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 
Abstract—The relative motion of a robotic arm formed by 

homogeneous bars of different lengths and masses, hinged to each 
other is investigated. The first bar of the mechanism is articulated on 
a platform, considered initially fixed on the surface of the Earth, 
while for the second case the platform is considered to be in rotation 
with respect to the Earth. For both analyzed cases the motion 
equations are determined using the Lagrangian formalism, applied in 
its traditional form, valid with respect to an inertial reference system, 
conventionally considered as fixed. However, in the second case, a 
generalized form of the formalism valid with respect to a non-inertial 
reference frame will also be applied. The numerical calculations were 
performed using a MATLAB program. 

 
Keywords—Lagrange equations, relative motion, inertial or non-

inertial reference frame.  

I. INTRODUCTION 

N this paper we investigate the relative motion of a robotic 
arm comprised of hinged bars of different lengths and 

masses. Two cases were considered: the first one, when the 
platform on which the first bar of the mechanism is hinged is 
fixed on the surface of the Earth, and the second one, when the 
platform is in rotation with respect to the Earth. The first of 
these two cases corresponds to the motion of the mechanism 
with respect to a fixed reference frame, while the other one 
was analyzed with respect to an inertial, respectively with a 
non-inertial reference frame. The motion equations were 
determined using the Lagrangian formalism [1]-[3], applied in 
its traditional form, valid with respect to an inertial reference 
frame. However, for the second case, a generalized form of the 
Lagrangian formalism will also be applied, valid with respect 
to a non-inertial reference frame [4]-[6]. The numerical 
simulations were performed using a program developed in 
MATLAB. 

II. CONFIGURATION OF THE MECHANISM 

A robotic arm consisting of two homogeneous bars is 
studied. The first bar, OA, is hinged in point O on the fixed 
element and the second bar, AB, which is articulated in point A 
on the first bar, rotates with respect to OA bar about an axis 
perpendicular to it, located in a horizontal plane, as shown in 
Fig. 1. The bars have the length 𝑙ଵ and 𝑙ଶ, respectively, and the 
masses 𝑚ଵ, mଶ, respectively. 
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Fig. 1 Mechanism with fixed platform 
 

The bar OA is driven by the torque motor with the moment 
M1 and the bar AB is driven by the bar OA via the torque 
motor with the moment M2. The variations of moments M1 and 
M2 are determined so that the motion of the mechanism takes 
place according to the equations of motion: 

 

   0
1 1 0

0

1
sin

2
t A t t

 
      

,      (1)  

 

   0
2 2 0

0

1
sin

2
t A t t

 
      

 .      (2) 

A. Mechanism Hinged on a Fixed Platform 

When we considered that the mechanism is hinged on a 
fixed platform, we applied the Lagrangian formalism in its 
traditional form [7]: 
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where, E is the kinetic energy of the system and Q1 and Q2 are 
the generalized forces of the system. 

Due to the configuration of the mechanism, the kinetic 
energy of the system has the form: 
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where JO represents the moment of inertia of the homogeneous 
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bar OA with respect to point O, 𝐽஼మ is the moment of inertia of 
bar AB with respect to its center of mass, 𝜔ଵ

ଶ is the angular 
velocity of bar OA, 𝜔ଶ

ଶ is the angular velocity of bar AB and 
𝑣஼ଶ is the linear velocity of the center of mass of bar AB, 
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The generalized forces Q1 and Q2 from the right side of the 

Lagrange equations are determined using the virtual work: 
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Replacing (4)-(7) in (3), we obtained the differential 

equations of motion: 
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where we made use of the following notations: 
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B. The Mechanism Hinged on a Rotating Platform 

In this case, we consider that the platform on which the 
mechanism is hinged is located on the Earth, but in rotation 
with respect to it, with a constant angular velocity Ω, as shown 
in Fig. 2. 
 

 

Fig. 2 Mechanism on a mobile platform 

For this case, the equations of motion were obtained for two 
subcases, that is, when we used the Lagrange equations with 
respect to a fixed reference frame Oxyz, and the second 
subcase when we used the Lagrange equations with respect to 
the mobile reference frame O1x1y1z1. 

1. Lagrange Equations with Respect to a Fixed Reference 
Frame 

In this section we deduce the equations of motion of the 
robotic arm hinged on the platform located on Earth, that has a 
rotation motion with respect to it, using Lagrange's equations 
with respect to the fixed reference frame, Oxyz. 

We determine the equations of motion using (3), where the 
kinetic energy of the system, in this case, is 
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where the velocity of the center of mass of the second bar has 
the form: 
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The generalized forces in the right side of the Lagrange 

equations will keep their previous form (7), thus, the 
differential equations of motion will be: 
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2. Lagrange Equations with Respect to a Mobile Reference 
Frame 

In this section we deduce the equations of motion of the 
robotic arm hinged on the platform located on the Earth, that 
has a rotation motion with respect to it, using Lagrange's 
equations with respect to a mobile reference frame, O1x1y1z1. 
This reference system has a constant angular velocity Ω. 

Taking into consideration the fact that the motion is studied 
with respect to a mobile frame, a generalized form of the 
Lagrangian formalism valid in relation to a non-inertial 
reference frame [4]-[6] is used. 

In order to obtain the generalized transport force, we 
calculated the kinetic energy for the circular velocities: 
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where 𝐽ை

஺஻ is the moment of inertia of the bar AB with respect 
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to point O, and 𝑥ଵ஼మ, 𝑦ଵ஼మ and 𝑧ଵ஼మ are the coordinates of the 
center of mass of bar AB with respect to the movable reference 
frame:  
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For the robotic arm formed by the two homogeneous bars, 

the expressions found in [4], 
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depend on the generalized coordinates of the system, 𝜑ଵ and 
𝜑ଶ: 
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From Fig. 2 we can deduce that the bar OA is in rotation, 

thus the contribution of this element of the mechanism to the 
generalized Coriolis force is null, but for bar AB, which has an 
arbitrary relative motion, the generalized Coriolis force [4] has 
the following expression: 
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where 
2CP represents the tensor of the planar and centrifugal 

inertia moments for the second element of the mechanism. 
This way, the Lagrange equations with respect to a non-
inertial reference system will be: 
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We can observe that systems (14) and (22) are equivalent, 

which, again, proves that the two methods of study lead to 
identical results. 

III. NUMERICAL APPLICATIONS 

Several sets of numeric values were considered for the 
system parameters: A1, A2, 𝑙ଵ, 𝑙ଶ, 𝑚ଵ, 𝑚ଶ. For each set, the 
variation curves of the angles of rotation, angular velocities 
and angular accelerations of the two bars, as well as the 
variation curves of the motor moments, for various values of 
the angular velocity Ω, were determined (Figs. 3-10). The 
calculations were performed using a program developed in 
MATLAB. 
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Fig. 3 The Law of Motion for A1=1rad 
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Fig. 4 The Law of Motion for A2=1rad 
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Fig. 5 The angular velocity of the first component of the mechanism 
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Fig. 6 The angular velocity of the second component of the 
mechanism 
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Fig. 7 The angular acceleration of the first component of the 
mechanism 
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Fig. 8 The angular acceleration of the second component of the 
mechanism 

IV. CONCLUSION 

In both analyzed cases, the motion equations are determined 
using the Lagrangian formalism, applied in its traditional 
form, valid with respect to an inertial reference system, 
conventionally considered as fixed. A generalized form of the 
formalism valid with respect to a non-inertial reference system 
has been also applied in the second case. 
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Fig. 9 Motor moments for 𝐴ଵ ൌ 1 𝑟𝑎𝑑, 𝐴ଶ ൌ 1 𝑟𝑎𝑑, 𝑙ଵ ൌ 𝑙ଶ ൌ 1 𝑚, 
𝑚ଵ ൌ 𝑚ଶ ൌ 1 𝑘𝑔 
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Fig. 10 Motor moments for 𝐴ଵ ൌ 1 𝑟𝑎𝑑, 𝐴ଶ ൌ 1 𝑟𝑎𝑑, 𝑙ଵ ൌ 𝑙ଶ ൌ 1 𝑚, 
𝑚ଵ ൌ 𝑚ଶ ൌ 1 𝑘𝑔 

 
It was noted that the two versions of the Lagrangian 

formalism have led to the same results. 
The numerical studies have shown that the values of the 

motor moments increase with the values of the amplitudes A1 
and A2. It also follows that the values of the motor moments 
generally increase with the platform's angular velocity. 
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