
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

531


Abstract—Spatial Augmented Reality is a variation of

Augmented Reality where the Head-Mounted Display is not required.
This variation of Augmented Reality is useful in cases where the
need for a Head-Mounted Display itself is a limitation. To achieve
this, Spatial Augmented Reality techniques substitute the
technological elements of Augmented Reality; the virtual world is
projected onto a physical surface. To create an interactive spatial
augmented experience, the application must be aware of the spatial
relations that exist between its core elements. In this case, the core
elements are referred to as a projection system and an input system,
and the process to achieve this spatial awareness is called system
calibration. The Spatial Augmented Reality system is considered
calibrated if the projected virtual world scale is similar to the real-
world scale, meaning that a virtual object will maintain its perceived
dimensions when projected to the real world. Also, the input system
is calibrated if the application knows the relative position of a point
in the projection plane and the RGB-depth sensor origin point. Any
kind of projection technology can be used, light-based projectors,
close-range projectors, and screens, as long as it complies with the
defined constraints; the method was tested on different
configurations. The proposed procedure does not rely on a physical
marker, minimizing the human intervention on the process. The tests
are made using a Kinect V2 as an input sensor and several projection
devices. In order to test the method, the constraints defined were
applied to a variety of physical configurations; once the method was
executed, some variables were obtained to measure the method
performance. It was demonstrated that the method obtained can solve
different arrangements, giving the user a wide range of setup
possibilities.

Keywords—Color depth sensor, human computer interface,

interactive surface, spatial augmented reality.

I. INTRODUCTION

IRTUAL, augmented and mixed reality technologies
(VR, AR, MR respectively) are revolutionizing the way

humans interact with software. Companies, like Samsung,
Microsoft, Facebook, Google, Unity among others, are
investing in the development of these technologies, in both
software and hardware. Currently, the are many applications
for VR, AR and MR technologies, in fields like medicine,
education, research, architecture, and entertainment [1]-[3].
Every system has its limitations, ranging from wired headsets,
the need for external devices for motion tracking, low battery
life, low process power, the requirement of complementary
devices for interaction with the system itself among others.
The need off using a head mounted display (HMD) can be a
limitation for applying an AR solution, these prerequisite
limits the access to the system and adds an extra step for its

Roberto Giordano Estrada Leyva is with the Sidia Instituto de Ciência e

Tecnologia, Brazil (e-mail: roberto.leyva@sidia.com).

use.
Spatial augmented reality (SAR) uses other kinds of

technologies to provide a different type of AR experience.
SAR implementation is convenient for applying AR into
solutions where the need of an HDM is a drawback [2]. To
achieve this, SAR must substitute all the technological
elements of AR, namely a projection device and an input
method. For the system to work properly, the input and
projection elements must be calibrated, which is the focus of
this research. For the input is used an RGB-D capture device,
namely, a Kinect v2 [4]. Depth sensors, such as the Kinect,
provide depth images that can be converted into a point cloud.
In this case, the point cloud is a representation in 3D points of
the scene that the sensor is capturing in real-world measures.
Using the color to depth correspondence calibration of the
sensor, a colored mesh of the environment can be created, this
capability is fundamental for the approach. The accuracy of
the point cloud depends on the sensor itself, its resolution,
depth map capture technology, and calibration.

The solution was implemented using Unity3d as the
development environment. Unity is one of the most popular
game engines available for both professional and hobbyist
game developers [5]. It has multiplatform compiling
capabilities and great integration for creating VR, AR and MR
applications. For the color image processing, also Open
Source Computer Vision (OpenCV) was used [6]. OpenCV is
a popular library that implements computer vision algorithms
and it has wrappers to several programming languages and
platforms, in this case, the OpenCV for Unity plugin from
Unity Assets Store was used. This plugin implements
functionalities for generating and detecting ArUco markers
[7], [8] that are fundamental in the approach.

Similar studies have been made [9], [10], this approach
differs in the absence of a physical marker. This allows a
solution that is easier to implement, minimizing effort,
resources and human intervention in the process.

II. CALIBRATION METHOD DESCRIPTION

The projector is calibrated if the dimensions of a virtual
object match its real-world projected dimensions. In this case,
a depth sensor is calibrated when the spatial relation between
the sensor point cloud coordinates and a point in the projection
plane is known.

A. Method Constrains

The first step is defining a setup for the projector and input
sensor. There are some constraints that are basic for designing
the configuration, those are:

Method for Auto-Calibrate Projector and Color-Depth
Systems for Spatial Augmented Reality Applications

R. Estrada, A. Henriquez, R. Becerra, C. Laguna

V

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

532

1. The projection surface must be flat.
2. The depth sensor color-depth calibration must be correct.
3. A part of the projection area must be visible by the input

system depth and color streams.
4. The color stream of the input system must be able to

detect an ArUco marker in the projection area.
5. The positions of the projection and the input sensor must

be static.
The first requirement is established because the reference

system used for calibrating the depth sensor and projector
relies on a plane. The plane is computed selecting points in the
scene point cloud and assessing how well they fit a plane. The
points are selected searching an ArUco marker in the color
stream of the RGB-D sensor. We also recommend minimizing
the distortion in the projection for better calibration.

In the case of the second requirement, the user must check
if the calibration of the color stream and the depth stream is
correct meaning that the correspondence of a depth map pixel
and a color map pixel can be obtained in an accurate manner.

The third requirement refers to the color-depth cameras
being able to capture a part, or all of the projection area. If the
projection viewed area by the color-depth sensor is not
sufficient the calibration algorithm will not converge. Also, in
some cases the depth stream is not able to capture some areas
of the scene, leaving holes in the depth map (see Fig. 3). In
any case, those limitations are out of the scope of this
research.

The fourth constraint is related to the successful detection
of an ArUco marker in the RGB-D sensor color stream. As
part of the algorithm, an ArUco marker is displayed by the
projector into a flat surface, and captured by the color stream
of the input sensor. The ArUco detection algorithm can fail if
the captured image is blurry, the marker area in the image is
too small, or the ArUco shape is not well defined, which can
be the case if the projector is too bright. To solve these issues,
it is recommended to minimize the distance between the
sensor and the projection plane and adjust the brightness and
focus of the projections system.

The fifth constraint is a basic one, if there is a displacement
on the input sensor or the projector sensor the whole system
will be un-calibrated.

If the first and second requirements are not met the
calibration may not be correct. The third and fourth
requirements are related, if they are not met, the calibration
algorithm will not converge. It is also suggested to minimize
the occlusion in the field of view of the input sensor removing
objects that are between the depth sensor and the projection
plane.

B. Environment Setup

The following physical configuration is recommended to
increase the calibration quality. The depth sensor is placed
looking down at the projection plane at an inclination of
approximately 30 degrees. It is not necessary to have the input
and projector perfectly aligned, as stated earlier, the
calibration algorithms take care of finding the relative
positions of the input system and the projection plane. The

center of the Kinect is approximately 250 cm of the projection
plane, the distance between the depth sensor and the wall
depends on the capabilities of the depth sensor and the needs
of the application. Any distance is valid as long as the
requirement 3 and requirement 4 are fulfilled.

Fig. 1 Screen projection and input sensor system configuration
example

The environment setup is represented in Fig. 1. One of the

advantages of this proposal is the flexibility in the physical
configuration of it, meaning that the depth sensor and
projector can be placed in a wide variety of arrangements. Fig.
1 shows the target setup, but other configurations were tested
during the investigation progress. This configuration is
preferred because it reduces the occlusion and maximizes the
projection area captured by the Kinect sensor which will
increase the interaction area of the application and is less
space invasive when assembled. Figs. 2 (a) and (b) show other
examples of useful setup, using close-range and a light base
projector respectively.

(a) (b)

Fig. 2 (a) Configuration using near range projection and unaligned
input sensor, (b) Configuration using a light base projector and

unaligned input sensor

C. Method Description

The method consists of six steps and nine input parameters.
These parameters can be adjusted to get a good result
depending on the user configuration. The input parameters are:
1. ArUco Marker Id
2. ArUco Marker dictionary
3. Maximum ArUco screen size

Input Sensor

Input Sensor Field of
View

Projection plane

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

533

4. Minimum ArUco screen size
5. ArUco screen size iteration step decrease
6. Minimum allowed ArUco real size
7. Plane capture iteration count
8. Plane subdivision count
9. Plane fit maximum allowed error

The marker and the dictionary used are given by the user;
by default it sets the ArUco id one with the dictionary 4X4_50
from OpenCV. Any other dictionary or ArUco id can be used;
a different selection can modify the time taken to detect the
marker. Once these are defined OpenCV can generate a
texture with the ArUco marker. The marker texture is applied
to a quad mesh in Unity. The parameters Maximum ArUco
screen size, Minimum ArUco screen size, and ArUco screen
size iteration step decrease are used by the algorithm to iterate
the markers quad size through the algorithms lifetime. The
marker size parameter is referred to as the reason between a
side of the marker square and the minimum side of the
projection rectangle. Meaning, the ArUco size is a normalized
measure, going from zero to one. When the ArUco size is one,
the ArUco is displayed as the maximum physical size possible
in the projection. The marker size iteration is done from
maximum to minimum using the step decrease as the
reduction value. This will increase the chance of a better
calibration. Since the projection plane dimensions are
unknown, the minimum allowed ArUco real size is settled to
be a threshold of the permissible size of the ArUco marker in
real-world dimensions. The plane capture iteration count
defines the number of depth frames used to obtain the
candidate marker plane; this parameter is used in the third step
of the algorithm. The plane subdivision count defines the
number of points taken from the point cloud to generate the
plane of the marker. If this parameter is zero, the four corners
of the marker quad will be used for computing the plane. Once
the input points are obtained we fit a plane to them; this will
be discussed later. The point cloud and the fitted plane are
compared to determine the difference between them. The
plane fit maximum allowed error parameter quantifies the
maximum difference allowed between the plane and the point
cloud selected, this parameter is measured in meters, for real-
world scale.

The process steps are described as follows:
1. Display the ArUco marker at a given position and size in

the projection plane
2. Generate an area patch from the ArUco marker corners
3. Obtain a surface point cloud from the area patch
4. Plane fit to surface point cloud
5. Compute virtual camera position and scale
6. Compute input sensor transformation matrix relative to

ArUco marker origin
Step one displays the ArUco marker using the projection

system in the projection plane, at a given position and random
size. This step is the beginning of the search iteration. In every
iteration, the marker is positioned in a grid point. The grid is
generated using the projection plane dimensions and the
current marker size. The position’s grid describes different
points where the marker is displayed completely in an

ordained fashion. The algorithm will require to repeat this step
if the calibration cannot be achieved. On each call, this step
will return a different grid point, if all the points on the grid
are used, this step will decrease the marker size and generate a
new grid. The algorithm will fail if all points for al marker
sizes are tested and not converged.

On step two, the color stream of the depth sensor is used to
record the projected image and search for the ArUco marker
on it. If the ArUco marker is not found, the iteration breaks
and starts again in step one. Once the ArUco marker is found
OpenCV provides the pixel coordinates of the marker corners.
The marker corner is used to generate a Coons patch [11]. The
patch depends on the plane subdivision count, the amount of
points in the patch equals to the plane subdivision count plus
two squared. At this point, the patch generates a uniform 2D
point array inside the area of the marker, includes the marker
corners detected by OpenCV.

Step three uses the RGB to depth correspondence
transformation from the input sensor to know the depth values
of the 2D points obtained in step two. In some cases, the depth
sensor will not be able to compute the depth of a region of the
image, see Fig. 3. If the depth of any patch point cannot be
found the algorithms return to step one.

Fig. 3 Kinect scene reconstruction with a hole in the projection plane

Since the Kinect and other depth sensors have an error
margin in capturing the depth map, we determinate the final
depth of a point as the average of several depths captures for
that point. As said before, the plane capture iteration count
input parameter defines the amount of frames depth frames
used in this operation. The Kinect sensor can make around 30
depth captures by second.

Once the depth values of the patch points are known, their
relative position to the sensor origin in real-world measures
can be reconstructed. Via least square error method [12], a
plane is fitted to the resulting point cloud. In this case, the z-
normal of the solution is constrained to one since it is known
that the points are arranged in a plane in front of the sensor.
The distance between each point of the patch point cloud and
the closest point in the fitted plane must be less than the plane
fit maximum allowed error input parameter. If that condition
is not met, the algorithm breaks and jumps to step one.

The first requirement stated is the projection surface to be
flat, from that assumption the algorithm searches for a plane.
But depending on the input sensor capabilities the captured
plane could not be a plane at all, in the case of the Kinect V2,
the depth stream is affected by reflectance and light-emissive

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

534

surface, like a led based display. Figs. 4 (a) and (b) illustrate
examples of this case. It is recommended displaying the scene
mesh to ensure that the captured projection plane is, in fact, a
plane surface or at least some area of it is plane. The algorithm
will search for this plane area and used it as a calibration
reference for the next steps.

(a) (b)

Fig. 4 (a) and (b) Kinect V2 point cloud reconstruction errors of flat
led screen

The plane fit maximum allowed error parameter is used as a

real-world measure of how non-flat the captured points are
allowed it to be. Also we notice that it is more likely to find a
wrong solution if the marker area is small. Fixing the z normal
coordinate of the plane fit method works as a configuration
regulator since it is most likely to obtain better results if the
input system is perpendicular to the projection plane.

In step five, the virtual camera scale is calibrated; this
means that a virtual object will maintain its dimensions in the
real-world through the projection plane. On finishing this step,
a virtual sphere of 50 cm radius will be displayed on that same
screen size, independent of the projection plane dimensions.
For this research is used a virtual orthogonal camera; this kind
of projection does not distort the perceived size of an object
upon distance. In unity, orthogonal cameras use an
orthographic size to regulate the frustum. By changing the
orthographic size of the camera the perceived size of an object
in the projection is changed.

From the patch plane points, the dimensions of the marker
in the real world can be computed as the average of the patch
side distance. A scene scale ratio (SSR) is computed using the
relation between the marker real size and the marker virtual
size. An orthogonal camera was used in the previous steps to
display the marker prefab in the projection plane. The target
display camera orthographic size (TOS) equals to the marker
display camera orthographic size (MOS) multiplied by SSR,
see (1). The target display camera position is constrained to
the (0, 0, -1) position and oriented to the virtual world origin
of coordinates with the up vector of (0, 1, 0).

.* SSRMOSTOS  (1)

At the final step, the input sensor and the projection plane

relative positions and rotations are solved. A reference
Cartesian origin is created from the fitted plane, as shown in
Fig. 5. The origin of the reference point is the points cloud
center. The depth edge of the reference origin is the normal of
the fitted plane. The vertical orientation vector is computed
from the marker corners of vertical vectors.

Fig. 5 Reference origin point, depth vector in green, blue vertical
vector

A hierarchy is created to facilitate the position and rotation

extraction. This hierarchy is composed of two elements: A
parent coordinate system (P) will represent the marker
position and orientation in the virtual scene and a child
coordinate system (C) will represent the sensor position and
orientation in the virtual scene. The P coordinate system is
placed at the Cartesian reference origin position. Then, P is
transformed to gaze the depth vector of the Cartesian edge and
the vertical orientation vector is used as the up world vector of
the method. Next, C is placed in the zero vector position and
zero quaternion rotation in global coordinates. At this point,
the transformations are as displayed in Fig. 6.

Fig. 6 Marker point (P), input sensor point (C) and scene point cloud
representation. Marker to sensor relative position and relative

orientation solved

The red cube represents the position and orientation of P,
the marker in the point cloud. Each point cloud position is
relative to the input sensor, in this case, the sensor is located in
the virtual world origin, C position and rotation is represented
by the green box. Later, the parent is placed and rotated as the
relative position of the marker in the display camera. C will
maintain its relative position and rotation to the P after the last
one is transformed. As the display camera was fixed in (0, 0, -

Depth vector

Vertical vector

Reference origin
point

Depth vector
Vertical vector

P point C point

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

535

1) and its orientation to look at (0, 0, 0) with an up vector of
(0, 1, 0) the marker relative position to this camera, marker
scaled position (MSP) is computed in the following way:

.* SSCMDPMSP  (2)

where MDP is the marker relative position to the render
marker camera and SSC is the scene scale ratio computed in
the previous step.

III. ALGORITHM TEST DESCRIPTION AND ANALYSIS

Three tests were made to test the method. Two of them use
a near-range laser projector and the other uses a 50’’ OLED
display. All captures were made using the Kinect sensor
version 2. The first two tests use a configuration similar to the
one described in Fig. 1. On each test iteration, the distance of
the sensor to the display was increased by approximately 500
cm. For the first test, a near-range laser projector was used,
obtaining samples from 1.5 m to 4 m.

The second test was similar to the first, changing the
display to a 50 inches OLED display. In this case, the
algorithm could converge only in distances between one meter
and 2.5 meters. The third test was made using the near-range
laser projector in a random Kinect position-rotation
configuration. The calibration configuration parameters for all
tests were as described in the Table I.

Result variables captured on each test iteration are:
 Sensor distance to display Surface
 Plane fit determinant
 Plane fit error average
 Converge marker size
 Sensor Euler angles

Plane fit determinant and plane fit error is the value of this
parameter at the end of the execution. Converge marker size is
the size in real-world scale of the marker side when the
calibration converged. The Sensor Euler angles contain the
global rotation of the sensor in Euler angles, by axis, after the
calibration is made. Furthermore, the projections plane is
calibrated and the re-projection of the user can be seen
matching the real world, meaning that the calibration was
correctly done.

A. Results Discussion

In Fig. 7, there is an example of a calibration made on the
experiment. The position of the Kinect sensor and the
projection plane in the real-world and the virtual-world solved
result can be seen.

Table II shows the results of the first test, using the near-
range laser projection and increasing the distance between the
sensor and the projection surface as described before. Notice
that there is a minimum change on the Euler angles parameters
as expected for this experiment.

It is important to analyze the correlation between the result
variables. As stated before, the plane fit determinant and plane
fit error average are indicators of the quality of the calibration.
The ground truth is unknown, so it is not possible to compare

the results obtained by the calibration.

TABLE I
CALIBRATION PARAMETERS OF TESTS

Parameters Value

ArUco Marker Id 5

ArUco Marker dictionary DICT_4X4_50

Maximum ArUco screen size 0.6

Minimum ArUco screen size 0.1

ArUco screen size iteration step decrease 0.05

Minimum allowed ArUco real size 0.02

Plane capture iteration count 10

Plane subdivision count 3

Plane fit maximum allowed error 0.005

The greater linear correlation found in this test was between
the plane fit determinant variable and the converge marker
size with a value of 0.928 [12]. The other correlation worth
mentioning is between the sensor distance and the error
average, indicating that the error will increase as the distance
of the sensor to the display plane increases. This behavior
matches the Kinect sensor specification, meaning that the error
on the depth map increases with the distance to the surface.
The correlation between the plane fit determinant and the
sensor distance was also high with a value of 0.62 supporting
the distance importance to the calibration process.

There was a low correlation between the plane fit error and
the plane fit determinant and also between the plane fit error
and the converge marker size indicating that for this test the
error did no change much, in general the calibrations were
good. Fig. 7 shows the result parameters of the first test, every
parameter in this chart is normalized so the correlation
between them can be seen more easily.

The results for the second experiment are displayed on
Table III. In this case, the Kinect Depth Map is affected by the
change on the display in a similar fashion as the artifacts
shown in Figs. 3 and 4. Also the display area is smaller. These
conditions affected the results of tests; the system was able to
converge on a maximum of 2.5 m. Fig. 8 shows the
normalized variation of the results on the second test. In this
case there is also a strong positive correlation between the
sensor distance result and the plane fit determinant. We see an
increase on the positive correlation between the plane fit error
average variable and the plane fit determinant variable due to
the Kinect depth map error being more affected by the
elements’ positions. Also the error average increased with the
marker size. Likewise, it is interesting that there is a strong
negative correlation between the variable sensor distance and
the variables plane fit determinant, plane fit average error and
converge marker size with values of -0.86, -0.76 and -0.88,
respectably. Oddly in this test, the distance improved the error
and fit determinant but the real marker size decreased on each
iteration. The deformation displayed on Fig. 4 gives an
indicator of this problem, planes can be found in smaller part
of the display surface, the minimum allowed ArUco real size
configuration parameter is designed to mitigate this situation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

536

TABLE II
RESULTS OF THE FIRST CONFIGURATION TEST

Iteration Sensor Distance Plane fit determinant Plane fit error average Converge marker size Euler Angles X Euler Angles Y Euler Angles Z

1 1040 0.10437 0.00075 0.32795 16.51034 179.89840 356.44040

2 1496 0.97690 0.00092 0.57759 17.73703 181.68660 357.46080

3 2008 1.02351 0.00073 0.58424 17.62832 181.98830 356.89700

4 2516 1.70056 0.00117 0.66339 17.24300 187.28320 357.30370

5 3002 2.78366 0.00061 0.74705 14.59960 170.54790 347.13880

6 3505 3.02110 0.00185 0.75156 0.810952 170.46880 353.73780

7 4046 1.05997 0.00173 0.57284 0.927804 183.93000 354.11470

TABLE III

CORRELATION OF NEAR-RANGE LASER PROJECTION TEST RESULTS

Linear Correlations Plane fit determinant Plane fit error average Converge marker size Sensor Distance Euler Angles X Euler Angles Y

Plane fit determinant - - - - - -

Plane fit error average 0.58536 - - - - -

Converge marker size 0.91082 0.59918 - - - -

Sensor Distance 0.40760 0.66044 0.42089 - - -

Euler Angles X 0.04303 -0.04852 -0.00490 -0.26472 - -

Euler Angles Y -0.36043 -0.00995 -0.40920 0.20916 -0.15598 -

Euler Angles Z 0.40760 -0.03113 0.29801 -0.16697 -0.27894 -0.11541

Fig. 7 Normalized results variables of the first test

From the results of the second test, it can be concluded that
the method can be applied to OLED displays, but the
deformations occasioned in the depth map need to be taken
into count. Also the configuration parameters need to be more
demanding for obtaining better results.

From the observation made on the first and second
experiment, a third test was designed. On this case the near-
range laser projector was used, since it does not affect the
Kinect sensor input. The physical configuration of this test is
random, exploring different distances and orientations of the
sensor. The distance range was from 700 cm to 3700 cm, and
18 samples were taken.

Fig. 8 shows the behavior of the variables on the third test,
the values are normalized so it is easier to see the correlations.
Fig. 8 also includes the Euler angles behavior.

For a more accurate computation of the correlation, the
results of the first test and second test area merged into Table
III. Once again a strong positive correlation between plane fit
determinant and the converged market size is displayed. These
results confirm the direct relation existing among the sensor
distance and the plane fit determinant, plane fit error average
and converge marker size variables. The trade-off on the

distance is that the user will lose interaction area if the sensor
is closer to the display surface, but will lose accuracy on the
capture and calibration the further the sensor is from the
display plane.

Fig. 8 Normalized results variables of second test

Fig. 9 Obtained variables of third test

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7

 Sensor Distance Plane fit determinant
Plane fit error average Converge marker size

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

 Sensor Distance Plane fit determinant
Plane fit error average Converge marker size

‐2

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 Sensor Distance Plane fit determinant

Plane fit error average Converge marker size

 Euler Angles X Euler Angles Y

 Euler Angles Z

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

537

(a) (b)

Fig. 10 SAR system calibrated, example from third test

IV. CONCLUSIONS

A solution was to design an easy setup and integrate a SAR
experience. The implementation was made using Unity 3D,
one of the most popular virtual reality and augmented reality
implementation tools and OpenCV, one of the most popular
computer vision libraries. The solution does not require any
marker and it is oriented so the implementer has as little
intervention on the process as possible. The method proposed
is flexible to changes in physical configurations. The
implementer can modify the input parameters of the process to
obtain better results or to adapt to its physical limitations.
Tests were made using different display technologies
identifying artifacts that may occur during the implementation.
An ideal physical configuration was proposed; this
configuration is the result of the correlation analysis of the
output results of the process. Figs. 7-9 show the correlation
between the obtained variables on the third experiment. As
said before, this experiment was designed with random
physical configurations. In all variants the algorithm
converged.

Finally, Fig. 10 is an example of one of the configurations
in the third experiment. The real-world elements are shown in
Fig. 10 (a) and their respective solved 3d-virtual world
positions and rotations on Fig. 10 (b). The real-world part of
this image has the user point cloud projected, showing the
correct calibration of all the elements of the system.

ACKNOWLEDGMENT

The author thanks the people at SIDIA for allowing the time
and resources.

REFERENCES
[1] M. K. Bekele, R. Pierdicca, E. Frontoni, E. S. Malinverni, y J. Gain, «A

Survey of Augmented, Virtual, and Mixed Reality for Cultural
Heritage», J Comput Cult Herit, vol. 11, n.o 2, p. 7:1–7:36, mar. 2018,
doi: 10.1145/3145534.

[2] O. Bimber y R. Raskar, Spatial augmented reality: merging real and
virtual worlds. AK Peters/CRC Press, 2005.

[3] P. Chen, X. Liu, W. Cheng, y R. Huang, «A review of using Augmented
Reality in Education from 2011 to 2016», en Innovations in smart
learning, Springer, 2017, pp. 13–18.

[4] H. Gonzalez-Jorge et al., «Metrological comparison between Kinect I
and Kinect II sensors», Measurement, vol. 70, pp. 21–26, 2015.

[5] T. Shareef, «5 best cross-platform game engines for rising game
developers».

[6] G. B. García, O. D. Suarez, J. L. E. Aranda, J. S. Tercero, I. S. Gracia, y
N. V. Enano, Learning image processing with opencv. Packt Publishing
Ltd, 2015.

[7] S. Garrido-Jurado, R. Munoz-Salinas, F. J. Madrid-Cuevas, y R.
Medina-Carnicer, «Generation of fiducial marker dictionaries using

mixed integer linear programming», Pattern Recognit., vol. 51, pp. 481–
491, 2016.

[8] F. J. Romero-Ramirez, R. Muñoz-Salinas, y R. Medina-Carnicer,
«Speeded up detection of squared fiducial markers», Image Vis.
Comput., vol. 76, pp. 38–47, 2018.

[9] S. Voida, M. Podlaseck, R. Kjeldsen, y C. Pinhanez, «A study on the
manipulation of 2D objects in a projector/camera-based augmented
reality environment», en Proceedings of the SIGCHI conference on
Human factors in computing systems, 2005, pp. 611–620.

[10] T. Motta, M. Loaiza, L. Soares, y A. Raposo, «Projection Mapping for a
Kinect-Projector System», en 2014 XVI Symposium on Virtual and
Augmented Reality, 2014, pp. 200–209.

[11] S. A. Coons, «Surface patches and B-spline curves», en Computer Aided
Geometric Design, Elsevier, 1974, pp. 1–16.

[12] «Best Fitting Plane given a Set of Points».
https://math.stackexchange.com/questions/99299/best-fitting-plane-
given-a-set-of-points.

Display

Us

