48% is the direct 
result of older delinquency cohorts (more data points) with 
relatively benign experience. The resulting logistic function 
and derivative function are shown in Fig. 8. 

IV. RESULTS AND DISCUSSION 

Results from selected delinquency cohorts seasoned by 
development periods, 4, 6, 10, 14, 18, are used to provide a 
comparison of projections to ultimate, among CL, BF, and HS 
approaches, along with actuals (ACT). The results of the back 
test are shown in Fig. 9. 

As shown in Fig. 9, both CL and BF techniques overshoot, 
compared to the actuals or HS projections, more so for cohorts 
seasoned less than 10 periods. As noted earlier, this data set 
has the ETD performance of cohorts covering 4 periods, way 

Method & Seasoning 

Period (Per) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Act_18 Per Seasoned 0% 0% 2% 5% 6% 9% 11% 14% 18% 22% 26% 30% 35% 38% 40% 42% 43% 45% 46%

CL_18 Per Seasoned 46% 47% 48% 49% 50% 51%

BF_18 Per Seasoned 46% 47% 48% 49% 50% 51%

Logistic_18 Per Seasoned 46% 47% 47% 47% 48% 48%

Act_14 Per Seasoned 0% 0% 1% 2% 7% 16% 18% 24% 30% 34% 36% 37% 40% 42% 43%

CL_14 Per Seasoned 43% 45% 46% 48% 49% 51% 52% 52% 53% 54%

BF_14 Per Seasoned 43% 45% 46% 48% 49% 51% 52% 52% 53% 54%

Logistic_14 Per Seasoned 43% 43% 43% 44% 44% 44% 44% 44% 44% 44%

Act_10 Per Seasoned 0% 1% 6% 13% 32% 42% 47% 49% 51% 54% 54%

CL_10 Per Seasoned 54% 58% 62% 65% 68% 70% 73% 75% 77% 79% 81% 82% 84% 85%

BF_10 Per Seasoned 54% 56% 59% 61% 63% 64% 66% 68% 69% 70% 71% 72% 73% 73%

Logistic_10 Per Seasoned 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54%

Act_6 Per Seasoned 0% 1% 4% 10% 18% 24% 26%

CL_6 Per Seasoned 26% 30% 34% 38% 42% 46% 49% 51% 53% 56% 58% 59% 61% 63% 64% 65% 66% 67%

BF_6 Per Seasoned 26% 29% 33% 36% 39% 42% 44% 46% 48% 50% 52% 53% 54% 56% 57% 57% 58% 59%

Logistic_6 Per Seasoned 24% 29% 36% 41% 45% 47% 49% 49% 50% 50% 50% 50% 50% 51% 51% 51% 51% 51% 51%

Act_4 Per Seasoned 0% 2% 8% 16% 20%

CL_4 Per Seasoned 20% 28% 33% 38% 43% 48% 54% 58% 61% 64% 67% 70% 73% 75% 77% 79% 81% 82% 83% 85%

BF_4 Per Seasoned 20% 25% 28% 32% 35% 38% 42% 44% 47% 49% 50% 52% 54% 55% 57% 58% 59% 60% 61% 61%

Logistic_4 Per Seasoned 16% 22% 31% 38% 44% 47% 49% 50% 50% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51%
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above that of other cohorts observed at similar development 
times. This results in CL and BF techniques projecting very 
high Ultimate Roll Rates. The HS technique alleviates the 
problem of ever-increasing roll rate, even past 23 development 
periods that both CL and BF techniques exhibit by reaching a 
reasonable asymptote. However, the HS technique tracked 
more closely with the slope of the actuals, compare Fig. 10. 

V. SUMMARY AND CONCLUSIONS 

Although CL, ELR, and BF methods are some of the most 
used actuarial reserving techniques in general insurance, they 
make a linearity assumption and/or a priori assumptions. At 
times, this results in very high ultimate loss rate (roll rate in 
our example) that will be applied for reserve estimation. The 
proposed approach of combining a Logistic function with 
asymptote assumptions for nascent cohorts simultaneously 
addresses the issues of non-linearity in loss development, 
avoiding the a priori assumption (as in BF), while still 
generating an asymptote that is expected due to the inherent 
parametric sigmoidal behavior of the loss development. The 
proposed HS approach incorporates the influence of the 
exogenous effects like economic conditions during the 
development to ultimate parametrically, unlike the traditional 
reserving methods. This is technically more meaningful 
because some development periods might experience an 
economic stress, but relying on that as a trend for ultimate 
projections is unreasonable. By using a sample MI claim 
development dataset, Ultimate Claim Frequency (for 
Reserving) estimated through the proposed approach is shown 
to be more stable (mean reverting roll rate change) while fully 
considering the cumulative loss development experience for 
each homogeneous delinquency group/cohort, compared to the 
CL and BF techniques. Results from a back-test performed for 
four cohorts that differ by seasoning has shown that, while the 
proposed technique performed reasonably well in generating 
an asymptote for loss rate, the projections in the back-test 
period came slightly under the actuals. In summary, the 
proposed technique offers a promising alternative to CL and 
BF techniques by modeling non-linearity in an explicit 
manner.  
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