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Abstract—Dynamic Voltage and Frequency Scaling (DVFS)
multicore platforms are promising execution platforms that enable
high computational performance, less energy consumption and
flexibility in scheduling the system processes. However, the
resulting interleaving and memory interference together with per-core
frequency tuning make real-time guarantees hard to be delivered.
Besides, energy consumption represents a strong constraint for the
deployment of such systems on energy-limited settings. Identifying
the system configurations that would achieve a high performance and
consume less energy while guaranteeing the system schedulability is
a complex task in the design of modern embedded systems. This work
studies the trade-off between energy consumption, cores utilization
and memory bottleneck and their impact on the schedulability of
DVFS multicore time-critical systems with a hierarchy of shared
memories. We build a model-based framework using Parametrized
Timed Automata of UPPAAL to analyze the mutual impact of
performance, energy consumption and schedulability of DVFS
multicore systems, and demonstrate the trade-off on an actual case
study.

Keywords—Time-critical systems, multicore systems,
schedulability analysis, performance, memory interference, energy
consumption.

I. INTRODUCTION

S INCE the introduction of Dual-core Itanium as a first

multicore platform model by Intel early 2000’s, multicore

platforms are being the mostly used architecture for the

deployment of real-time systems. Such platforms enable

to leverage the computing capabilities, reduce the weight

of on-board computing equipment and lower the energy

consumption.

Multicore platforms either cannot be used in safety-critical

systems (SCS) due to non-determinism and unpredictable

memory interference, or if used the resources that they provide

would be severely under utilized in order to ensure the system

safety [26], [19], [3], [21]. In either case, one could deploy

SCS on multicore platforms without under-utilizing their

resources if absolute-guarantee analysis can be carried out to

secure the safety. The most promising analysis methodology is

model-based technology where formal methods can be applied

[20], [7], [9]. Such a methodology drastically reduces the

testing effort to be carried out when the final SCS is built.

Multicore platforms can experience a drastic energy

consumption that is not always worth to pay for, in particular

when the workload is not heavy or the timing constraints are

not tight. e.g, during cruise mode an aircraft can run less
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workload compared to taking-off mode whereas during taxing

mode some of the time constraints are usually less tighter, thus

making the platform performance and consumption flexible is

an asset.

The use of DVFS enables to save energy by tuning the

cores frequency according to, among others, the workload and

hardware temperature [29]. For real-time applications, systems

supporting DVFS need to balance the achieved energy savings

with the time constraints of applications. However, DVFS adds

a third dimension to the design, complexity and certification of

safety critical systems. The use of DVFS may lead to different

non-deterministic runtime scenarios [32]. The processing

cores of a DVFS platform can be independent and run

individual workloads, for example the ARINC partitioning for

Integrated Modular Avionics (IMA) architectures [31], where

the frequency is adjusted on a per-core basis [25] making

the execution of a task shorter (respectively longer) may lead

to violate the data flow predictability and synchronization

between tasks [8]. For example, when a processing task A
is allocated to a core running a higher frequency than that of

another core running a sensor task B, on which A depends in

terms of data, the data acquired by task A might be outdated for

more than one execution period. Similarly, if the core running

task A gets a drastic decrease of the frequency during runtime

task A will miss some of the data collected by task B. A strong

challenge of using DVFS processing cores is when to tune the

frequency and how much the tuning must be [12], [11], [29].

Due to the safety requirements, performance and energy

can be sacrificed up to a certain degradation level if the safety

and reliability are jeopardized. A compromise between safety

, performance and energy consumption can be established

to maintain safety properties while the performance and

energy consumption are aimed to be optimized as much as

the system safety permits. This article studies the tradeoff

between the energy consumption, schedulability (as a safety

property) and different performance metrics. To such an end,

we propose a scheduling algorithm to arbitrarily optimize

certain performance metrics, such as energy consumption

and memory bottleneck, and study its impact on the rest of

metrics and schedulability. Our ultimate goal is to maximize

the number of performance attributes that can be optimized

without necessarily degrading the rest of the attributes. The

questions that this paper answers are: 1) how multicore
platforms can be used for safety critical systems without
under-utilizing their resources?; 2) how to reduce the energy
consumption and optimize the performance without affecting
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the schedulability?.

A model-based realization of our framework is made using

UPPAAL, so that schedulability is formally analyzed using

symbolic model checking whereas performance and energy

consumption are analyzed using statistical model checking.

The rest of the paper is organized as follows: Section II

introduces the systems architecture we consider. Section III

describes the necessary background. Section IV is the problem

statement. Section V reviews the related work. Section VI

is the mathematical setting of our framework. Section VII

describes our scheduling protocol. Section VIII presents

the UPPAAL model-based realization. Section VIII-C is the

analysis of the trade-off using a case study. Section IX

concludes the paper.

II. ARCHITECTURE OF MULTICORE SCHEDULING

SYSTEMS

Multicore embedded systems are formed by the mapping of

a multi-component software system to a multicore platform.

Each component in turn is formed by the parallel composition

of a set of tasks, each of which represents a behavior described

with real-time constraints. A multicore platform is given by

a set of processing cores, local caches and shared memory.

Cores can be either homogenous or heterogeneous and may

feature different characteristics.

In order to enhance the processing performance of multicore

platforms, modern multicore processors1 consider a shared

cache level L2 besides private caches (L1-cache). The primary

reason of sharing a cache between different cores is to reduce

the access requests to the main memory DRAM, and by that

shorten the DRAM interference time since the interference

time is strongly correlated to the number of access requests

[28].

The mapping of tasks to cores can be either static or

dynamic. In the dynamic mapping, a global scheduling policy

is adopted where only one waiting queue is used to serve all

cores. In contrast, local scheduling is used to schedule tasks

statically allocated to a given core. The local scheduling is

practical to implement the IMA partition-based architecture.

To reduce the memory interference of memory-intensive

multicore systems, application tasks can be scheduled

according to a decreasing order of the numbers of memory

requests2 they issue during a given time interval. This core

scheduling policy is known by memory-centric [35].

The system architecture we consider is formed by a set of

subsystems each of which is mapped to a given processing

core. We consider a hierarchy of memories where each core

has a local cache (L1) and shares a cache level (L2) and

DRAM with the other cores. Each core is also characterized

by a set of processing frequencies, each of which associated

with an energy consumption rate. Moreover, we adopt

the Asymmetric Multi-Processing (AMP) [16] scheduling

architecture, where task sets (partitions) are statically allocated

to specific cores. This choice is motivated by the need to

1E.g. Intel Core i7, AMD FX, ARM Cortex and FreeScale QorIQ
processors.

2Technically known by Worst Case Resource Access number (WCRA) [28].

Fig. 1 Overall architecture

prevent error propagation between the applications running

on different cores. Fig. depicts the overall architecture

adopted throughout this paper. Our collaborative scheduling

mechanism imposes the four schedulers (S1, S2, S3, S4,

CC and FR-FCFS in Fig. ) to coordinate so that tasks

are efficiently s cheduled t o s horten m emory i nterference. For

example, when a core C is not allowed to access a shared

memory (L2 or DRAM) due to a budget expiry 3. The
scheduler of the concerned shared memory (CC or FR-FCFS)

notifies the scheduler of core C so that it preempts the current

running task whenever it exhibits a memory access request.

The scheduler of core C schedules another ready task not

immediately requesting an access to the concerned shared

memory.

III. BACKGROUND

This section introduces the fundamental background of our

work.

A. Shared Memory Access Scheduling

The shared memory scheduling policies used in this paper

are cache coloring and First Ready-First Come First Serve.

Cache coloring (CC) policy [22], [36] controls the access to

the shared cache L2 and improves the performance by mapping

physical memory pages to cache pages, thus avoiding the

clearance of cache pages on each context switch. The coloring

algorithm sorts the concurrent access requests according to

their release times. During execution, the algorithm frees the

old pages as necessary in order to make space for currently

scheduled applications (recoloring).

DRAM controllers in modern COTS-based systems use First

Ready-First Come First Serve (FR-FCFS) policy [30], [21] to

schedule concurrent memory accesses. FR-FCFS considers a

detailed DRAM architecture structured in terms of banks, rows

and columns. The access requests can target different banks,

3An access budget states how many accesses to a given memory a core can
perform over a given time duration.
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where they will be queued in the corresponding bank queue

with a special preference to read requests since they cause

the processor to stall. Access requests will be sorted at each

bank queue first according to their readiness. Thereafter, the

candidates selected from banks level will be further sorted at

bus level where the earliest request gains access, i.e. the first

request showing up at bus level among the requests selected

by bank schedulers. If no request hits the row-buffer, older

requests are prioritized over younger ones. A request hits a

row buffer if it has high row buffer locality, i.e it targets a

row being recently accessed.

B. DVFS and Dynamic Scheduling

Dynamic voltage and frequency scaling (DVFS) processors

have been introduced as a flexible computing technology

to execute systems operating on energy-limited sources and

having a non static workload [29]. Such platforms have

been intensively used to extend battery lifetime as energy

consumption is proportional to the cores frequency, lower the

hardware temperature and increase the number of applications

that can use the system resources. Examples of hardware

processors adopting frequency scaling are HP Proliant servers

and all Intel multicore processors since Dual-core Itanium2

2004. Operating systems are accordingly extended with

controllers to scale up/down the processor frequency, e.g.

cpufreq module equipping the Linux kernel since version 3.4.

The widely used DVFS techniques scale up and down the

frequency of processing cores to adjust the computational

power according to the actual workload time constraints [13],

[1], [29], among other factors such as thermal emergencies and

power consumption constraints. In principle, during runtime

whenever the workload increase reaches a level, specifying the

processing capacity of the platform under a given frequency,

processing cores can run faster using a higher frequency to

make room for all tasks to execute before their deadlines

[17]. Similarly, once a resource utilization approaches certain

budget, such as energy consumption, the frequency of

cores running non-CPU intensive tasks can be tuned down

accordingly [25]. The tuning of cores frequency is performed

on the fly using controllers and load calculators [1], [13].

However, the use of dynamic frequency scaling makes the

real-time guarantees hard to be delivered. Moreover, running

a core faster increases the frequency of issuing memory access

requests as code instructions get executed in shorter time. This

may in turn lead to longer memory bottleneck. According

to our experiments, memory interference time can increase

linearly with the frequency increase.

C. Statisticsal Analysis

To perform quantitative evaluation of the performance

and energy consumption, we use UPPAAL Statistical Model

Checker (SMC) [5]. In fact, SMC enables simulation of

the system executions so that different metrics can be

statistically evaluated. In terms of specification, UPPAAL

enables describing systems as a set of concurrent processes

using a state-transition formalism called timed automata.

UPPAAL SMC enables to analyze execution traces, that

are randomly selected, with respect to different quantitative

properties. We can summarize the main features of UPPAAL

SMC as follows:

• Stopwatches [10] are clocks that can be stopped and

resumed without a reset. They are very practical to

measure the execution time of preemptive tasks.

• Probability evaluation Pr[bound] (P) for a property

P to be satisfied within a given simulation time and/or

number of runs specified by bound.

• Simulation and estimation of the expected

minimum or maximum value of expressions over

a set of runs, E[bound](min:expr) and

E[bound](max:expr), for a given simulation

time and/or number of runs specified by bound.

Statistical model checking does not provide complete

certainty that a property is satisfied, but only verifies it up

to a specific confidence level [14], given as an analysis

parameter. Beside to statistical features, UPPAAL enables the

verification of safety and liveness properties using symbolic

model checking technique. Properties can be expressed using

Computation Tree Logic (CTL).

IV. PROBLEM STATEMENT AND CONTRIBUTION

A challenge of the multicore architecture depicted in

Fig. is how to design feasible schedules that lead to less

energy consumption, short memory interference time and high

utilization of processing cores. These different metrics are

correlated in the way that improving a performance metric

degrades other metrics. An example is the cores utilization

for which an enhancement via frequency tuning leads to

higher frequency of issuing memory access requests [34], [9],

which in turn increases the accumulated waiting time to access

DRAM and worsens the memory bottleneck.

Let us assume the runtime scenario depicted in the snapshots

of Fig. Initially, core C1 is performing access to DRAM

(snapshot (a)). Meanwhile, core C2 and C3 successively

perform access requests and join the DRAM queue (snapshots

(b) and (c) are omitted). In snapshot (d), core C4 performs

a DRAM access request while the other core requests are

pending. While core C4 is waiting for the access to DRAM,

which is going to be relatively long as C4 is the last element

of the access, the following facts hold:

• The waiting time is accumulated to the response time of

the task currently running on C4.

• During the waiting time, the core is running but not

effectively used.

• During waiting time, the core is consuming energy while

doing effective work.

This paper proposes a dynamic scheduling control to

optimize these three points and studies their mutual impact.

To such an end, we preempt the task currently scheduled

on any core once it performs a memory request that is not

immediately granted (task T 1 in Fig. a)), because either

the request is preceded by many others pending requests or

the corresponding core has consumed its entire access budget

for the current time interval. Such a task will be moved to

a new scheduling queue (AccessDueQueue) pending for
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Fig. 2 Runtime example

an access request. Another ready task from the regular queue

of such a core (task T 2 in Fig. (b)), can immediately be

scheduled as the core just becomes available, i.e. not stalling.

In a similar way, if the newly scheduled task exhibits an access

request to a shared memory while the target memory queue

is very dense, such a task will immediately be preempted and

moved to AccessDueQueue thus leading another ready task

to run. Whenever the access request of a preempted task is

granted, the corresponding task will be scheduled immediately

(task T 1 in Fig. (c)) causing the current running task (task T
2 in Fig. (c)) to be preempted. This is to respect the core’s

scheduling policy as the running task (T 2) is not supposed to

run before the task resuming right now (T 1). In a similar way,

when the access request of another preempted task (located in

AccessDueQueue) is granted while the current running task

just resumed from the interference queue, such a task will be

inserted in the core’s regular queue right after the last task

moved from AccessDueQueue to regular queue.

Accordingly, we enhance the effective utilization of cores and

reduce the energy consumption of processing cores. We use

DVFS to improve the performance further where cores

frequency is tuned following the interference, i.e. the state of

DRAM and L2 access queues so that we do not worsen

memory bottleneck. We implement this scheduling strategy as

an algorithm to tune the control parameters and shuffle t he p

erformance o bjectives. W e s tudy t he i mpact of such

scheduling strategy on the different metrics (performance,

energy) of the system.

V. RELATED WORK

Energy-aware and performance-aware scheduling protocols

for multicore systems have been studied thoroughly in the

literature [25], [13], [24], [2], [27], [18], [29], [9] with the

goal reduce energy consumption and improve performance of

such systems while delivering high schedulability guarantees.

In a similar way, different algorithms have been proposed

to make the use of cores frequency scaling more profitable

with respect to energy consumption and performance [12], [6].

However, this makes real-time guarantees hard to be delivered

Fig. 3 Scheduling example using the proposed strategy

as tuning is applied on per-core basis which may affect runtime

predictability and synchronization between application tasks

[25], [8]. Moreover, the energy consumption and different

performance metrics are correlated in the way that improving

one metric may degrade others [34].

Li et al. [24] propose an energy-aware algorithm to schedule

dependent tasks. The algorithm consists in calculating an

optimal task-to-core assignment and estimating the proper

voltage to execute a given task. Similarly, Lin et al. [25]

proposes 2 task scheduling algorithms to leverage per-core

DVFS and achieve a balance between performance and energy

consumption. In both [24] and [25], the proposed algorithms

minimize the number of voltage/frequency transitions and

rather migrate tasks between cores. Although these techniques

are promising, the migration operation contributes the memory

bottleneck and degrades the performance as more accesses to

DRAM are need for the context switch.

Datta et al. [13] introduced 2 priority-based scheduling

algorithms to reduce energy consumption and increase

performance. Priorities are calculated based on either cache

miss ratio or context switch of processes. However, using

performance and energy as main criteria for the tasks

scheduling might lead to deadlines miss.

Subramanian et al.. [33] introduced a performance-driven

scheduling algorithm, called (MISE-Fair), to minimize the
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maximum slowdown delays experienced by tasks, i.e. the

delays due to waiting for access to shared resources.

In essence, MISE-Fair estimates the slowdown of each

application and redistributes the memory bandwidth to reduce

the slowdown of the most slowed-down application. However,

minimizing the DRAM-related slowdown of tasks may impact

scheduling at the cores level.

The authors of [35] propose a global memory-centric

scheduling algorithm and study the execution slowdown while

varying the number of cores. A conclusion is that the

memory-centric policy can schedule twice as many tasks

compared to processor-centric scheduling, however this may

lead to drastic energy consumption of the processing cores.

In this paper, we introduce a scheduling algorithm to tune

different performance parameters on the fly, each at a time,

and study the impact on the rest of the performance metrics

and energy consumption. We mechanize our system model and

the scheduling algorithm in Uppaal to provide a ground for

the trade-off analysis where statistical model checking is used

to examine energy consumption and performance whereas

symbolic model checking is used to verify schedulability.

VI. SYSTEMS SPECIFICATION AND ANALYSIS

This section presents a formal specification of our system

model and how to calculate the different metrics: energy

consumption, performance and response time.

A. System Settings

We consider an application model A formed by a set of task

sets {T1, T2, ...}, each of which is mapped to a given core of

a multicore platform P .

A task set, or shortly a component, T = {T1, .., Tn} is a set

of periodic tasks. A task models the execution of a real-time

process for both processing and memory access. We consider

2 attributes αc and αm where:

• αc corresponds to the maximum number of successful

access requests (hits) to L2;

• αm is the number of DRAM access requests (corresponds

to L2 miss) performed by a given task.

Given that read and write access requests have different

impact on processor time (stalling), we denote each of these

attributes with r for read and w for write, i.e. αr
c , αw

c , αr
m

and αw
m to distinguish between read and write requests. Such

attributes are identifiable using program/cache analysis tools

[15] on a given platform architecture. We formally define

access requests to shared memories as follows:

Definition 1 (Memory access requests): The access request

of a process to a shared memory is given by req = 〈ρ,RW,ψ〉
where:

• ρ ∈ {L2, DRAM} is a pattern stating to which memory

the access hits.

• RW states whether it is a read (r) or write (w) request.

• Our task model triggers access requests

non-deterministically during runtime, we use thus

ψ to store the issue time of each request once is

effectively issued. ψ is initially empty.

For the behavior of each task, we use αr
c and αw

c ,

respectively αr
m and αw

m, as numbers of read and write

accesses to L2, respectively DRAM. Implicitly, each access

request to L2 is preceded by an access to the core local cache

(L1 miss).

Now we specify the task attributes needed to perform an

efficient real-time scheduling.

Definition 2 (Task structure): A periodic task T is given by

〈p, o, τ, αr
c , α

w
c , α

r
m, αw

m, d, ε〉 where:

• p is the task period, and o is the periodic offset.

• τ is the pure worst case execution time (WCET) of T
when executing on a processing core operating the lowest

frequency, i.e. τ does not include the time to fetch data

from shared memories.

• αr
c , α

w
c , α

r
m and αw

m are the number of access requests

described earlier.

• d is the relative deadline and ε is the priority level

associated to T .

As part of the AMP architecture, the tasks of a given

component are allocated to the same processing core. The

platform model P consists of a set of processing cores

C = {C1, C2, ...}, one shared cache level (L2) and a shared

DRAM. A processing core is given as follows:

Definition 3 (Processing cores): A processing core C is

given by 〈〈f1, .., fn〉, 〈v1, .., vn〉, βm, βc,Φ, H〉 where:

• 〈f1, .., fn〉 is a set of processing frequencies.

• 〈v1, .., vn〉 is the voltage rates corresponding to the

individual frequencies.

• βm and βc are budgets stating the maximum access

requests of a core, to L2 and DRAM respectively, per

second.

• Φ is the scheduling policy adopted by C.

• H is the local cache abstracted as a static access time.

The scheduling function Φi :
Ti × Ti × R≥0 → Ti ∪ {none} of a core Ci identifies,

among the ready tasks Ti allocated to Ci, which one has

priority to be scheduled at any point in time. The scheduling

of a task may imply a preemption of of another task. In

case none of the tasks is ready, Φ returns none. Φ can be

implemented for both static and dynamic priority scheduling

algorithms.

Definition 4 (Shared memories): A shared memory, L2 and

DRAM, is given by 〈Φx, δx〉 with x ∈ {m, c}, where Φx is

the access scheduling function and δx is the effective access

time, i.e. the time duration of fetching data from a physical

address once the access is granted.

The memory scheduling function Φx :
C × C × R≥0 → C ∪ {none} states which of the cores

can be granted access to a shared memory, L2 or DRAM,

at any point in time. In case none of the cores is currently

performing an access request, Φ returns none.

B. Calculation of Energy Consumption

We analyze the energy consumption of the multicore

platform using statistical model checking. To this end, we

consider a set of independent runs Runs = {π1, π2, . . .},
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randomly generated according to a probabilistic semantics

[14]. A run π of a system S is an infinite sequence:

π = s0(t0, e0)s1(t1, e1) . . . sn(tn, en) . . .

where each state si gives information about a system

configuration including the state of each task (e.g. idle,

ready, running, blocked) and resource (e.g. idle, occupied,

blocked, etc); s0 is the initial state. Each ei indicates an

event (triggering, queued, tuning-up, tuning-down, released,

completing, etc) signifying a transition from state si to si+1

where at least one characteristics of either a core, a task or a

shared memory changes. Timestamp t0 indicates the time from

system initiation until event e0. Every subsequent timestamp

ti (with i ≥ 1) indicates the duration between events ei−1 and

ei.
Definition 5 (Energy consumption): The energy consumed

by a given core Cj for a run π is the accumulation of energy

consumed at each state of the run, which is in turn a function

of the core frequency operated at the state [6]. Since each state

runs only one frequency of Cj , as a tuning up/down leads to

another state in the trace π, the energy consumption of Cj is

formally given by:

Eπ(Cj) =
∞∑
k=0

1/2 χ (volt(sk))
2 freq(sk) tk

where χ is the core capacitance; functions volt(sk) and

freq(sk) return the core voltage and frequency at a given

state sk. tk is the time duration, from the trace definition,

upon which a core maintains its frequency and voltage.

For a given time duration t, the energy consumption of a

core Cj is given by
x∑

k=0

1/2 χ (volt(sk))
2 freq(sk) tk where

x∑
k=0

tk = t. Accordingly, the energy consumed by a set of

cores is the sum of individual cores consumption. To obtain

reliable results, one needs to consider a large set of runs.

C. Calculation of the Response Time

To calculate the response time of a given task Tj on a given

run π we introduce the following:

• ReleasedTj
π (s) indicates whether Tj is released for a new

period at state s or not.

• DoneTj
π (s) indicates whether the execution of Tj is done

at state s or not.

Since a task can maintain a status through different states,

e.g. a task can be ready over a set of states while waiting to

be scheduled, one needs to identify what is the first state at

which the given status is obtained.

Definition 6 (Response time): The response time Rπ(Tj) of

a task Tj is the maximum duration between the release and

termination of each execution period. Formally,

Rπ(Tj) = max(
y∑

k=x

tk | ReleasedTj
π (sx) ∧ DoneTj

π (sy)

∧ ∀s ∈ ]sx, sy[ (ReleasedTj
π (s)

∨ DoneTj
π (s)) = false)

We define the final response time R(Tj) of task Tj to be the

maximum of the response times obtained on individual runs,

i.e. R(Tj) = maxi Rπi
(Tj).

Given that schedulability is a safety property, we use

symbolic model checking to analyze it. In fact, we explore

the whole state space (all potential runs) and check at each

state whether there is a task missing its deadline or not.

D. Performance Calculation

In this paper, we use cores utilization and memory

interference as performance metrics [9]. To quantify such

metrics for a given run π, we define the following predicates:

• InUsesπ(C) ∈ {0, 1} is a predicate that indicates whether

core C is being used in state s of run π. For the sake of

implementation, we consider Boolean values as integers

either 0 or 1. In fact, a processing core is in use if it is

running a workload, either effective executing or stalling

due to a shared memory access.

• IssuedCπ (req) indicates when the access request req is

effectively triggered by core C, i.e. at which state of π.

• GrantedCπ (req) indicates at which state of π the access

request req, performed by C, is performed.
Definition 7 (Processing core utilization): The utilization

of a processing core C on a given run π is the accumulated
time of core C being active. Formally, the core utilization
UL

π (C) up to a time bound L (simulation length) is given by
the following:

UL
π (C) = (lim sup

t→L

∑

ti+1≤L
((ti+1 − ti)× InUse

si+1
π (C))

L )× 100

The average utilization of the processing core C for a set

of runs Runs will be the accumulated individual utilizations

on the number of runs:

UL
Runs(C) =

j=|Runs|∑
j=1

UL
πj
(C)

| Runs |
Definition 8 (Interference of memory access requests):

The interference of an access request to a shared

memory is the accumulated delay for the request since

its release to the time point it is granted. Formally, for

a given access request req performed by core C in a

run π, we define the interference of req as follows:

ReqDelayCπ (req) = GrantedC
π (req)− IssuedCπ (req).

Similarly, the maximum delay of the requests ReqC issued

by a core C on a run π is given by:

ReqDelayCπ = max(ReqDelayCπ (req | req ∈ ReqC))

Accordingly, the average of maximum interference delays

of core C for the set of runs Runs is defined as follows:

ReqDelayCRuns =

j=|Runs|∑
j=1

ReqDelayCπj

| Runs |
Memory interference is critical to the calculation of

the tasks’ response time and schedulability analysis given

that memory interference time contributes to the tasks
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execution time. We distinguish between L2 ReqDelayCRuns and

DRAM ReqDelayCRuns, as the interference delays of a given

core C to access L2 and DRAM respectively, given that access

requests to L2 and DRAM do not have the same interference

delays, i.e. DRAM access is considerably longer compared to

the access to shared cache L2.

VII. SCHEDULING AND CORES FREQUENCY TUNING

A task is scheduled according to the scheduling policy of

the core to which is assigned, once it runs an access request

the corresponding core performs a request and waits for the

request to be granted. In contrast to read requests, a core does

not stall with a write access request and gets immediately

unlocked. Once the max budget (number of access requests

allowed for a time duration) of the core is reached, the core is

not able to perform access requests. Rather the running task

will be preempted due to the access request, and will be placed

in another scheduling queue AccessDueQueue. This leads

to exploit the core time in executing other ready tasks rather

than waiting for a long interference time. The core obtains

then another ready task to run, however once the current task

needs to perform a request while the core budget is still not

replenished that task will as well be preempted due to access

request and placed in the same queue AccessDueQueue.

Once the core budget is unlocked, for a new period, the core

scheduler preempts the current running task and schedules the

tasks located in AccessDueQueue, using a FIFO policy. The

core keeps running all tasks in AccessDueQueue before

switching to the regular scheduler queue where the adopted

scheduling policy will be used then. To sum up, while the core

access budget is not reached yet tasks are purely scheduled

according to the core scheduling policy. Once an access

budget is reached, the scheduling will be driven by both core

policy (to select from ready tasks waiting for the core), and

whether or not a task needs to perform an access request (as a

preemption criterion). This in fact leads to shorter interference

delays as we decrease the frequency of issuing access requests

over time.

Fig. depicts an example of how our collaborative

scheduling mechanism works. Initially, all ready tasks join

the ready queue whereas the task having priority (in this

case T1) runs first. G iven t hat t he c urrent c ore budget

is expired (scenario step (b)), whenever T1 exhibits an

access request it gets immediately preempted and moved to

AccessDueQueue. Similarly, T2 is scheduled but at the

first a ttempt t o a ccess a s hared m emory t he c ore scheduler

preempts it. Task T3 is scheduled, meanwhile the core budget

is replenished (scenario step (c)). Thus, T3 is immediately

preempted and T1 is scheduled to complete its execution

(scenario step (d)). The core then keeps executing the tasks

stored in AccessDueQueue before scheduling any task from

the ready queue.

While alternating the scheduling mechanism between

core-centric and memory/L2-centric for a given core, the core

frequency will be scaled down to reduce energy consumption

when stalling for an access request, having a light workload or

having a budget expired. The frequency is tuned up to absorb

Fig. 4 Collaborative scheduling

the backlog created by moving tasks to AccessDueQueue, or

in case there is a potential for a ready task to miss its deadline.

Given a core C running a frequency fi at a time instant t, the

tuning of C is performed as follows:

Tuning(C, t) =

⎧⎪⎪⎨
⎪⎪⎩
f1 if Inactive(C, t) or Stall(C, t)
fi+1 if fi �= fn and heavy(workload, t)
fi−1 if (fi �= f1 and not(heavy(load, t))

and budgetExpired(C, t))

The core workload (workload) includes both the

load (load) formed by regular ready queue and the

tasks preempted due to budget expiry (located in

AccessDueQueue). We consider tuning up/down with

one level only, however the tuning controller updates the

core frequency more than once per time, iteratively, if the

conditions still hold [4]. The auxiliary functions used above

are given by:

Inactive(C, t) =

{
true if ∀Ti Tj Φ(Ti, Tj , t) = none
false otherwise

Stall(C, t) =

{
true if ∃C ′ Φx(C,C

′, t) = C ′

false otherwise

load(C, t) =
∑
Ti∈T

(LeftWCET (Ti, t)/freq(t))

The load of a given core is formed by the remaining WCET

of ready tasks using the current core frequency freq(t). Since

WCET is given in terms of the lowest frequency level, the

effective execution time will be a division of WCET on the

current frequency (normalized to the lowest frequency level).

workload(C, t) = load(C, t) +
∑
Ti∈T

LeftWCRA(Ti, t) ∗ ar()

The workload is formed by a load together with how many

access requests left for each task multiplied by the current

worst case response times of the shared memories (L2 or
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DRAM) estimated online using the memory response time

function ar() [7].

heavy(X, t) =

{
true if X∑

Ti∈X

(di−t%pi)
≥ 1

false otherwise

T is implicitly the task set assigned to the core C
under analysis. Basically, function heavy(X, t) compares the

load/workload X to the time left to deadlines di, from the

release of the current periods (t%pi). One can see that we

overload function freq(), so that the parameter can be a time

instant t or a state s in a runtime trace π.

VIII. UPPAAL MODELING AND TRADE-OFF ANALYSIS

Our system model aligns with [35], but we adopt local
scheduling (AMP) and spread out memory access requests

non-deterministically during task executions rather than using

dedicated phases. This is in fact much realistic as actual

systems do not have exact time points to fetch data.

A. Uppaal Modeling

We have built a model-based framework, using Uppaal,

to implement the theory introduced in Section VI. Such

a model-based setting enables schedulability analysis and

implements our scheduling technique, energy consumption and

frequency tuning calculations. The system application is given

by a set of periodic task sets, each of which is statically

assigned to a given core. Cores share both L2 cache and

DRAM. We model tasks with explicit read and write access

numbers for shared cache L2 and DRAM. We distinguish

between read and write access requests to shared memories

as read actions make cores stall, while write actions are

not blocking and can be performed using dedicated buffers.

The system is formed by a parallel composition of the

processes representing the different entities: tasks, processing

cores, scheduler, L2 and shared memory. For reconfigurability

purposes, the processes are made parametrized so that an

instance of a given template can easily be created by just

providing actual parameters.

We only demonstrate the task model as it is the main process

of our model behavior.

The task model is depicted in Fig. ??. The task starts

at location Init and moves to to location Ready, upon the

expiry of a potential offset, to request the core (C) it is

mapped to. In order to make our models flexible and reusable,

the core identifier is a parameter of the task mapping. The

task waits to be scheduled at location WaitSched unless

the deadline is reached by which it moves to location

DeadlineMiss. Once scheduled at location Run, a task starts

its execution and non-deterministically triggers access requests

to L2 and DRAM. One can see that at location Run, the

progress rate of the clock measuring the task execution

time WCET is given in terms of the current core frequency

(execTime[tId]’==core[c].CurFreq), thus the faster the core

is the shorter the execution will be. A task can be preempted

either when it performs an access request to a shared memory

while the core access budget is expired (location APreempted),

or another higher priority task preempts it during regular

execution (WaitSched). Either cases, the task moves back to

location WaitSched. However, it can only be located in one

waiting queue, either queue or Aqueue. If the task execution,

for both WCET and memory accesses, terminates before

deadline the task then moves to location Done. Otherwise,

a deadline miss is reported.

B. Schedulability and Energy Consumption Analysis

According to the task model described earlier, whenever a

process misses its deadline it joins immediately the location

DeadlineMiss. Thus, the schedulability analysis is performed

using symbolic model checking and simply checks whether

any task can reach its own DeadlineMiss location. To quantify

on all tasks regardless of their identifiers we use the following

CTL query supported by UPPAAL:

∀[] !error (1)

To analyze the energy consumption of a given core, we

use statistical model checking (SMC) where we run a system

execution (simulation) several times (X), each of which lasts

for Y time units, and accumulate the energy consumption

measured using the clock variable Energy[cId]. Globally, the

larger X and Y are the more accurate the results will be

because more execution scenarios will be explored. The energy

consumption of an individual core C can be displayed in terms

of a probability distribution using the following SMC query:

E[clk <= Y ;X](max : Energy[C]) (2)

Similarly, the number of frequency changes performed by

a given core during certain simulation duration of Y time

units can be tracked using the variable FreqChanges[C], and

displayed as a probability distribution using the following

SMC query:

E[clk <= Y ;X](max : FreqChanges[C]) (3)

The response time is statistically calculated in similar

way, then can be compared to the task deadlines as a

cheap schedulability analysis. If each response time does

not exceed the corresponding deadline then the system is

likely schedulable; thus a formal and expensive analysis using

symbolic model checking can be performed to make absolute

certainty.

For performance and energy consumption optimization,

one can use multi-objective Pareto frontier to compare the

energy consumption, memory interference and number of

cores tuning for different configurations and identify the

system configuration achieving the best analysis outcome. An

optimal configuration can be achieved if one establishes a

priority between the aforementioned criteria. Through out this

paper, schedulability is implicitly considered as a primary

criteria for the deployment of an application model on a given

platform.
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Fig. 5 Task template model

TABLE I
ATTRIBUTES OF THE AVC TASKS

Task Prd Offset WCET WCRAc WCRAm Dln

T1 520 30 80 (40; 67) (11; 8) 520
T2 800 20 60 (32; 87) (18; 10) 800
T3 1000 200 30 (29; 78) (12; 27) 1000
T4 4000 0 60 (123; 64) (19; 12) 4000

C. Trade-off Analysis: Case Study

To study the trade-off between energy consumption,

performance and schedulability we analyze an avionic system

component running on two processing cores each of which can

operate four different frequency levels. The numbers of L2 and

memory access requests are synthetically estimated according

to [36]. The system description is shown in Table I, where

WCRAc and WCRAm are given in terms of (reads; writes), and

all time values are in milliseconds. Schedulability analysis is

formally analyzed using symbolic model checking, whereas

energy consumption and performance analysis are performed

using SMC.

The SMC experiments are performed on 103 runs, each of

which lasts for 104 time units. Fig. shows the probability

distribution of the energy amount consumed by core1 during

the simulation time. One can see that values in [2331,2342] are

the most likely candidates as they have the highest probability

(0.94) whereas the worst case energy consumption value is

2444. Similarly, the number of frequency changes performed

by core1 is depicted in Fig. in terms of a probability

distribution. One can see that the number of frequency changes

varies from 22 to 102, while the most likely value is 34.

Now, we run four different simulation experiments where on

each simulation the processing cores run constantly a different

frequency fi ∈ {f1, .., f4}. We analyze accordingly the

Fig. 6 Probability distribution of the energy consumed by core1

underlying schedulability, effective utilization of processing

cores, memory interference and energy consumption. Fig.

depicts how the frequency of processing cores impacts the

system schedulability. One can see that when cores run

continuously the frequency level f1 or f4, the system is not

schedulable (below 1.0). This is in fact due to tasks either

missing deadlines due to slow execution (case of f1) or having

a large memory interference time (case of f4).
Fig depicts the impact of frequency scaling on the

average energy consumption of processing cores. It is trivial

that the energy consumption increases linearly with the

increase of processing frequency. However the linear ratio gets

smaller and smaller when the frequency reaches level F3.

Fig. demonstrates the relationship between the

processing cores frequency and the memory bottleneck. In

fact, the memory interference increases exponentially with the
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Fig. 7 Probability distribution of frequency changes of core1

Fig. 8 Impact of cores frequency on energy consumption

increase of processing frequency. This is due to the increase

of processing frequency leads to higher frequency of issuing

memory requests and thus longer accumulated interference

time to serve such requests.

The relationship between processing cores frequency and the

effective utilization of cores is depicted in Fig. . By effective

utilization we mean the core utilization without stalling time.

The overall effective utilization percentage decreases linearly, 
with  a  slower  rate,  with the   increase   of   processing   cores
frequency. This is in fact due to higher processing frequencies

lead to longer memory interference time and thus larger

stalling time for cores.

D. Comparison and Discussion

In this section, we run the earlier case study with and 
without the collaborative scheduling algorithm (CSA) [23] 
and compare the analysis outcomes. When running the 
conventional scheduling protocol EDF, the scheduler we 
consider  does  not  preempt  a  task when it performs an access
request to a shared memory, rather it let the processing core

stalls until the request is granted. In contrast, CSA protocol

preempts a task when it performs a request to a shared memory

having a crowded queue, and rather a computation task is

scheduled so that the processing core is used to execute an

available task than idling for a memory access. The metrics

we compare are energy consumption, memory interference,

utilization of individual cores and tasks response time.

Fig. 9 Impact of cores frequency on energy consumption

Fig. 10 Impact of cores frequency on memory interference

Table II shows some of the comparison results obtained for

a simulation time of 104 units. Having a longer interference

time for processing cores with CSA, compared to regular

scheduling without CSA, does not mean that the cores are

stalling longer but only the requests issued by the cores

take longer to get granted. While a request is waiting to

be granted, the issuing core switches to another task to

perform other computations. By preempting a task when

it performs a memory access request and allocating the

underlying processing core to another ready task, we reduced

the stalling time and thus improving the effective exploitation

of processing cores. This would absolutely lead to create

room for new tasks to be deployed on the processing cores.

As shown in Table II, executing a workload using our CSA

technique reduces the utilization of Core1 with (28.10% to

38.03%) and Core2 with (4.24% to 8.65%), compared to

classic scheduling settings. In fact, the higher the number of

requests a task set can issue the larger the core utilization gain

will be. On the other hand, the higher the number of requests

a task set can issue the worse the memory interference will

be. This is because the memory interference is correlated to

TABLE II
PERFORMANCE COMPARISON

Metrics With CSA Without CSA
Core1 Core2 Core1 Core2

L2 interference 2.74 2.49 2.32 2.42
DRAM interference 1.98 1.96 1.86 1.89
Utilization 28.10 4.24% 38.03% 8.65%
Energy consumption 2332 1864 6107 2648



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

390

Fig. 11 Impact of cores frequency on their effective utilization

the frequency of issuing access requests.

Aligning with the cores utilization, the energy consumption

of processing cores has been drastically reduced thanks to

our collaborative scheduling algorithm. Table II shows that

Core1’s energy consumption is reduced by 61.8% (from

6107 to 2332) while the energy consumption of Core2 is

reduced by 29.7% (from 2648 to 1864). Fig. ?? depicts a

comparison of the accumulated energy consumption of Core1,

to run the same workload, with and without CSA scheduling.

Initially and until time point 107, both configurations (with

and without-CSA) consume the same energy amount. As

soon as CSA algorithm starts preempting Core1 to avoid

stalling, the plots start diverging. At time instant 280, all

tasks execution and access requests are satisfied for the current

periods. Accordingly, Core1 is running a very low frequency

by which the energy consumption is barely increased until time

instant 300. The energy consumption plots keep diverging even

though they show the same progress patterns.

Fig. 12 Energy consumption comparison for Core1

The resulting response time of tasks when running CSA is

slightly longer than the response time when running regular

scheduling. The response time of task T1 when using CSA is

11.2% longer than the regular response time. On the other

hand, the response time of task T2 is reduced with 1.9%.

According to our experiments, the lower the task priority is the

smaller the response time difference between with-CSA and

without-CSA will be. This is in fact because a lower priority

task is mostly located towards the tail of the core’s ready

queue. Thus, when such a task runs an access request and

blocks there is no other ready task to which the processing

core can be allocated to do actual computation. Hence, the

task response time does not differ largely when using CSA

compared to classic scheduling settings.

The analysis outcomes of the case study show a trade-off

between the energy consumption and different performance

attributes. Reducing the cores utilization using CSA leads to

reduce the energy consumption but it increases the frequency

of issuing access requests which in turn crowds the shared

memory queue. Thus, resulting in longer memory interference

which might affect the tasks response time, in particular for

memory-intensive applications, by which a deadline can be

missed. One has to find a threshold to determine the right

access-due-preemption time point, for example if there is

less than certain number of access requests waiting in the

DRAM queue the processing core issuing an access request

will be better stalling and consuming a low voltage rather

than swapping to another ready task, by which reducing the

effective concurrent access requests to shared memories.

IX. CONCLUSION

This paper presents a theory and a model-based

implementation to study the trade-off between schedulability,

performance and energy consumption of multicore systems.

The processing cores we consider share different levels of

cache and memory, and run dynamic voltage and frequency

scaling. The performance metrics considered are memory

interference, response time of tasks and effective cores

utilization. Our models have been mechanized in UPPAAL

where schedulability is analyzed using symbolic model

checking, while energy consumption and performance are

analyzed using statistical model checking.

To demonstrate the trade-off between the different metrics

we consider, we have analyzed an avionic system component

as a case study. Our analysis results show that the processing

speed (cores frequency) is a decisive element for the rest of

the metrics as it either leads to deadline miss, if too slow, or

to a large memory bottleneck and stalling time of cores, if too

high.

As a future work, we plan to implement a decision making

process in order to assist the scheduling protocol finding the

optimal configuration of the difference performance metrics

and energy consumption.
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