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Abstract—With the development of intelligent vehicle systems, a 

high-precision road map is increasingly needed in many aspects. The 
automatic lane lines extraction and modeling are the most essential 
steps for the generation of a precise lane-level road map. In this paper, 
an automatic lane-level road map generation system is proposed. To 
extract the road markings on the ground, the multi-region Otsu 
thresholding method is applied, which calculates the intensity value of 
laser data that maximizes the variance between background and road 
markings. The extracted road marking points are then projected to the 
raster image and clustered using a two-stage clustering algorithm. 
Lane lines are subsequently recognized from these clusters by the 
shape features of their minimum bounding rectangle. To ensure the 
storage efficiency of the map, the lane lines are approximated to cubic 
polynomial curves using a Bayesian estimation approach. The 
proposed lane-level road map generation system has been tested on 
urban and expressway conditions in Hefei, China. The experimental 
results on the datasets show that our method can achieve excellent 
extraction and clustering effect, and the fitted lines can reach a high 
position accuracy with an error of less than 10 cm. 
 

Keywords—Curve fitting, lane-level road map, line recognition, 
multi-thresholding, two-stage clustering.  

I. INTRODUCTION 

high definition road map is significant for high-level 
intelligent vehicle systems. As the most essential elements 

of the road map, lines on the traffic lane play an important role 
in intelligent vehicle’s different tasks, e.g., lane keeping, lane- 
level path planning, and high-precision ego-vehicle 
localization. 

In the process of traditional digital map construction for 
intelligent vehicles, the methods based on the satellite image 
and aerial image are applied [1], [2]. These methods obtain road 
collection information by manual labeling or basic image 
processing. However, due to the insufficient resolution of 
satellite images or aerial images, it is difficult to provide lane 
level road information. And it is increasingly unable to meet the 
needs of intelligent vehicles. 

In order to obtain road maps with higher accuracy and richer 
information, the method of combining perception sensors with 
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high-precision vehicle positioning modules has been widely 
used in recent years. In these methods, road markings (e.g., lane 
line, road arrow, and zebra crossing) are obtained through 
perception sensors and then combined with positioning 
information to construct a road map. The commonly used 
perception sensors are mainly cameras [3] and multi-layer 
LiDAR [4]-[10]. Although the vision-based solution is low in 
cost, it cannot obtain accurate road marking position 
information and the overall accuracy is relatively low. And the 
vision-based method is easy to be affected by environmental 
factors such as light. In contrast, the method based on LiDAR 
can overcome these problems. 

Currently, there are a large number of road marking 
extraction and road map construction methods based on 
LiDAR.  

A road extraction method based on dense point clouds 
generated by vehicle-mounted laser scanning is proposed in [4] 
and [5]. Since the road marking has a reflection intensity that is 
significantly different from that of the road surface, this method 
realizes the segmentation of the road surface and the road 
marking by calculating the reflection intensity threshold. 
However, they only extracted road markings and did not 
perform clustering and recognition processing on them.  

A particle-filter-based method that uses mobile LiDAR data 
was proposed in [6] to extract lane lines and cluster them. 
However, this method only extracts the centerline of the lane, 
and cannot obtain lane-level road information. At the same 
time, the actual shape and line type information of the lane line 
is ignored. Therefore, such methods cannot meet the needs of 
high-level autonomous driving for road information. 

Reference [7] realizes the extraction and clustering of lane 
markings points by dividing the road surface into several areas 
related to the vehicle trajectory. However, this method has strict 
requirements on the driving trajectory of the vehicle in order to 
get rid of the interference of road markings such as steering 
arrows on the lane line. And it is necessary to set parameters 
such as road width and lane width, so it is not very easy to be 
realized. 

An adaptive multi-threshold method was applied in [8] to 
extract the road markings points and then they are clustered by 
Euclidean clustering method. Similarly, [9] projected the 
extracted road markings to a two-dimensional raster image and 
clustered them by the method of region growth algorithm. Then 
the shape characteristics of the minimum bounding rectangle 
(MBR) of each cluster are calculated to identify these clusters. 
These methods proposed in [8], [9] show good results in 
common scenes. However, when it comes to the road surface 
with complex markings or worn markings, the clustering 
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algorithm does not perform well. In order to solve the problem 
of lane line wear, [10] proposed a line association method to 
connect different small segments of the same line. However, it 
requires the establishment of a complex lane line model and 
relies on a large number of manually set parameters. Besides, 
current researches basically focus on the extraction and 
recognition of lane elements. Few researchers discuss how to 
separate lane lines belonging to different lanes and construct 
them into parametric lane curve objects. 

This paper is organized as follows. Section II introduces the 
road map generation system and describes the main method 
developed in this work. Section III details the experimental 
method and the results. Section IV concludes this paper and 
presents the future works.  

II. METHOD 

A. Overall of the System 

The automatic lane-level road map generation system is 
mainly composed of four parts: (1) data preprocessing, (2) 
reflectivity based road marking extraction as shown in Fig. 1. 

 

 

Fig. 1 Overall system architecture 
 

The process of data preprocessing is mainly for road 
boundary detection and obstacle removal. Since the algorithm 
proposed in this paper is mainly used for lane line extraction 
and modeling, curb detection is needed to determine the region 
of interest of the algorithm. At the same time, in order to 
prevent the interference of obstacles (such as vehicles and 
pedestrians, etc.) on the road, a suitable road extraction 
algorithm is also an important prerequisite. 

We adopted a multi-window dynamic thresholding method 
to achieve stable road marking points extraction. Then, 
according to the position information provided by the vehicle 
positioning system, the point cloud data of each frame are 
accumulated, as shown in Fig. 2 (a). 

After the extraction and accumulation of the road marking 

point cloud, it is necessary to apply the road marking clustering 
algorithm to prepare for the subsequent lane line extraction and 
recognition steps. In order to simplify the algorithm, we project 
the point cloud to a two-dimensional raster image, as shown in 
Fig. 2 (b). The result of the clustering step is shown in Fig. 2 (c). 

The main types of lane lines are dashed lines and solid lines. 
Dashed lines can be easily identified by the shape parameters of 
their MBR. For solid lines, we calculate their eigenvector in the 
sliding window to distinguish. The result of line recognition is 
shown in Fig. 2 (d). 

After the above steps, lane lines of different types can be 
obtained. However, these lines represented by a sequence of 
points are inefficient in storage and they are not able to directly 
obtain some important line information such as the curvature 
and direction of the line. For this reason, we propose to use 
cubic spline curves to represent these lane lines and use the 
Bayesian estimation method to obtain more accurate curve 
parameters. The curve fitting result is shown in Fig. 2 (e).  

 

 

Fig. 2 Process of lane-level road map generation: (a) Road marking 
extraction and point cloud accumulation. (b) Point cloud rasterization 
(non-road points have been removed) (c) Road marking clustering (d) 

Lane lines recognition (e) Curve fitting 

B. Data Preprocessing 

Our algorithm focuses on the road markings on the ground 
between the road boundaries. We set the nearest and farthest 
scan line and detect the road boundaries to limit the detection 
area, as shown in Fig. 3.  

We refer to [11] for road boundary extraction. The principle 
is that obstacles can be detected by analyzing the distance 
between consecutive laser scan rings. We first analyze the 
distance between adjacent ring points. If the distance is lower 
than the threshold we set, those points are then classified as 
road boundary candidates. However, this method can cause a 
large number of misclassification. To remove those false 
positives, we apply three filters mentioned in [12]: differential 
filter, distance filter and regression filter. In addition, obstacles 
such as vehicles, pedestrians, etc. may appear in the above 
detection area, making it difficult to extract road markings 
correctly. Therefore, we need to apply a ground segmentation 

(a) 

(b) 

(c) 

(d) 

(e) 
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algorithm to filter out non-ground points. There have been a lot 
of literature studies on ground segmentation [13]-[15]. We refer 
to the algorithm proposed in [13], which divides the scan data 
into fixed-size grids, and distinguishes obstacles from the 
ground according to the distance difference between two 
adjacent rings. And the average height and variance of each 
grid are calculated for optimization.  

 

 

Fig. 3 Detection area 

C. Reflection Intensity Based Road Marking Extraction 

Since the laser points projected on the pavement material 
have a reflection intensity significantly different from that of 
the road markings, an intensity threshold can be set to realize 
the extraction of the point cloud of the pavement marking. A 
scan point with a larger reflection intensity threshold is 
considered to be a road marking point. 

Different from the conventional reflection intensity 
correction method, we apply a dynamic threshold method based 
on multiple regions to extract the road markings. The specific 
process is as follows: 

First, the detection area is divided into multiple fan-shaped 
sub-areas, as shown in Fig. 4. This fan-shaped region division 
mechanism can ensure that there are enough point clouds in the 
distant regions. Subsequently, for each sub-area, a fixed rough 
intensity threshold was set to extract the road marking points. 
This step will cause a lot of false points. So the maximum 
between-cluster variance method was applied to extract the 
road marking points precisely. 

The between-cluster variance is defined as (1): 
 

 𝜎 𝑃 𝑚 𝑚 𝑃 𝑚 𝑚      (1) 
 
where, 𝑝  and 𝑝  denote the ratio of the road marking points 
and interference points to the points in the area respectively. 𝑚  
and 𝑚  denote the average reflection intensity of road marking 
points and interference points respectively. 𝑚  denote the 
reflection intensity threshold. Therefore, the reflection intensity 
threshold can be calculated by maximizing the between-class 
variance as (2): 

 

arg max 𝜎 𝑚          (2) 
 
To extract complete road markings and classify them, we 

need to accumulate single-frame point cloud data based on 
vehicle position information to ensure sufficient point density, 
as shown in Fig. 2 (a). In order to facilitate the application of 
subsequent algorithms, we need to project the dense 3D laser 

point cloud to the 2D raster image, as shown in Fig. 2 (b).  
 

 

Fig. 4 Subarea division 

D. Road Marking Clustering 

We used a two-stage clustering algorithm to cluster the lane 
markings on the ground. 

First, the pre-clustering algorithm based on breadth-first 
search was applied on the extracted road marking points. For 
each point in the raster image, the search region was set to k ∗ k 
size. It should be noted that there is often a short distance 
between the road markings on the actual road, such as the 
steering arrow and the lane line. Therefore, in order to prevent 
them from being divided into the same type of clusters, it is 
necessary to set a smaller search area size. The pre-clustering 
result is shown in Fig. 5. However, for some worn road 
markings, because of incomplete extraction of marking points, 
this step will cause an over-segmentation problem, that is, the 
same mark is misclassified into multiple marks, as shown in the 
red circle in Fig. 5 (a). To solve this problem, a re-clustering 
algorithm based on Gaussian kernel transformation is used to 
merge the over-segmented markings. The idea of the algorithm 
is to construct an objective function describing the degree of 
deviation of a certain point of class A relative to another certain 
point of class B. And Gaussian kernel transformation is 
performed to satisfy the Gaussian distribution model, and then 
the possibility that the point of class A belongs to class B is 
calculated. 

Suppose that all points of a certain cluster form a point set M. 
For the point M  in this point set, we create a circle with it as the 
center. Suppose the set of points in the circle belonging to this 
cluster is m 𝑚 , 𝑚 , … , 𝑚 ,and the set of points not 
belonging to this cluster is n 𝑛 , 𝑛 , … , 𝑛 .  

We describe the deviation of 𝑛  and 𝑚  by (3): 
 

𝑝             (3) 

 
where, 𝑡 𝑡  denotes the distance between these two points 
in the transverse direction of the road and 𝑙 𝑙  denotes the 
distance in the driving direction. 

We perform Gaussian kernel transformation on 𝑝 to make 
the mapped value range meet the requirements of probability 
density function, and construct the objective function as (4): 

 

𝑝 𝑛 𝑚 𝑒𝑥𝑝 𝑝 /2𝜎 /√2𝜋𝜎       (4) 
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where, 𝜎
∑ /

 and 𝑄 𝑞 , 𝑞 , … , 𝑞  

denotes all the points in the circle of 𝑚 . 
Equation (5) can be obtained from the conditional 

probability formula: 
 

       (5) 

 

where . 

The point  will be set to cluster  if  and 

then cluster 𝑚 and cluster n will be merged. The re-clustering 
result is shown in Fig. 5 (b). 

 

 

(a)                    (b) 

Fig. 5 Two-stage clustering 

E. Lane Lines Recognition and Modeling 

1) Lane Lines Recognition 

After the extraction and clustering of road markings, another 
important step is to identify these clusters. For each cluster, we 
calculate the shape characteristics of the MBR, such as length, 
width, and aspect ratio. 

The dash line has a smaller width and a larger aspect ratio, so 
it can be easily detected.  

The MBR of a solid line generally has a large scale in at least 
one direction and a large aspect ratio, so it is also easy to detect. 
However, there is a problem with solid line detection: in scenes 
such as intersections, there are often situations where the stop 
line is connected to the solid line, as shown in Fig. 6 (a). 

In order to distinguish between the solid line and the stop 
line, we first calculate the eigenvector of the dashed line. For 
each dash line, extract the midpoint and calculate the 
covariance matrix of the midpoint relative to other points as (6): 

 

𝐶 ∑ 𝑝 𝑝 ∙ 𝑝 𝑝       (6) 
 
Through the eigenvalue decomposition on the covariance 

matrix, the distribution feature of 𝑝  is set as the eigenvector 
corresponding to the maximum eigenvalue, and is denoted as 
v . 

In order to distinguish between the solid line and the stop 

line, we sample a sequence of points and create a window for 
each point, as shown in Fig. 6 (b). Then the eigenvector for 
each sampled point in its window is calculated and denoted as 
v . 

For each sampled point p , if the angle between the direction 
of its eigenvector v  and the eigenvector v  of the adjacent 
dashed line satisfies (7), then the points in the window are set as 
solid line points, as shown in Fig. 6 (b) window B. If this angle 
satisfies (8), the points in the window are set as stop line points, 
as shown in Fig. 6 (b) window A. 

 

𝛼 cos〈v , v 〉 𝛼         (7) 
 

𝛽 cos〈v , v 〉 𝛽         (8) 
 

where, 𝛼 , 𝛼 , 𝛽 , 𝛽  are manually set thresholds. 
 

 

(a)               (b)                 (c) 

Fig. 6 Classification of solid and stop lines 

2) Lane Lines Separation and Modeling 

After the identification of the lane lines, there is another key 
issue: lane lines separation, that is, how to separate the lane 
lines (especially the dashed line) belonging to different lanes 
and construct complete lane objects. To accomplish this task, 
we proposed a lane lines separation algorithm based on the area 
prediction method. 

The algorithm flow is as follows: For a specific dashed type 
lane line 𝐿 , we have calculated its eigenvector v  in the 
previous step. Then, the center point 𝑝  of the prediction area 
can be calculated by (9): 

 

𝑝 𝑝 𝑑 v / v         (9) 
 
where 𝑑  is the distance between the center points of two 
adjacent dashed lines on the same lane, which is a known value. 

Assuming that the width and length of each lane line obey 
the Gaussian distribution, we 7calculate the average width and 
average length of the N dashed lines in the current area and 
their variance. Then, the length and width of the prediction area 
can be calculated using (10) and (11): 

 

𝑤 ∑ 𝑤 𝜆𝜎 𝑤         (10) 
 

ℎ ∑ ℎ 𝜆𝜎 ℎ         (11) 
 

where 𝜎 , 𝜎  are the standard deviation of lane line width and 
length distribution respectively. 

According to the prediction area center point 𝑝  and its width 
and length information, the prediction area of the lane line 𝐿  
can be obtained, as shown in the blue area in Fig. 7. We use the 
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parameter 𝑃𝑖, 𝑖 1  as the evaluation parameter to evaluate 

whether 𝐿  and 𝐿  belong to the same lane object. 
 

𝑃𝑖, 𝑖 1 2𝑁 𝑁 𝑁 /𝑁        (12) 
 
The method of using a sequence of points to represent the 

lane line requires a large amount of storage space and is not 
easy to use. Therefore, we propose a road modeling method to 
represent each set of lane lines as mathematical curves, as 
shown in (13): 

 
L s ∑ 𝐿 𝑠           (13) 

 

 

(a)              (b)            (c)          (d) 

Fig. 7 Complete line object obtainment 
 

For each lane line, it is defined as a cubic polynomial 
parameter curve, as shown in (14): 

 

𝐿 𝑠
𝑋 𝑠
𝑌 𝑠

∑ 𝑃 , 𝑠 𝑠

∑ 𝑃 , 𝑠 𝑠
      (14) 

 
Therefore, the geometric data point of each lane line can be 

represented by only 1 parameter 𝑠  and 8 coefficients 
(𝑃

,
~𝑃

,
, 𝑃

,
~𝑃

,
). We use the Kalman filter, a recursive 

Bayesian estimation method, to solve the above curve. The data 
points of each lane line are regarded as the observation value of 
the system, and the coefficients of the polynomial parameter 
curve are regarded as the system state we want to estimate. The 
method was described in detail in [7]. 

III. EXPERIMENTS AND RESULTS 

A. The Experimental Platform and Dataset  

The experimental datasets were collected by the Mobile 
LiDAR System, which was integrated with a 128-scan-lines 
LiDAR, an inertial measurement unit (IMU), an odometer, and 
a Differential Global Position System (DGPS). 

In Hefei, China, we collected two sets of data with an 
experimental vehicle at a speed of 30-40km/h, as shown in 
Figs. 8 (b) and (c), denoted as Dataset 1 and Dataset 2. Among 

them, data set 1 is an urban scene with a total length of about 
2300 m, with ordinary road surface wear, and the road 
markings are more complicated; data set 2 is a highway scene, 
with a total length of about 1700 m, with simple road markings. 

B. Road Marking Extraction Result 

We compared the proposed road marking extraction 
algorithm with the traditional fixed threshold method and the 
Otsu algorithm proposed in [9], as shown in Fig. 9. Our method 
sets different dynamic thresholds in different sub-regions, and 
has better extraction results in scenes with clear road markings 
and wear. 

To evaluate the effect of the proposed algorithm, we selected 
five typical road scenes as shown in Fig. 10, where roads 1-3 
are from dataset 1 and roads 4-5 are from dataset 2. The road 
marking extraction results are shown in Fig. 10 (a). 

 

 

(a)                   (b)             (c) 

Fig. 8 Experimental equipment and sites 

C. Lane Markings Clustering and Recognition Result 

We applied our clustering and recognition algorithm in the 
above scenes. The results of the proposed clustering and 
recognition algorithm are shown in Fig. 10 (b), where the green 
denotes dashed lines, the magenta denotes solid lines, the red 
denotes stop lines and the blue denotes other elements.  

 

Fig. 9 Road marking extraction 
 

In order to evaluate the accuracy of road marking clustering 
and recognition algorithm, we compared the final recognition 
results with the manually marked results, and defined the three 

Fixed 
Threshold Otsu Proposed Reference 
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indicators in (15) for evaluation: 
 

Precision 𝑇𝑃/ 𝑇𝑃 𝐹𝑃
Recall TP/ TP FN

Fsocre 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙/ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 

 
where TP, FP and FN are the number of true positives, false 
positives and false negatives, respectively 

The statistical results are shown in Table I. In Table I, we 
manually counted the number of various elements in data set 1 
including the dashed line, the solid line, the stop line and other 
elements. We compared our result with the manual inspection 
result and calculated the value of TP, FP and FN.  

 
TABLE I 

STATISTICAL RESULT OF THE RECOGNITION ALGORITHM 

Data Line type 
Object Assessment result 

Manual 
inspection 

Proposed TP FP FN 

1 

Dashed line 559 512 485 27 74 

Solid line 128 132 120 12 8 

Stop line 14 14 13 1 0 

Others 119 110 101 9 18 

2 

Dashed line 557 554 538 16 19 

Solid line 69 72 65 7 4 

Stop line 1 1 1 0 0 

Others 125 135 110 25 15 

 
Table II showed the evaluation indicators related to Table I. 

The precision of datasets 1 and 2 are both over 90%. The recall 
rate in dataset 1 is relatively lower because some road markings 
on the roads are severely worn and difficult to identify. 

 
TABLE II 

EVALUATION INDICATORS OF THE RECOGNITION ALGORITHM 

Dataset Precision Recall F-score 

1 0.936 0.878 0.453 

2 0.937 0.950 0.472 

D. Line Fitting Result 

We applied the proposed line separation and modeling 
method, then the detected lines are fitted using the calculated 
parameters, as shown in Fig. 10 (c). The letters B and S denote 
the dashed line and the solid line, respectively. Obviously these 
lane lines were accurately separated and numbered, which is 
essential for the usability of the road map. 

Because the extracted lines have abnormal points or error 
clustering, the fitted curves have errors compared with their 
actual positions. In order to evaluate the accuracy of the fitted 
curve, we manually marked some dashed and solid lines, and 
defined the Root Mean Square Error (RMSE) as the evaluation 
index. 

We manually label the lines of some areas in dataset 1 and 
calculate the error of the fitted curve. The fitting result of the 
dashed lines is shown in Fig. 11, with an average error at 
5.4607 cm. The fitting result of the solid lines is shown in Fig. 
12, with an average error at 8.3719 cm. 

 

 

Fig. 10 Clustering and recognition result 
 

1 

2 

3 

4 

5 

(a) Extraction (b) Clustering and recognition (c) Curve fitting 
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Fig. 11 Fitting error of the dashed lines 
 

 

Fig. 12 Fitting error of the solid lines 

IV. CONCLUSION 

In this paper, an automatic lane markings extraction, 
recognition and fitting algorithm is implemented to generate a 
high-precision road map. The experimental results show 
promising performance. However, our method does not 
perform well in places where road markings are extremely 
worn because the high reflectivity coating is almost 
completely lost. How to use a suitable predictive model to 
obtain the lane lines in more challenging scenarios will be our 
main task in the next works. 
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