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Abstract—Noise estimation is essential in today wireless systems
for power control, adaptive modulation, interference suppression and
quality of service. Deep learning (DL) has already been applied in the
physical layer for modulation and signal classifications. Unacceptably
low accuracy of less than 50% is found to undermine traditional
application of DL classification for SNR prediction. In this paper,
we use divide-and-conquer algorithm and classifier fusion method
to simplify SNR classification and therefore enhances DL learning
and prediction. Specifically, multiple CNNs are used for classification
rather than a single CNN. Each CNN performs a binary classification
of a single SNR with two labels: less than, greater than or equal.
Together, multiple CNNs are combined to effectively classify over a
range of SNR values from −20 ≤ SNR ≤ 32 dB. We use pre-trained
CNNs to predict SNR over a wide range of joint channel parameters
including multiple Doppler shifts (0, 60, 120 Hz), power-delay
profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The
approach achieves individual SNR prediction accuracy of 92%,
composite accuracy of 70% and prediction convergence one order
of magnitude faster than that of traditional estimation.

Keywords—Classification, classifier fusion, CNN, Deep Learning,
prediction, SNR.

I. INTRODUCTION

TODAY, SNR plays an increasingly important role in

wireless systems. Both accuracy and readiness are

demanded for the quality of services of 5G generation and

beyond. Conventional SNR estimation techniques from the 4G

era which are knowledge-driven and rely on expert models

[2], [14], [10], [19] faces new challenging requirements.

Alternatively, DL classifications are data-driven approaches

and based on learning from the data relationship not on

modeling from the governing theory. The success of DL

classification in many areas including wireless communication

(i.e. RF signal and modulation classifications) [3]-[9],

[12], [13], [17], [18] calls for continuous expansion of

its applications. Moreover, DL classification using off-line

training can produce predictions for every input data frame;

whereas, estimation techniques typically requires 50 to

hundreds frames [16], [1]. DL prediction time is at least

an order of magnitude shorter than estimation time. This

readiness can make a big difference in short-message

services (e.g. M2M) where SNR estimation overhead uses

a significant portion of message transmission resources.

However, traditional application of DL classifications to

predict SNR does not yield satisfactory accuracy (i.e.

below 50%). One of the potential reason is that the

classifier is overwhelmed by features governed the input

output relationship (i.e. number of features). There are

techniques to improve DL classification such as increasing

size of the training dataset, selecting a better DL model

in terms of architectures, number of layers, filter sizes,
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etc. In this paper, we use multiple CNN classifiers in a

divide-and-conquer manner to reduce prediction uncertainty

and increase the learning effectiveness. From Machine

Learning perspective, we make use of classifier fusion [11],

[15] to improve classification performance. Specifically, we

split the classification scope from a range of SNRs for a

single CNN classifier to individual SNRs for multiple CNN

classifiers, each of which performs a binary classification of a

single SNR (e.g. less than, greater than or equal). Additionally,

our study demonstrates that the same CNN classification

model can learn to predict SNR in various dynamic wireless

environments including multiple modulation types, Doppler

shifts and path delays (e.g. Rician fading). This flexibility

is not typical of existing estimation techniques and would

translate to small-footprint implementation.

II. DIVIDE-AND-CONQUER ALGORITHM AND CLASSIFIER

FUSION

Divide-and-conquer algorithm is widely applied in many

fields including mathematics, engineering, etc. This section

describes the application of divide-and-conquer algorithm to

CNN classification for SNR prediction. Historically, classifier

fusion methods have been extensively researched to improve

classification performance. Of the three levels of abstraction,

namely, data-level fusion, feature-level fusion and classifier

fusion, our approach is the third type. Specifically, multiple

classifiers are used in a divide-and-conquer manner where

individual classifier is dedicated to the binary classification

- less than, greater than or equal to - a single label rather than

strictly equal to a specific label of the entire range of labels for

traditional classifier. Consequently, reduction of uncertainty is

achieved and classification accuracy enhancement is expected.

For example, an error occurs when a traditional classifier

misclassifies a target label (i.e. 4 instead of 0); whereas, for

binary classifier, an error occurs when it misclassifies a range

of labels (i.e. [-20, -4] instead of [0, 32]).

Individual classifiers’ outputs are combined in an union

fashion to produce a predicted range. In effect, individual

classifiers are combined to form a composite classifier.

Performance of the composite classifier is less than those

of binary classifiers and is expected to be better than the

traditional multi-class classifier. In many applications, when

composite classifier does not yield acceptable performance,

range prediction from binary classification may have its own

merit and potential usage for consideration. For instance, it is

important to know when SNR is less than 0 and whether it is

equal -4 or -8dB is good but practically of less added value.

For SNR classification, a range of SNRs [-20,32]dB is split

into 14 individual SNR classifications [-20, -16, ..., 32].
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A. Traditional CNN Classifier for All SNRs

Fig. 1 shows a traditional CNN classifier for SNR in the

range [-20, 32]dB with a resolution of 4dB.

Fig. 1 Traditional SNR Classifier

B. Multiple CNN Binary Classifiers for Individual SNRs

Fig. 2 shows two individual SNR binary classifiers. There

are total 14 individual classifiers corresponding to 14 SNRs

in the range [-20, 32] with 4dB resolution. Test labels are

modified to binary classification w.r.t. the target SNR of

individual SNR classifiers. For instance, individual SNR = 4
classifier has testlabel = 1 for RF data with true SNR < 4
and testlabel = −1 otherwise.

Fig. 2 Individual-SNR Classifiers

C. Composite CNN Classifier for All SNRs

Composite SNR classifiers can be used to predict a

specific SNR range. The smallest SNR range is between two

consecutive SNRs predicted by two individual SNR classifiers

- one for the high limit SNR and other for the low limit.

Effectively, all individual SNR classifiers are combined to

form one composite SNR classifier over the entire SNR range.

Fig. 3 shows the composite SNR classifier. After training

individual SNR classifiers, we subject the same test data to

all of these individual classifiers. Their outputs are examined

for predictions switching from being greater than or equal

to less than classifier SNRs. The identified SNRs form the

range of predicted SNR. For example, when outputs of all

classifiers for SNR from -20 to -4 are greater than and outputs

of all classifiers for SNR from 0 to 30 are less than, the

predicted SNR is in the range from -4 to 0 (see Fig. 4).

It is possible to have more than such a switching since the

prediction accuracy of individual classifiers are not perfect.

We select the first switching which corresponds to union

combination. Finally, we compare test labels to predicted range

for prediction accuracy. Accuracy of the composite classifier

is 70% which is less than those of binary classifiers (i.e.

92%) and is better than the traditional multi-class single CNN

classifier (i.e. < 50%).

Fig. 3 Composite-SNR Classifier

Fig. 4 Samples of Composite-SNR Prediction

III. SIMULATION FRAMEWORK

This section shows the simulation aspects applied to both

the MATLAB and Python platforms. The concept is invariant

to the computing platform with significant improvements

illustrated.

A. MATLAB Simulation Model

Fig. 5 shows the simulated model adopted from MATLAB

Modulation Classification example. The Transmitted Signal

is modulated and fed into the Multi Path Channel which is

parameterized by Sample Rate, Path Delay, Path gain, KFactor

and Doppler Shift. The channel output signal is sampled and

added with AWGN to produce the impaired complex-valued

Received Signal which is fed into DL Prediction Model.

Fig. 5 MATLAB Simulated Model

1) RF DataSets: The Modulation Classification from

MATLAB Deep Learning example is adopted for this work.

A parameterized channel model and signal data generation

are shown in Tables I and II respectively. Inputs comprise

378 sets of 3 modulation types, 3 Doppler shifts, 3 path

delays and 14 SNRs. Each set has 100 frames of 128 data

symbols each of which samples 8 times. Each frame is of
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TABLE I
CHANNEL MODEL

Parameter Value
Model type Rician

Path delays(uSec) [0 0 0 0], [0 2 4 6], [0 5 10 15]
Path gains(dB) [0 -3 -6 -9]

KFactor 3
Doppler Shift(Hz) 0, 60, 120
Clock offset(ppm) 5

Sampling frequency(Hz) 200e3
Center frequency(Hz) 900e6

TABLE II
DATA GENERATION

Parameter Value
Input frames 37800

Input frames / Set 100
Data symbol / Input frame 128

Samples / Data symbol 8
Samples / Input frame 1024

Modulation Types QPSK 16QAM 64QAM
SNR(dB) [-20, -16, ..., 0, 4, ..., 32]

TABLE III
CNN ARCHITECTURE

Layer Details
Input 2x1024

Convolution2D FilterSize=1x32, numFilters=16
Activation relu

MaxPooling2d poolSize=strideSize=1x2
Convolution2D FilterSize=1x32, numFilters=24

Activation relu
MaxPooling2d poolSize=strideSize=1x2
Convolution2D FilterSize=1x32, numFilters=32

Activation relu
MaxPooling2d poolSize=strideSize=1x2
Convolution2D FilterSize=1x32, numFilters=48

Activation relu
MaxPooling2d poolSize=strideSize=1x2
Convolution2D FilterSize=1x32, numFilters=64

Activation relu
MaxPooling2d poolSize=strideSize=1x2
Convolution2D FilterSize=1x32, numFilters=96

Activation relu
MaxPooling2d poolSize=strideSize=1x2
fullyConnected

Activation softmax

the same modulation, Doppler shift, path delays and SNR.

Prediction of SNR is performed on one frame at a time.

2) Convolutional Neural Networks: The convolution

neural network (CNN) is adopted from MATLAB Modulation

Classification example with details in Table III. Input frame

comprises 1024 complex-valued I and Q samples. Details of

training and validation are shown in Table IV.

3) Results and Discussions: ML and DL prediction

performance is typically reported using accuracy as shown in

Equation 1.

Accuracy(%) = 100 ∗ Correct#/Total# (1)

TABLE IV
CNN TRAINING

Parameter Value
Training percentage 80

Validation percentage 10
Test percentage 10
Mini-batch size 256

Max epoch 12
Training method SDGM

Initial learning rate 2e-2
Learn rate schedule piecewise

Learn rate drop period 9
Learn rate drop factor 0.1

Fig. 6 demonstrates the training with a low validation

accuracy of about 46%. The confusion chart of Fig. 7 indicates

wide spreading of predictions to neighboring classes. The

bottom curve of Fig. 10 shows accuracy over the range of

test SNRs with an average accuracy of 39%. This is the main

challenge when using DL for SNR classification.

Fig. 6 Training of Traditional Classifier

Fig. 7 Confusion Matrix of Traditional Classifier

Fig. 8 demonstrates the training of SNR=0 classifier with

a validation accuracy of 92%. The confusion chart of Fig.

9 shows common True Positive, True Negative, False Positive

and False Negative . The top curve of Fig. 10 shows accuracy

of individual SNR classifiers over the range of test SNRs with

an average accuracy of about 92%. This indicates that the DL

model learns to classify single SNR (e.g. greater or less than)

more effectively than a range of SNRs. What are the values

and usages of these individual SNR classifiers? Individually,

they can be used to determine if a UE is at the network edges
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where SNR is less than 0dB or if an opportunity exits to

boost transmission rate (i.e. using more efficient modulation

types) where SNR is greater than 20dB. Collectively, they help

answer whether SNR is in a range (i.e. [0, 10]dB.) to keep the

default transmission condition.

Fig. 8 Training of SNR=0 Classifier

Fig. 9 Confusion Matrix of SNR=0 Classifier

Accuracy of the composite classifier is 70%. It is expected

that tighter prediction resolution often leads to lower accuracy.

The middle curve of Fig. 10 shows accuracy of the composite

SNR classifier.

Fig. 10 Prediction Accuracy Comparison

B. Python Simulation

We use Python 2.7 with Tensorflow and Keras packages.

We leverage the Python code with datasets R2016.10A made

available by O’Shea and et al [8]. Specifically, we replace

its CNN with the MATLAB custom CNN for comparison

purpose. Moreover, we use SNRs as prediction labels instead

of Modulation types. The dataset consists of about 220,000

examples (e.g. input frames) each of which comprises 128

samples. The examples are both synthetically generated and

over-the-air recordings. Synthetic impairments include delay

spreads, carrier frequency, phase, sampling frequency, etc [6].

We simulate at both SNR resolution = 2 and resolution = 4

where data in between are removed. Figs. 11 and 12 show

prediction accuracy. In general, our idea of SNR prediction

is confirmed well with Python platform and DeepSig dataset

over the entire SNR range from -20dB to 16dB.

Fig. 11 Python platform: Accuracy @SNR resolution = 2

Fig. 12 Python platform: Accuracy @SNR resolution = 4

IV. CONCLUSION

Traditional SNR estimation methods have well served the

4G (e.g. LTE-Advanced and LTE-Advanced Pro). For 5G

and beyond, the demand for accurate and immediate SNR

assessment is even greater. Deep learning SNR prediction
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using multi-CNNs can collaborate with the conventional SNR

estimation methods to meet this challenge. For comparison,

deep learning SNR prediction accuracy is about the same as

those of conventional SNR estimation methods. However, SNR

prediction time is an order of magnitude faster. In addition, this

paper demonstrates MATLAB as a viable engineering platform

for Deep Learning investigation.
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