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 
Abstract—Spatial Augmented Reality is a variation of 

Augmented Reality where the Head-Mounted Display is not required. 
This variation of Augmented Reality is useful in cases where the 
need for a Head-Mounted Display itself is a limitation. To achieve 
this, Spatial Augmented Reality techniques substitute the 
technological elements of Augmented Reality; the virtual world is 
projected onto a physical surface. To create an interactive spatial 
augmented experience, the application must be aware of the spatial 
relations that exist between its core elements. In this case, the core 
elements are referred to as a projection system and an input system, 
and the process to achieve this spatial awareness is called system 
calibration. The Spatial Augmented Reality system is considered 
calibrated if the projected virtual world scale is similar to the real-
world scale, meaning that a virtual object will maintain its perceived 
dimensions when projected to the real world. Also, the input system 
is calibrated if the application knows the relative position of a point 
in the projection plane and the RGB-depth sensor origin point. Any 
kind of projection technology can be used, light-based projectors, 
close-range projectors, and screens, as long as it complies with the 
defined constraints; the method was tested on different 
configurations. The proposed procedure does not rely on a physical 
marker, minimizing the human intervention on the process. The tests 
are made using a Kinect V2 as an input sensor and several projection 
devices. In order to test the method, the constraints defined were 
applied to a variety of physical configurations; once the method was 
executed, some variables were obtained to measure the method 
performance. It was demonstrated that the method obtained can solve 
different arrangements, giving the user a wide range of setup 
possibilities. 

 
Keywords—Color depth sensor, human computer interface, 

interactive surface, spatial augmented reality.  

I. INTRODUCTION 

IRTUAL, augmented and mixed reality technologies 
(VR, AR, MR respectively) are revolutionizing the way 

humans interact with software. Companies, like Samsung, 
Microsoft, Facebook, Google, Unity among others, are 
investing in the development of these technologies, in both 
software and hardware. Currently, the are many applications 
for VR, AR and MR technologies, in fields like medicine, 
education, research, architecture, and entertainment [1]-[3]. 
Every system has its limitations, ranging from wired headsets, 
the need for external devices for motion tracking, low battery 
life, low process power, the requirement of complementary 
devices for interaction with the system itself among others. 
The need off using a head mounted display (HMD) can be a 
limitation for applying an AR solution, these prerequisite 
limits the access to the system and adds an extra step for its 
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use. 
Spatial augmented reality (SAR) uses other kinds of 

technologies to provide a different type of AR experience. 
SAR implementation is convenient for applying AR into 
solutions where the need of an HDM is a drawback [2]. To 
achieve this, SAR must substitute all the technological 
elements of AR, namely a projection device and an input 
method. For the system to work properly, the input and 
projection elements must be calibrated, which is the focus of 
this research. For the input is used an RGB-D capture device, 
namely, a Kinect v2 [4]. Depth sensors, such as the Kinect, 
provide depth images that can be converted into a point cloud. 
In this case, the point cloud is a representation in 3D points of 
the scene that the sensor is capturing in real-world measures. 
Using the color to depth correspondence calibration of the 
sensor, a colored mesh of the environment can be created, this 
capability is fundamental for the approach. The accuracy of 
the point cloud depends on the sensor itself, its resolution, 
depth map capture technology, and calibration.  

The solution was implemented using Unity3d as the 
development environment. Unity is one of the most popular 
game engines available for both professional and hobbyist 
game developers [5]. It has multiplatform compiling 
capabilities and great integration for creating VR, AR and MR 
applications. For the color image processing, also Open 
Source Computer Vision (OpenCV) was used [6]. OpenCV is 
a popular library that implements computer vision algorithms 
and it has wrappers to several programming languages and 
platforms, in this case, the OpenCV for Unity plugin from 
Unity Assets Store was used. This plugin implements 
functionalities for generating and detecting ArUco markers 
[7], [8] that are fundamental in the approach.  

Similar studies have been made [9], [10], this approach 
differs in the absence of a physical marker. This allows a 
solution that is easier to implement, minimizing effort, 
resources and human intervention in the process. 

II. CALIBRATION METHOD DESCRIPTION  

The projector is calibrated if the dimensions of a virtual 
object match its real-world projected dimensions. In this case, 
a depth sensor is calibrated when the spatial relation between 
the sensor point cloud coordinates and a point in the projection 
plane is known. 

A. Method Constrains 

The first step is defining a setup for the projector and input 
sensor. There are some constraints that are basic for designing 
the configuration, those are: 
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1. The projection surface must be flat.  
2. The depth sensor color-depth calibration must be correct. 
3. A part of the projection area must be visible by the input 

system depth and color streams. 
4. The color stream of the input system must be able to 

detect an ArUco marker in the projection area. 
5. The positions of the projection and the input sensor must 

be static. 
The first requirement is established because the reference 

system used for calibrating the depth sensor and projector 
relies on a plane. The plane is computed selecting points in the 
scene point cloud and assessing how well they fit a plane. The 
points are selected searching an ArUco marker in the color 
stream of the RGB-D sensor. We also recommend minimizing 
the distortion in the projection for better calibration. 

In the case of the second requirement, the user must check 
if the calibration of the color stream and the depth stream is 
correct meaning that the correspondence of a depth map pixel 
and a color map pixel can be obtained in an accurate manner. 

The third requirement refers to the color-depth cameras 
being able to capture a part, or all of the projection area. If the 
projection viewed area by the color-depth sensor is not 
sufficient the calibration algorithm will not converge. Also, in 
some cases the depth stream is not able to capture some areas 
of the scene, leaving holes in the depth map (see Fig. 3). In 
any case, those limitations are out of the scope of this 
research.  

The fourth constraint is related to the successful detection 
of an ArUco marker in the RGB-D sensor color stream. As 
part of the algorithm, an ArUco marker is displayed by the 
projector into a flat surface, and captured by the color stream 
of the input sensor. The ArUco detection algorithm can fail if 
the captured image is blurry, the marker area in the image is 
too small, or the ArUco shape is not well defined, which can 
be the case if the projector is too bright. To solve these issues, 
it is recommended to minimize the distance between the 
sensor and the projection plane and adjust the brightness and 
focus of the projections system.  

The fifth constraint is a basic one, if there is a displacement 
on the input sensor or the projector sensor the whole system 
will be un-calibrated.  

If the first and second requirements are not met the 
calibration may not be correct. The third and fourth 
requirements are related, if they are not met, the calibration 
algorithm will not converge. It is also suggested to minimize 
the occlusion in the field of view of the input sensor removing 
objects that are between the depth sensor and the projection 
plane. 

B. Environment Setup 

The following physical configuration is recommended to 
increase the calibration quality. The depth sensor is placed 
looking down at the projection plane at an inclination of 
approximately 30 degrees. It is not necessary to have the input 
and projector perfectly aligned, as stated earlier, the 
calibration algorithms take care of finding the relative 
positions of the input system and the projection plane. The 

center of the Kinect is approximately 250 cm of the projection 
plane, the distance between the depth sensor and the wall 
depends on the capabilities of the depth sensor and the needs 
of the application. Any distance is valid as long as the 
requirement 3 and requirement 4 are fulfilled. 

 

 

Fig. 1 Screen projection and input sensor system configuration 
example 

 
The environment setup is represented in Fig. 1. One of the 

advantages of this proposal is the flexibility in the physical 
configuration of it, meaning that the depth sensor and 
projector can be placed in a wide variety of arrangements. Fig. 
1 shows the target setup, but other configurations were tested 
during the investigation progress. This configuration is 
preferred because it reduces the occlusion and maximizes the 
projection area captured by the Kinect sensor which will 
increase the interaction area of the application and is less 
space invasive when assembled. Figs. 2 (a) and (b) show other 
examples of useful setup, using close-range and a light base 
projector respectively. 

 

 

(a)              (b) 

Fig. 2 (a) Configuration using near range projection and unaligned 
input sensor, (b) Configuration using a light base projector and 

unaligned input sensor 

C. Method Description 

The method consists of six steps and nine input parameters. 
These parameters can be adjusted to get a good result 
depending on the user configuration. The input parameters are: 
1. ArUco Marker Id 
2. ArUco Marker dictionary 
3. Maximum ArUco screen size 

Input Sensor 

Input Sensor Field of 
View 

Projection plane 
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4. Minimum ArUco screen size 
5. ArUco screen size iteration step decrease 
6. Minimum allowed ArUco real size 
7. Plane capture iteration count 
8. Plane subdivision count 
9. Plane fit maximum allowed error 

The marker and the dictionary used are given by the user; 
by default it sets the ArUco id one with the dictionary 4X4_50 
from OpenCV. Any other dictionary or ArUco id can be used; 
a different selection can modify the time taken to detect the 
marker. Once these are defined OpenCV can generate a 
texture with the ArUco marker. The marker texture is applied 
to a quad mesh in Unity. The parameters Maximum ArUco 
screen size, Minimum ArUco screen size, and ArUco screen 
size iteration step decrease are used by the algorithm to iterate 
the markers quad size through the algorithms lifetime. The 
marker size parameter is referred to as the reason between a 
side of the marker square and the minimum side of the 
projection rectangle. Meaning, the ArUco size is a normalized 
measure, going from zero to one. When the ArUco size is one, 
the ArUco is displayed as the maximum physical size possible 
in the projection. The marker size iteration is done from 
maximum to minimum using the step decrease as the 
reduction value. This will increase the chance of a better 
calibration. Since the projection plane dimensions are 
unknown, the minimum allowed ArUco real size is settled to 
be a threshold of the permissible size of the ArUco marker in 
real-world dimensions. The plane capture iteration count 
defines the number of depth frames used to obtain the 
candidate marker plane; this parameter is used in the third step 
of the algorithm. The plane subdivision count defines the 
number of points taken from the point cloud to generate the 
plane of the marker. If this parameter is zero, the four corners 
of the marker quad will be used for computing the plane. Once 
the input points are obtained we fit a plane to them; this will 
be discussed later. The point cloud and the fitted plane are 
compared to determine the difference between them. The 
plane fit maximum allowed error parameter quantifies the 
maximum difference allowed between the plane and the point 
cloud selected, this parameter is measured in meters, for real-
world scale. 

The process steps are described as follows: 
1. Display the ArUco marker at a given position and size in 

the projection plane 
2. Generate an area patch from the ArUco marker corners 
3. Obtain a surface point cloud from the area patch 
4. Plane fit to surface point cloud 
5. Compute virtual camera position and scale 
6. Compute input sensor transformation matrix relative to 

ArUco marker origin 
Step one displays the ArUco marker using the projection 

system in the projection plane, at a given position and random 
size. This step is the beginning of the search iteration. In every 
iteration, the marker is positioned in a grid point. The grid is 
generated using the projection plane dimensions and the 
current marker size. The position’s grid describes different 
points where the marker is displayed completely in an 

ordained fashion. The algorithm will require to repeat this step 
if the calibration cannot be achieved. On each call, this step 
will return a different grid point, if all the points on the grid 
are used, this step will decrease the marker size and generate a 
new grid. The algorithm will fail if all points for al marker 
sizes are tested and not converged. 

On step two, the color stream of the depth sensor is used to 
record the projected image and search for the ArUco marker 
on it. If the ArUco marker is not found, the iteration breaks 
and starts again in step one. Once the ArUco marker is found 
OpenCV provides the pixel coordinates of the marker corners. 
The marker corner is used to generate a Coons patch [11]. The 
patch depends on the plane subdivision count, the amount of 
points in the patch equals to the plane subdivision count plus 
two squared. At this point, the patch generates a uniform 2D 
point array inside the area of the marker, includes the marker 
corners detected by OpenCV.  

Step three uses the RGB to depth correspondence 
transformation from the input sensor to know the depth values 
of the 2D points obtained in step two. In some cases, the depth 
sensor will not be able to compute the depth of a region of the 
image, see Fig. 3. If the depth of any patch point cannot be 
found the algorithms return to step one. 

 

 

Fig. 3 Kinect scene reconstruction with a hole in the projection plane 
 

Since the Kinect and other depth sensors have an error 
margin in capturing the depth map, we determinate the final 
depth of a point as the average of several depths captures for 
that point. As said before, the plane capture iteration count 
input parameter defines the amount of frames depth frames 
used in this operation. The Kinect sensor can make around 30 
depth captures by second. 

Once the depth values of the patch points are known, their 
relative position to the sensor origin in real-world measures 
can be reconstructed. Via least square error method [12], a 
plane is fitted to the resulting point cloud. In this case, the z-
normal of the solution is constrained to one since it is known 
that the points are arranged in a plane in front of the sensor. 
The distance between each point of the patch point cloud and 
the closest point in the fitted plane must be less than the plane 
fit maximum allowed error input parameter. If that condition 
is not met, the algorithm breaks and jumps to step one.  

The first requirement stated is the projection surface to be 
flat, from that assumption the algorithm searches for a plane. 
But depending on the input sensor capabilities the captured 
plane could not be a plane at all, in the case of the Kinect V2, 
the depth stream is affected by reflectance and light-emissive 
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surface, like a led based display. Figs. 4 (a) and (b) illustrate 
examples of this case. It is recommended displaying the scene 
mesh to ensure that the captured projection plane is, in fact, a 
plane surface or at least some area of it is plane. The algorithm 
will search for this plane area and used it as a calibration 
reference for the next steps. 

 

 

(a)              (b) 

Fig. 4 (a) and (b) Kinect V2 point cloud reconstruction errors of flat 
led screen 

 
The plane fit maximum allowed error parameter is used as a 

real-world measure of how non-flat the captured points are 
allowed it to be. Also we notice that it is more likely to find a 
wrong solution if the marker area is small. Fixing the z normal 
coordinate of the plane fit method works as a configuration 
regulator since it is most likely to obtain better results if the 
input system is perpendicular to the projection plane. 

In step five, the virtual camera scale is calibrated; this 
means that a virtual object will maintain its dimensions in the 
real-world through the projection plane. On finishing this step, 
a virtual sphere of 50 cm radius will be displayed on that same 
screen size, independent of the projection plane dimensions. 
For this research is used a virtual orthogonal camera; this kind 
of projection does not distort the perceived size of an object 
upon distance. In unity, orthogonal cameras use an 
orthographic size to regulate the frustum. By changing the 
orthographic size of the camera the perceived size of an object 
in the projection is changed.  

From the patch plane points, the dimensions of the marker 
in the real world can be computed as the average of the patch 
side distance. A scene scale ratio (SSR) is computed using the 
relation between the marker real size and the marker virtual 
size. An orthogonal camera was used in the previous steps to 
display the marker prefab in the projection plane. The target 
display camera orthographic size (TOS) equals to the marker 
display camera orthographic size (MOS) multiplied by SSR, 
see (1). The target display camera position is constrained to 
the (0, 0, -1) position and oriented to the virtual world origin 
of coordinates with the up vector of (0, 1, 0). 

 

.* SSRMOSTOS            (1) 
 
At the final step, the input sensor and the projection plane 

relative positions and rotations are solved. A reference 
Cartesian origin is created from the fitted plane, as shown in 
Fig. 5. The origin of the reference point is the points cloud 
center. The depth edge of the reference origin is the normal of 
the fitted plane. The vertical orientation vector is computed 
from the marker corners of vertical vectors. 

 

Fig. 5 Reference origin point, depth vector in green, blue vertical 
vector 

 
A hierarchy is created to facilitate the position and rotation 

extraction. This hierarchy is composed of two elements: A 
parent coordinate system (P) will represent the marker 
position and orientation in the virtual scene and a child 
coordinate system (C) will represent the sensor position and 
orientation in the virtual scene. The P coordinate system is 
placed at the Cartesian reference origin position. Then, P is 
transformed to gaze the depth vector of the Cartesian edge and 
the vertical orientation vector is used as the up world vector of 
the method. Next, C is placed in the zero vector position and 
zero quaternion rotation in global coordinates. At this point, 
the transformations are as displayed in Fig. 6.  

 

 

Fig. 6 Marker point (P), input sensor point (C) and scene point cloud 
representation. Marker to sensor relative position and relative 

orientation solved 
 

The red cube represents the position and orientation of P, 
the marker in the point cloud. Each point cloud position is 
relative to the input sensor, in this case, the sensor is located in 
the virtual world origin, C position and rotation is represented 
by the green box. Later, the parent is placed and rotated as the 
relative position of the marker in the display camera. C will 
maintain its relative position and rotation to the P after the last 
one is transformed. As the display camera was fixed in (0, 0, -

Depth vector 

Vertical vector 

Reference origin 
point 

Depth vector
Vertical vector 

P point C point
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1) and its orientation to look at (0, 0, 0) with an up vector of 
(0, 1, 0) the marker relative position to this camera, marker 
scaled position (MSP) is computed in the following way: 

 

.* SSCMDPMSP             (2) 
 

where MDP is the marker relative position to the render 
marker camera and SSC is the scene scale ratio computed in 
the previous step. 

III. ALGORITHM TEST DESCRIPTION AND ANALYSIS  

Three tests were made to test the method. Two of them use 
a near-range laser projector and the other uses a 50’’ OLED 
display. All captures were made using the Kinect sensor 
version 2. The first two tests use a configuration similar to the 
one described in Fig. 1. On each test iteration, the distance of 
the sensor to the display was increased by approximately 500 
cm. For the first test, a near-range laser projector was used, 
obtaining samples from 1.5 m to 4 m.  

The second test was similar to the first, changing the 
display to a 50 inches OLED display. In this case, the 
algorithm could converge only in distances between one meter 
and 2.5 meters. The third test was made using the near-range 
laser projector in a random Kinect position-rotation 
configuration. The calibration configuration parameters for all 
tests were as described in the Table I. 

Result variables captured on each test iteration are:  
 Sensor distance to display Surface 
 Plane fit determinant 
 Plane fit error average 
 Converge marker size 
 Sensor Euler angles 

Plane fit determinant and plane fit error is the value of this 
parameter at the end of the execution. Converge marker size is 
the size in real-world scale of the marker side when the 
calibration converged. The Sensor Euler angles contain the 
global rotation of the sensor in Euler angles, by axis, after the 
calibration is made. Furthermore, the projections plane is 
calibrated and the re-projection of the user can be seen 
matching the real world, meaning that the calibration was 
correctly done.  

A. Results Discussion 

In Fig. 7, there is an example of a calibration made on the 
experiment. The position of the Kinect sensor and the 
projection plane in the real-world and the virtual-world solved 
result can be seen. 

Table II shows the results of the first test, using the near-
range laser projection and increasing the distance between the 
sensor and the projection surface as described before. Notice 
that there is a minimum change on the Euler angles parameters 
as expected for this experiment.  

It is important to analyze the correlation between the result 
variables. As stated before, the plane fit determinant and plane 
fit error average are indicators of the quality of the calibration. 
The ground truth is unknown, so it is not possible to compare 

the results obtained by the calibration.  
 

TABLE I 
CALIBRATION PARAMETERS OF TESTS 

Parameters Value 

ArUco Marker Id 5 

ArUco Marker dictionary DICT_4X4_50 

Maximum ArUco screen size 0.6 

Minimum ArUco screen size 0.1 

ArUco screen size iteration step decrease 0.05 

Minimum allowed ArUco real size 0.02 

Plane capture iteration count 10 

Plane subdivision count 3 

Plane fit maximum allowed error 0.005 

 

The greater linear correlation found in this test was between 
the plane fit determinant variable and the converge marker 
size with a value of 0.928 [12]. The other correlation worth 
mentioning is between the sensor distance and the error 
average, indicating that the error will increase as the distance 
of the sensor to the display plane increases. This behavior 
matches the Kinect sensor specification, meaning that the error 
on the depth map increases with the distance to the surface. 
The correlation between the plane fit determinant and the 
sensor distance was also high with a value of 0.62 supporting 
the distance importance to the calibration process. 

There was a low correlation between the plane fit error and 
the plane fit determinant and also between the plane fit error 
and the converge marker size indicating that for this test the 
error did no change much, in general the calibrations were 
good. Fig. 7 shows the result parameters of the first test, every 
parameter in this chart is normalized so the correlation 
between them can be seen more easily. 

The results for the second experiment are displayed on 
Table III. In this case, the Kinect Depth Map is affected by the 
change on the display in a similar fashion as the artifacts 
shown in Figs. 3 and 4. Also the display area is smaller. These 
conditions affected the results of tests; the system was able to 
converge on a maximum of 2.5 m. Fig. 8 shows the 
normalized variation of the results on the second test. In this 
case there is also a strong positive correlation between the 
sensor distance result and the plane fit determinant. We see an 
increase on the positive correlation between the plane fit error 
average variable and the plane fit determinant variable due to 
the Kinect depth map error being more affected by the 
elements’ positions. Also the error average increased with the 
marker size. Likewise, it is interesting that there is a strong 
negative correlation between the variable sensor distance and 
the variables plane fit determinant, plane fit average error and 
converge marker size with values of -0.86, -0.76 and -0.88, 
respectably. Oddly in this test, the distance improved the error 
and fit determinant but the real marker size decreased on each 
iteration. The deformation displayed on Fig. 4 gives an 
indicator of this problem, planes can be found in smaller part 
of the display surface, the minimum allowed ArUco real size 
configuration parameter is designed to mitigate this situation.  
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TABLE II 
RESULTS OF THE FIRST CONFIGURATION TEST 

Iteration Sensor Distance Plane fit determinant Plane fit error average Converge marker size Euler Angles X Euler Angles Y Euler Angles Z 

1 1040 0.10437 0.00075 0.32795 16.51034 179.89840 356.44040 

2 1496 0.97690 0.00092 0.57759 17.73703 181.68660 357.46080 

3 2008 1.02351 0.00073 0.58424 17.62832 181.98830 356.89700 

4 2516 1.70056 0.00117 0.66339 17.24300 187.28320 357.30370 

5 3002 2.78366 0.00061 0.74705 14.59960 170.54790 347.13880 

6 3505 3.02110 0.00185 0.75156 0.810952 170.46880 353.73780 

7 4046 1.05997 0.00173 0.57284 0.927804 183.93000 354.11470 

 
TABLE III 

CORRELATION OF NEAR-RANGE LASER PROJECTION TEST RESULTS 

Linear Correlations Plane fit determinant Plane fit error average Converge marker size Sensor Distance Euler Angles X Euler Angles Y 

Plane fit determinant - - - - - - 

Plane fit error average 0.58536 - - - - - 

Converge marker size 0.91082 0.59918 - - - - 

Sensor Distance 0.40760 0.66044 0.42089 - - - 

Euler Angles X 0.04303 -0.04852 -0.00490 -0.26472 - - 

Euler Angles Y -0.36043 -0.00995 -0.40920 0.20916 -0.15598 - 

Euler Angles Z 0.40760 -0.03113 0.29801 -0.16697 -0.27894 -0.11541 

 

 

Fig. 7 Normalized results variables of the first test 
 

From the results of the second test, it can be concluded that 
the method can be applied to OLED displays, but the 
deformations occasioned in the depth map need to be taken 
into count. Also the configuration parameters need to be more 
demanding for obtaining better results. 

From the observation made on the first and second 
experiment, a third test was designed. On this case the near-
range laser projector was used, since it does not affect the 
Kinect sensor input. The physical configuration of this test is 
random, exploring different distances and orientations of the 
sensor. The distance range was from 700 cm to 3700 cm, and 
18 samples were taken.  

Fig. 8 shows the behavior of the variables on the third test, 
the values are normalized so it is easier to see the correlations. 
Fig. 8 also includes the Euler angles behavior. 

For a more accurate computation of the correlation, the 
results of the first test and second test area merged into Table 
III. Once again a strong positive correlation between plane fit 
determinant and the converged market size is displayed. These 
results confirm the direct relation existing among the sensor 
distance and the plane fit determinant, plane fit error average 
and converge marker size variables. The trade-off on the 

distance is that the user will lose interaction area if the sensor 
is closer to the display surface, but will lose accuracy on the 
capture and calibration the further the sensor is from the 
display plane. 

 

 

Fig. 8 Normalized results variables of second test 
 

 

Fig. 9 Obtained variables of third test 
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(a)              (b) 

Fig. 10 SAR system calibrated, example from third test 

IV. CONCLUSIONS 

A solution was to design an easy setup and integrate a SAR 
experience. The implementation was made using Unity 3D, 
one of the most popular virtual reality and augmented reality 
implementation tools and OpenCV, one of the most popular 
computer vision libraries. The solution does not require any 
marker and it is oriented so the implementer has as little 
intervention on the process as possible. The method proposed 
is flexible to changes in physical configurations. The 
implementer can modify the input parameters of the process to 
obtain better results or to adapt to its physical limitations. 
Tests were made using different display technologies 
identifying artifacts that may occur during the implementation. 
An ideal physical configuration was proposed; this 
configuration is the result of the correlation analysis of the 
output results of the process. Figs. 7-9 show the correlation 
between the obtained variables on the third experiment. As 
said before, this experiment was designed with random 
physical configurations. In all variants the algorithm 
converged. 

Finally, Fig. 10 is an example of one of the configurations 
in the third experiment. The real-world elements are shown in 
Fig. 10 (a) and their respective solved 3d-virtual world 
positions and rotations on Fig. 10 (b). The real-world part of 
this image has the user point cloud projected, showing the 
correct calibration of all the elements of the system.  
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