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Abstract—A reliable, real-time, and non-invasive system that can 

identify patients at risk for hemodynamic instability is needed to aid 
clinicians in their efforts to anticipate patient deterioration and 
initiate early interventions. The purpose of this pilot study was to 
explore the clinical capabilities of a real-time analytic from a single 
lead of an electrocardiograph to correctly distinguish between rapid 
response team (RRT) activations due to hemodynamic (H-RRT) and 
non-hemodynamic (NH-RRT) causes, as well as predict H-RRT 
cases with actionable lead times. The study consisted of a single 
center, retrospective cohort of 21 patients with RRT activations from 
step-down and telemetry units. Through electronic health record 
review and blinded to the analytic’s output, each patient was 
categorized by clinicians into H-RRT and NH-RRT cases. The 
analytic output and the categorization were compared. The prediction 
lead time prior to the RRT call was calculated. The analytic correctly 
distinguished between H-RRT and NH-RRT cases with 100% 
accuracy, demonstrating 100% positive and negative predictive 
values, and 100% sensitivity and specificity. In H-RRT cases, the 
analytic detected hemodynamic deterioration with a median lead time 
of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The 
study demonstrates that an electrocardiogram (ECG) based analytic 
has the potential for providing clinical decision and monitoring 
support for caregivers to identify at risk patients within a clinically 
relevant timeframe allowing for increased vigilance and early 
interventional support to reduce the chances of continued patient 
deterioration. 
 

Keywords—Critical care, early warning systems, emergency 
medicine, heart rate variability, hemodynamic instability, rapid 
response team.  

I. BACKGROUND  

NRECOGNIZED or delayed identification of patient 
deterioration remains a persistent issue across all 

echelons of in-hospital care [1], [2]. The failure to recognize, 
communicate, or act on early signs of patient deterioration can 
lead to delays in patient care, adverse events, unplanned 
intensive care unit (ICU) admissions, and unexpected deaths 
[3]. Such delayed or absent clinical care responses to patient 
hemodynamic deterioration has been demonstrated to result in 
otherwise preventable adverse events, also known as ‘failure 
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to rescue’ [4], [5]. Even with immediately available bedside 
clinicians, patients hospitalized for major medical events with 
deteriorating conditions have poor outcomes. The result is 
unexpected transfers to a higher level of care and increased 
lengths of stay [6].  

Studies have shown that in most cases, there are shifts in 
vital signs prior to adverse events [1], [7], [8]. Moreover, close 
monitoring of vital signs when done deliberately and 
consistently has been shown to improve early detection and 
clinical action with the potential to reduce adverse events, 
such as cardiopulmonary arrest [9], [10]. However, despite 
this, measuring, recording, and reporting of vital signs remain 
inconsistent and error prone in practice [11], [12].  

Several compounding factors have been increasingly 
contributing towards the problem of failure to recognize 
patient deterioration, including growing clinical workload, 
data limitations to recognize emerging critical trends, complex 
patient co-morbidities, and resource constraints forcing 
increasingly sick patients into lower echelons of care [11], 
[13], [14]. Hence in an effort to detect and respond to the early 
onset of patient’s hemodynamic decline, hospitals in many 
countries and across the United States are implementing 
systems called RRT [5], [9], also sometimes referred to as a 
medical emergency response team (MERT) or a high acuity 
response team (HART). An RRT is typically comprised of a 
multi-disciplinary team of clinicians focused on supporting 
deteriorating patients to prevent avoidable patient progression 
to cardiopulmonary arrest or other severe adverse events [15]. 
However, despite widespread adoption of such teams, RRT 
effectiveness and its patient safety implications continue to be 
under evaluation and debate [15]-[18].  

A significant challenge facing RRT activation is the 
determination of when to trigger an RRT in the first place. 
Primary activation of an RRT is usually implemented by 
nursing staff caring for the patient. Therefore, the 
effectiveness of any RRT team depends heavily on the nurse’s 
ability to identify the onset of patient deterioration and their 
decision to activate the RRT team in a timely manner [19]-
[21]. Nurses continue to rely on clinical markers for 
hemodynamic instability, such as heart rate (HR), capillary 
refill, mental status, respiratory rate, and blood pressure as 
indicators for intervention [22]-[24]. However, many of these 
markers can either be confounded by multiple etiologies, such 
as fever, pain, anxiety, or are late signs of hemodynamic 
instability, making them poor markers or predictors of early 
hemodynamic instability [25], [26]. Apart from these simple 
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physiological measures, traditional bedside tools like the 
Shock Index, Modified Early Warning System, National Early 
Warning Score 2 (NEWS2), and others have been developed 
that rely on chart-based measures that are largely ‘static’ (i.e., 
assessed once-a-day) but have failed widespread acceptance 
and adoption [27]-[29]. However, the unmet need and 
potential advantages of such scores have resulted in several 
variants of such early warning scores customized to meet 
specific needs of individual hospitals or systems. 

Given the sheer number of early warning scores being 
developed and investigated, it is evident that there is a need 
for a clinical decision support system that can aid in 
continuous monitoring and identification of at-risk patients 
prior to transition into overt stages of hemodynamic instability 
[13], [30]. Favorable characteristics of such a system could 
include easy automation, continuous output, simple 
interpretation and no significant change to clinical workflow. 
To meet this need, a Software as a Medical Device (SaMD) 
product called the Analytic for Hemodynamic Instability 
(AHI) was developed. AHI utilizes data from a single lead of a 
non-invasive electrocardiograph (ECG) signal for analysis and 
identification of at-risk patients. AHI is a novel application of 
real-time nonlinear analysis of heart rate variability (HRV) 
that can detect significant perturbations in the autonomic 
nervous system that precede apparent hemodynamic instability 
prior to overt changes in traditional vital signs. Loss of HRV 
has been demonstrated to reflect autonomic nervous system 
function impacted by a diverse array of diseases including 
heart failure, respiratory distress, sepsis, hemorrhage, and 
others [31]-[35]. 

AHI was developed using machine learning and nonlinear 
HRV-complexity ECG morphology feature analysis from a 
variety of clinical models including human lower body 
negative pressure (as a surrogate of central hypovolemia) and 
hospitalized control patients with normal and abnormal 
physiology [36]. In this pilot study, AHI was retrospectively 
applied to continuous ECG signals obtained from hospitalized 
patients requiring an RRT activation in order to examine its 
ability to detect the need for RRT prior to activation. By 
comparing AHI’s assessment of risk to that of the case review 
and real-time patient data, we sought to determine if AHI 
could provide additional insight, or act as an early warning of 
unrecognized patient changes that could have influenced 
clinical decision-making had it been available to the treating 
clinical teams. We also sought to explore if the AHI analytic 
could predict the event prior to it occurring, and if so, how 
long before the event AHI could begin signaling a problem. 

II. METHODS 

A. Study Setting 

Data for this study were drawn from the ICUs, step-down 
and telemetry units in the University of Michigan Medical 
Center located in Ann Arbor, Michigan. The system is a 
quaternary health care system with 990 beds, 66 operating 
rooms, and over 47,000 admissions per year. It serves a six-
county area with a catchment of over 700,000 residents. The 

system provides care for a diverse patient population, with 
patients representing a wide variety of ethnic, racial, and 
socioeconomic backgrounds. The study was conducted under 
an approved Institutional Review Board (IRB) protocol by the 
University of Michigan. A waiver of patient consent was 
granted by the IRB since the study utilized retrospective de-
identified data in its analysis. A data sharing agreement also 
exists between the company Fifth Eye, Inc. and the University 
of Michigan under a licensing agreement which is known to 
the IRB. All data exchanged are HIPPA (Health Insurance 
Portability and Accountability Act) compliant and were used 
by the company without patient identifiers. The University of 
Michigan’s Center for Integrative Research in Critical Care 
(MCIRCC) served as the research partner for this study. It has 
a one-of-a-kind technical infrastructure that allows real-time 
capture of a variety of high-fidelity data from a subset of the 
monitored beds including waveforms (e.g., ECG, arterial 
blood pressure) and structured data (e.g., vitals, labs, 
medications, and other info in the electronic health record). 
The criteria for RRT activation in adult patents for this 
institution have been provided in Table I. 

 
TABLE I 

INSTITUTION SPECIFIC CRITERIA FOR RRT ACTIVATION FOR ADULT PATIENTS 
Category Criteria 

Airway 
/Breathing 

 Respiratory rate < 8 or > 36 
 New onset of difficulty breathing or complaint of 

shortness of breath 
 New SpO2 < 90% 

Circulation  HR < 40 or > 140 with new symptoms or any HR > 160 
 Blood pressure systolic < 80 or > 220 mmHg 
 Blood pressure diastolic > 110 mmHg with symptoms 

(neuro changes, chest pain, dyspnea) 
 Chest pain with symptomatic shortness of breath and/or 

another activation criteria or color change 
 Uncontrolled bleeding (any site) 
 Any bleeding into airway 

Disability  Acute change in level of consciousness 
 New onset lethargy or difficulty waking 
 Sudden collapse 
 Seizure (outside of “seizure monitoring unit”) 
 Sudden loss of movement (weakness) of face or limb 
 Sudden slurring of speech 

Other  More than one stat page to single service or >1 service 
stat paged 

 Unexplained agitation for more than 10 minutes 
 Suicide attempt 
 Naloxone use without appropriate response 
 Worried - patient just “looks bad” 

B. Data Description 

The patient cases selected for this study were identified 
through ongoing validation work using data collected from a 
subset of beds in the acute care units at the University of 
Michigan between 2016 and 2017. During this period, all 
available cases were evaluated and only 21 patient cases were 
identified to have had continuous ECG data captured and 
stored for retrospective use prior to the time of the RRT 
activation.  

Each patient case analysis is based on retrospective file 
review by experienced clinicians with the intent of 
determining the nature of the RRT call and how early the AHI 
analytic began signaling a problem. The clinical review team 
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comprised of an emergency medicine physician, a critical care 
intensivist and an RRT nurse. While blinded to AHI’s output, 
these clinicians reviewed each case to determine whether 
hemodynamic or other serious compromise occurred and to 
evaluate for any apparent change in traditional laboratory or 
vital sign changes that could indicate deterioration prior to the 
event. Concurrently, the AHI analytic would determine 
whether the patient was “stable” or “at risk” throughout the 
time period where ECG data was available prior to this event. 
Once clinicians reviewed each case in minute by minute 
detail, the AHI Analytic results were compared with the actual 
stored patient data, including patient streaming vital signs, 
labs, medication changes, and care provider notes, which 
included those related to the RRT call, as well as the clinical 
review team’s assessment of patient status prior to and after 
the event, as available. This was done to understand if AHI 
was providing indications that could have influenced clinical 
decision-making, such as the ability to activate the RRT 
sooner, had it been available during patient care. 

Blinded to AHI, reviewing clinicians created the ground 
truth dichotomization of 21 RRT cases into two groups: 
Hemodynamic related (H-RRT) or Non-hemodynamic related 
(NH-RRT) RRT activation.  

Hemodynamic or other serious compromise RRT (H-RRT) 
cases are those in which the RRT was activated by the care 
providers due to the onset of hemodynamic related patient 
deterioration. Such RRT activation typically results in the 
RRT providing significant interventions and escalation of care 
to support to the patient’s hemodynamic and/or respiratory 
system including transferring them to higher acuity care. 
These include but are not limited to cases such as: 
1. Acute respiratory failure (6 cases) 
2. Hemodynamic changes such as hypotension (3 cases) 

requiring fluid resuscitation and/or vasopressor therapy 
3. Undetected hemorrhage (2 cases) requiring transfusion 

and/or surgery 
4. Sepsis (1 case) requiring transfer to ICU and institution of 

vasopressor therapy 
Non-Hemodynamic RRT (NH-RRT) cases are those in 

which an RRT was called but in which no acute interventions 
or escalated level of care occurred that could have been 
predicted. These included: 
1. Cases where RRT activation did not result in any major 

actions by the RRT team beyond some routine 
adjustments to clinical care such as minor changes to the 
ventilator settings. (Patient with prolonged agitation 
undergoing mechanical or noninvasive ventilation) (4 
cases), 

2. Patient self-extubates (2 cases), 
3. Agitated patient pulls off the oxygen mask (2 cases), and 
4. Sudden wound opening during post-surgical inspection (1 

case). 
Table II provides the basic demographic information of the 

patient cases considered in this study. 
 
 
 
 

TABLE II 
COHORT DEMOGRAPHY 

 All H-RRT NH-RRT 

# MALE 14 8 6 

# FEMALE 7 4 3 

AGE (YEARS) 

AVERAGE 59.5 55.7 64.5 

MEDIAN 66 59 67 

MAXIMUM 83 82 83 

MINIMUM 23 23 39 

C. AHI Overview 

The input to the AHI system is a continuous waveform 
produced from Lead-II of a standard U.S. Food and Drug 
Administration (FDA) approved ECG monitor, with a 
sampling rate of 120 Hz or greater. Since the system is 
designed for application in real-time continuous monitoring 
settings, rolling buffered windows are created with a fixed 
array size and a fixed frequency of delivery. Each window is 5 
minutes of ECG waveform and consecutive windows are 
produced every 2 minutes. AHI analyzes each consecutive 
window to produce an output. The analysis consists of four 
major steps. The first step is a preprocessing step that 
normalizes and standardizes each window of ECG irrespective 
of its source or sampling frequency and recognizes any 
obvious issues with data quality such as missing data. The 
next step is a signal quality index (SQI) which automatically 
recognizes noise/artefacts in real-time that is inherent within 
the window of data and determines if it is acceptable or 
unacceptable to continued processing. The third step is pattern 
analysis where a combination of HRV and ECG morphology-
based features is extracted using custom designed signal 
processing methodologies. In the final step, the extracted 
features are run through a clinically supervised, trained 
classification model which produces one of four outputs (Fig. 
1): 
 ‘AHI Stable’ (Top Short Bar): Indicating that the patient 

is hemodynamically stable,  
 ‘AHI Unstable’ (Top Tall Bar): Indicating that the patient 

is undergoing or is at risk of hemodynamic instability, 
 ‘Missing data’ (Bottom Black Bar): No ECG data 

available; where half or more of the 5-minute window is 
missing data,  

 ‘Noisy Data’(Bottom Gray Bar): Data identified to be too 
noisy for AHI analysis.  

Additional details regarding creation of the AHI algorithm 
can be found in a previous publication [36]. 

D. Data Analysis Overview 

For each patient in this study, all available high-resolution 
ECG Lead-II waveform data prior to the RRT activation were 
retrospectively processed using AHI. To visualize and 
compare values and trends between the H-RRT and NH-RRT 
cases, a region of 48 hours prior to the RRT call was 
considered for a comparative analysis in the primary 
evaluation. Statistical significance between the data from H-
RRT and NH-RRT cases, leading up to the RRT activation 
was computed using the non-parametric Mann-Whitney U 
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Test. This test was chosen because the H-RRT and NH-RRT 
cohorts contained independent patient groups with variables 
being measured at a continuous level or ordinal level with 
unknown distribution for each hour of available data.  

E. Computing Lead Time to RRT 

In order to quantify AHI’s performance as an early warning 
system, the duration of time where AHI was indicating 
hemodynamic instability (red bars) prior to the RRT activation 
for each patient case was computed. Here lead time is defined 
as the duration of time prior to an observed adverse RRT 
activation event where at least 80% or greater of the AHI 
output are ‘Red Bars’ indicating that the patient is ‘at risk of 
hemodynamic instability’. An 80% red bar threshold was 
chosen as a conservative visually compelling threshold to 
ascertain a trend (Fig. 2). For the lead time computation, 

windows identified as noisy or missing are not included as 
they do not contribute towards clinical assessment of the 
patient’s hemodynamic status.  

Clinicians on the review team also manually reviewed and 
adjudicated each of these cases in a two-step process. First 
blinded to AHI’s outputs, clinicians reviewed each case using 
nursing and RRT team notes from the electronic health record 
(EHR) to assess the type of RRT call, either H-RRT or NH-
RRT. Next the clinicians reviewed AHI’s output for each case 
along with all available clinical information such as recorded 
vital signs, medications, labs, and interventions to adjudicate if 
AHI appropriately identified patients ‘at risk’ for an event 
requiring RRT activation and if so, how long prior to the RRT 
that AHI consistently labeled the patient as ‘at risk’ (lead 
time). 

 

 

Fig. 1 AHI’s single patient view showing the four possible outputs 
 

 

Fig. 2 Lead time analysis 
 

III. RESULTS 

A. Frequency of Recorded Vital Signs 

During in-hospital care, common vital signs used for 
hemodynamic assessment are measured and recorded in the 
EHR intermittently. The frequency of these records varies 
depending on a variety of factors including the acuity of care, 
severity of the patient’s condition, and nurse to patient ratio. 
Fig. 3 visualizes the number of times vital signs are recorded 
per hour in the 48-hour timeframe leading up the each RRT 
event. The right most corner of each graph in Fig. 3 at ‘Hour 
0’ represents the time of the RRT activation. 

Traditional vital signs are often infrequently measured and 
recorded by the bed-side nurses or other care-providers. Even 
vital signs collected electronically by monitors are usually 

verified manually before they persist in the EHR. In the data 
used in this study, it can be seen that the patient’s vital signs 
were recorded approximately one to two times per hour (Fig. 
3). AHI on the other hand produces up-to 30 outputs per hour. 
Any windows of data that were assessed as noisy or missing 
by the AHI algorithm have been omitted in the analysis, since 
they do not contribute toward the hemodynamic assessment of 
the patient. In this study the average number of AHI outputs 
per hour ranged between 21 to 30 outputs (Fig. 3). Hence AHI 
may provide a more continuous reflection of the patient’s 
hemodynamic status while not requiring any manual effort to 
gather the data.  

B. Average Measurements Prior to RRT Activation 

For the two groups, the average value per hour for each of 
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the available vital signs recorded in the EHR was plotted 
around a window of 48 hours prior to the RRT activation (Fig. 
4). In addition, the percentages of ‘Red AHI’ bars, indicating 
at risk of hemodynamic instability per hour were averaged and 
plotted. Using Mann-Whitney U Test, statistical significance 
between the two groups per hour was determined with a p-
Value < 0.05. Blood pressure mean and systolic values were 
obtained from the EHR, as available.  

 

 

Fig. 3 Across all H-RRT and NH-RRT cases. the average number of 
times a vital sign is measured and recorded in the EHR per hour 

leading up to an RRT event at ‘hour 0’ (right corner of x-axis in each 
figure) compared with average number of hemodynamically stable or 
at-risk outputs produced by AHI per hour leading up to an RRT event 
at ‘hour 0’ as shown in the bottom-right graph. Note that the Y-axis 

range varies by graph 
 

In Fig. 4, it can be seen that mean and systolic blood 
pressure values, which are commonly utilized in assessing a 
patient’s hemodynamic status, were very similar between the 
H-RRT and the NH-RRT cases. None of the average values in 
the 48 hours leading up the RRT were differentiable in a 
statistically significant manner. Similarly, temperature 
measures also show no statistically significant ability to 
discern between H-RRT and NH-RRT cases. With respiration, 
it can be observed that there is some separation in the values 
closer to the RRT activation. However, there is minimal 
separation between the standard deviation of the respiration 
values.  

The average HR values in Fig. 4 exhibit separation in trends 
between the H-RRT and NH-RRT cases, with the gaps in the 

separation increasing closer the RRT activation. Even though 
there is a statistically significant separation in the average HR 
between the two groups, the difference especially in the upper 
and lower bounds of the deviation makes it difficult to 
understand if differences are clinically significant.  

Fig. 4 displays a clear and consistent separation in AHI’s 
output differentiating between the H-RRT and the NH-RRT 
cases with the average percentage of ‘red bars’ per hour 
plotted along time. This indicates that when AHI consistently 
starts showing red bars, the likelihood of an adverse event is 
high. In comparison against all other graphed vital signs in this 
data, AHI’s ability to differentiate between the H-RRT and 
NH-RRT groups is statistically significant (p < 0.05).  

 

 

Fig. 4 Across all H-RRT and NH-RRT grouped cases, the average 
values of all available vital signs as recorded in the EHR per hour 

leading up to an RRT event at ‘hour 0’ (right corner of x-axis in each 
figure). The error bars show the mean and standard deviation of the 
values for each hour. The bottom-right graph plots the percentage of 
hemodynamically at-risk outputs produced by AHI per hour leading 

up to an RRT event at ‘hour 0’. Statistical significance between 
values in H-RRT & NH-RRT in any given hour has been shown with 

‘*’ at the top of the H-RRT bar 

C. Time to Event 

Lead time for both H-RRT and NH-RRT groups were 
calculated. As defined in Section II E, lead time is the 
continuous duration of time wherein 80% of all AHI outputs 
were ‘Red’ indicating at risk of hemodynamic instability prior 
to the RRT event. Table III shows the lead times computed for 
each of the cases in the two groups. The table also lists the 
total duration of available ECG data leading up to the RRT 
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call. Based on the clinical review team, it was determined that 
all the H-RRT cases had clinically actionable timeframes 
whereas none of the NH-RRT cases did. With the H-RRT 
cases, the lead times of AHI recognizing patient’s 
hemodynamic deterioration ranged from 14 minutes to 52 
hours. This may be clinically significant since providing such 
advance warning of potential hemodynamic compromise in 
patients allows for care providers to intervene earlier and 
thereby improve potential for a positive outcome.  

Table IV provides a statistical summarization of AHI’s lead 
time and length of ECG available between the H-RRT and 
NH-RRT groups. 

 
TABLE III 

AHI LEAD TIME PER GROUP AND PATIENT CASE 

H
em
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(H
-R

R
T

) 

H-RRT 
Case 

Lead Time 
AHI  

(hh:mm) 

Total Hours 
of ECG 

(hh:mm) 
1 2:14 20:02 

2 1:44 1:44 

3 46:33 46:33 

4 11:44 11:44 

5 0:14 6:50 

6 35:22 63:00 

7 27:21 27:21 

8 52:00 124:27 

9 7:26 1330:32 

10 48:40 151:15 

11 0:14 39:11 

12 0:36 4:00 
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(N
H

-R
R

T
) 

NH-RRT 
Lead Time 

AHI  
(hh:mm) 

Total Hours 
of ECG 

(hh:mm) 
1 0:04 14:20 

2 0:00 100:02 

3 0:00 89:24 

4 0:00 23:27 

5 0:00 93:40 

6 0:00 27:29 

7 0:00 18:10 

8 0:00 32:06 

9 0:00 165:02 

 
TABLE IV 

SUMMARY STATISTICS OF AHI LEAD-TIME BETWEEN H-RRT AND NH-RRT 

CASES 

Metric 
H-RRT 

(hh:mm) 
NH-RRT 
(hh:mm) 

Average AHI lead time 19:30 0:00 

Median AHI lead time 9:35 0:00 
Range of AHI lead time 

 
Min = 00:14,  
Max = 52:00 

Min = 00:00,  
Max = 00:04 

Average length of ECG data 152:13 62:38 

Median length of ECG data 33:16 32:06 

Range of ECG data 
Min = 1:44,  

Max = 1330:32 
Min = 14:20,  
Max = 165:02 

D. Subject Level Performance Measures 

To discern if AHI could differentiate between patients with 
H-RRT and NH-RRT events, the computed lead times for 
each patient case were used to identify those with clinically 
actionable timeframes and those without. Reviewing clinicians 

then determined if the computed AHI lead time for each case 
was sufficient for a clinical intervention (predicted). The 
clinicians concluded that one NH-RRT case with a non-zero 
lead time and were insufficient to be predictive of 
hemodynamic instability, hence were not considered to be a 
false positive. All H-RRT cases provided sufficient lead times 
to be clinically actionable.  

Using the reviewing clinicians’ original validated grouping 
between H-RRT and NH-RRT as the ‘ground truth’, and 
AHI’s dichotomization based on ‘predicted’ lead times, a 
confusion matrix was developed as shown in Table V. 

 
TABLE V 

CONFUSION MATRIX OF GROUND TRUTH AND PREDICTED H-RRT AND NH-
RRT CASES 

  Ground Truth (Clinician Adjudicated) 

  H-RRT NH-RRT 

Predicted 
(AHI’s 

Output) 

H-RRT 12 
(True Positive -TP) 

0 
(False Positive - FP) 

NH-RRT 0 
(False Negative - FN) 

9 
(True Negative -TN) 

 

As stated before, of the 21 total RRT cases in this cohort, 
the clinical review team adjudicated that 12 of these cases 
were due to hemodynamic-respiratory related RRT activations 
requiring a range of life-saving interventions, and the 
remaining nine RRT cases were for reasons not associated 
with hemodynamic-respiratory deterioration of the patient 
requiring life-saving interventions. The analytic correctly 
distinguished between H-RRT and NH-RRT cases with 100% 
accuracy thus demonstrating 100% positive and negative 
predictive values as well as a 100% sensitivity and specificity. 
In the H-RRT cases, the analytic detected hemodynamic 
deterioration of these patients with a median lead time of 9.5 
hours prior to the RRT call with a range of 14 minutes to 52 
hours prior to the RRT call. 

IV. DISCUSSION 

Predicting the development of acute hemodynamic or 
respiratory episodes that require significant interventions is an 
important but challenging clinical problem. As a result, 
various systems and indices have been developed and variably 
adopted into clinical practice, which attempt to identify levels 
of severity or instability for early detection. These include 
scores such as the Modified Early Warning System (MEWS), 
Shock Index (SI), Acute Physiology and Chronic Health 
Evaluation (APACHE) score, Simplified Acute Physiology 
Scores (SAPS), Mortality Probability Model (MPM), and 
others [1], [37]. Most of these other scores are computed once 
during initial periods of admission and typically require access 
to additional patient data which may not be available in all 
cases. Due to the non-continuous nature of these 
measurements and their reliance on certain subjective 
parameters for computation such as mental status, these scores 
are not always effective and cannot be relied upon for a 
continuous assessment and prediction of patient deterioration. 
A major disadvantage of these scoring approaches to predict 
and quantify instability is the fact that these methods do not 
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consider continuous, or nearly continuous physiological 
measurements. Other related experimental works in this field 
include utilizing high-fidelity continuous physiological data 
sources such as pulse oximeter, arterial line waveform, etc. to 
monitor variety of clinical endpoints [38]-[40].  

This study attempts to investigate the possibility of utilizing 
the continuous monitoring of a non-invasive physiological 
signal (ECG) to enhance the clinician’s ability to early detect 
onset of a hemodynamic deterioration. While the analytic we 
developed was originally based on HRV changes produced by 
simulated hypovolemia and intended to scale to clinical 
subjects who developed hemodynamic instability, it is not 
surprising that the analytic was able to capture patients with 
significant respiratory compromise that resulted in life saving 
interventions and care escalation since changes in HRV 
associated with respiratory distress are well known [34], [35], 
[41]. It is also likely that this respiratory distress if left 
untreated would lead to hemodynamic compromise as well. It 
is also known that changes in respiratory rate are an important 
variable in other early warning systems such as MEWS and 
NEWS. Identifying high-risk patients prior to clinical 
recognition of overt hemodynamic or respiratory instability by 
traditional tools would have enormous clinical implications, as 
it would allow for better triaging of patients and earlier 
interventions by medical teams. The approach described here 
may serve to fill this need through the application of novel 
computer algorithms, coupled with machine learning 
techniques. These resulting AHI lead times in the H-RRT 
cases presents a potential for positive clinical impact by 
accurately recognizing patient deterioration, well before an 
event occurs or a care provider recognizes the need for 
intervention/RRT support. This could enable timely 
interventions that could avert an emergency situation. Earlier 
predictions of the onset and progression of hemodynamic 
decompensation would allow a longer period of time in which 
to take clinical action and may reduce the need for transfers to 
higher levels of care. 

One of the key limitations of this study was the limited 
cohort size restricted by the availability of data. Since the data 
for this study were not collected prospectively, the next 
iteration of this study will be planned to include a prospective 
data collection process with a much larger cohort size and, if 
feasible, include data from more than one institution. 
Moreover, for this study, a case control design was adopted 
with an RRT activation as a clinical endpoint which limits the 
observation of AHI’s clinical efficacy to a specific patient 
population or condition. Since AHI was designed to monitor 
any patient requiring hemodynamic monitoring, the direction 
of another study being considered is a cohort control study 
wherein all patients from a given set of units will be observed 
for a duration of time, to assess AHI’s ability to provide 
patient monitoring support for a variety of hemodynamic 
related interventions and outcomes. 

As an indicator of autonomic nervous system dysfunction 
associated with hemodynamic instability, AHI is not capable 
of determining the cause of hemodynamic or respiratory 
instability or the exact time that the patient will experience 

overt decompensation. AHI is intended to provide care teams 
an opportunity to reassess their patients in a timely manner in 
the context of such things as the patient’s admitting diagnosis, 
recent procedures performed, current therapies, etc. that may 
be a cause of their pending instability. Thus, a post-operative 
patient whose AHI score is abnormal may be at risk for post-
operative hemorrhage or sepsis. Additional technologies or 
clinical decision support tools would need to be developed to 
assist in determining how proximal a patient is to overt 
deterioration. 

V. CONCLUSION 

Earlier clinical interventions may be possible by earlier 
detection of patients at risk for hemodynamic instability. A 
new clinical tool is needed that is reliable, real-time, and non-
invasive. This pilot study examines the feasibility of AHI, a 
continuous analytic that uses a single lead of ECG waveform, 
to predict episodes of hemodynamic-respiratory instability in 
patients receiving RRT support. The results from this 
retrospective study demonstrate that AHI has the potential for 
identifying a subset of these patients within a clinically 
relevant timeframe. A future version of a validated AHI 
product which can be prospectively applied could potentially 
provide increased vigilance and early interventional support to 
reduce delayed identification of patient deterioration. The 
results suggest further studies are warranted examining a 
larger group of subjects. 

VI. LIMITATIONS 

The material discussed is pending United States FDA 
review and not for sale in the United States.  
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