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 
Abstract—In the present study, the free vibration of 

magnetostrictive nano-plate (MsNP) resting on the Pasternak 
foundation is investigated. Firstly, the modified couple stress (MCS) 
and nonlocal elasticity theories are compared together and taken into 
account to consider the small scale effects; in this paper not only two 
theories are analyzed but also it improves the MCS theory is more 
accurate than nonlocal elasticity theory in such problems. A feedback 
control system is utilized to investigate the effects of a magnetic 
field. First-order shear deformation theory (FSDT), Hamilton’s 
principle and energy method are utilized in order to drive the 
equations of motion and these equations are solved by differential 
quadrature method (DQM) for simply supported boundary 
conditions. The MsNP undergoes in-plane forces in x and y 
directions. In this regard, the dimensionless frequency is plotted to 
study the effects of small scale parameter, magnetic field, aspect 
ratio, thickness ratio and compression and tension loads. Results 
indicate that these parameters play a key role on the natural 
frequency. According to the above results, MsNP can be used in the 
communications equipment, smart control vibration of nanostructure 
especially in sensor and actuators such as wireless linear micro motor 
and smart nano valves in injectors. 
 

Keywords—Feedback control system, magnetostrictive nano-
plate, modified couple stress theory, nonlocal elasticity theory, 
vibration analysis. 

I. INTRODUCTION 

ANOSTRUCTURES have increased considerable 
attention among the experimental and theoretical research 

communities and in recent years, mechanical, electrical, and 
chemical properties of nanostructures have drawn the attention 
of various researchers. One of the typical structures of nano-
systems is nano-plates, which are two-dimensional and feature 
superior mechanical characteristics compared to conventional 
engineering materials. A vast area of novel applications of 
these nanostructures is foreseen in the coming years. These 
include aerospace, biomedical, bioelectrical, superfast 
microelectronics, etc. Understanding the accurate mechanical 
and physical properties of these nanostructures and their 
impacts on its performance and reliability are thus necessary 
for its production applications. Also, nano-plates have 
applications in various fields of nanotechnology, for example 

 
Hamed Khani Arani and Mohammad Shariyat are with the Faculty of 

Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran 
(e-mail: Hamed.khany@gmail.com, shariyat@kntu.ac.ir). 

Armaghan Mohammadia is with theFaculty of Mechanical Engineering, 
Tehran University, Tehran, Iran (e-mail: Armaghan.Mohammadian 
@gmail.com). 

in nano-electromechanical devices, they can be potentially 
exploited as bio and mechanical sensors, electro-catalysts, 
DNA detectors, drug deliverer, and energy storage systems 
[1], [2]. 

Magnetostriction is the change of ferromagnetic materials 
shape by elongating or contracting in the direction of the 
magnetic field. Magnetostrictive materials (MsMs) such as 
iron, ferrite, nickel, cobalt and their alloys such as Terfenol-D 
can provide large strain and quick response; also, these 
materials are appropriate in providing giant forces, strains, 
high-energy densities, noise, and vibration control, and have 
applications in the development of fusion reactors, 
communications equipment, and computers [3]-[5]. Therefore, 
MsNP can improve the properties of plates and it has different 
applications at various means in leading years. The following 
papers are a small part of done works in this field. 

Hua et al. [6] first introduced and described 
magnetostriction and the history of MsM. After that, they 
reviewed the recent developments of both rare earth and non-
rare earth MsM and presented the tendency of their 
development. An application of MsM, analysis of thermal 
vibration and transient response of them by using the 
generalized DQM was investigated by Hong [7], [8]. He 
examined some parametric effects on the Terfenol-D 
functionally graded material plates such as shear correction 
coefficient values, the thickness of a mounted 
magnetostrictive layer, control gain values, temperature of the 
environment, and the effect of different mechanical boundary 
conditions. Pradhan and Kumar [9] proposed the small scale 
effect on the vibration analysis of orthotropic single-layered 
graphene sheets embedded in an elastic medium that was 
obtained using nonlocal elasticity and classical shear 
deformation plate theory. They considered the principle of 
virtual work; the governing differential equations were derived 
and solved by DQM for various boundary conditions. Arani et 
al. [10] described the free vibration of rectangular nanoplate 
made of MsMs on orthotropic patterns of the Pasternak 
foundation. Reddy’s third-order shear deformation theory 
along with Eringen’s nonlocal continuum model was utilized 
to derive motion equations at the nanoscale using Hamilton’s 
principle. A size-dependent model for bending and free 
vibration of functionally graded Reddy plate based on a MCS 
theory was analyzed by Thai and Kim [11]. They resulted that 
the inclusion of small scale effects increases plate stiffness 
and frequency. Akgöz and Civalek [12] developed modeling 
and analysis of micro-sized plates for bending, buckling, and 
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vibration resting on elastic medium using the MCS theory and 
Hamilton’s principles. Arani et al. [13] presented free 
vibration of the magnetostrictive sandwich composite 
microplate with magnetostrictive core and composite face 
sheets. The MCS theory was taken into account to consider the 
small scale effects. 

In this research, the free vibration response of the 
rectangular nanoplate made of MsM by FSDT is studied and 
two different theories are compared to consider the small scale 
effects. 

II. GOVERNING EQUATIONS 

An embedded MsNP system by two parameters foundation 
under the in-plane force ,x yN N is considered in Fig. 1 in 

which geometrical parameters of length a, width b and 
thickness h are indicated and the Cartesian coordinate system 
(x,y,z) is introduced. 

 

 

Fig. 1 Geometry and coordinate of MsNP 

A. FSDT 

According to the FSDT of the plate, the transverse shear 
strain is assumed to be constant and shear correction factors 
are introduced to correct the discrepancy between the actual 
transverse shear force distributions, the displacement 
components of the middle surface along the x, y, and z axes, 
shown by , ,U V W    can be expressed as [14]: 
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where 0 0 0(x, y, t), (x, y, t), (x, y, t)u v w  are displacements along 

with ),,( zyx  directions and    21 ,, , , ,x y t x y t   are rotations 

about x and y axes. 
The linear strain field for FSDT is obtained by using 

Hooke’s law that can be represented as: 
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B. Constitutive Equations  

Stress-strain and magnetic field relations for MsMs are 

shown in (3) [15]: 
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(3) 

 
where ij and ijq are stress and the terms of engineering 

constants, respectively. 
 

(1 )

(1 2 )(1 ) (1 2 )(1 ) (1 2 )(1 )

(1 )
0 0 0

(1 2 )(1 ) (1 2 )(1 ) (1 2 )(1 )

(1 )
0 0 0

(1 2 )(1 ) (1 2 )(1 ) (1 2 )(1 )

0 0 0 0 0
2(1 )

0 0 0 0 0
2(1 )

0 0 0 0 0
2(1 )

ij

E E E

E E E

E E E

q
E

E

E

  
     
  

     
  

     







 
       
 
      
 
      

 







 















 

(4) 

 

E and are Young modulus and Poisson’s ratio, also ije  are 

magnetostrictive coupling modules determined as [15]: 
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where represents the direction along which a given magnetic 
anisotropy may have been induced. zH is the magnetic field 

intensity and can be expressed as follows [15]-[17]: 
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where cK , )(tI  and )(tC  are the coil constant, coil current and 

the control gain in which ( )cK C t is introduced as velocity 

feedback gain. 

C. Strain Energy Based on Nonlocal Elasticity Theory 
(Eringen’s Theory) 

The nonlocal elasticity theory is assumed that the stress at a 
point is a function of strains at all points in the continuum. The 
nonlocal constitutive equation given by Eringen is [18]: 

 
2(1 ) : , , ,nl l

ij ij for i j x y z     
  

(7) 

 

where nl
ij  and l

ij  are the nonlocal stress tensor and local 

stress tensor, 0e  denotes a constant appropriate to each 

material, and a is an internal characteristic length of the 
material. Consequently, 0e a is a constant parameter and 2 is 

the Laplacian operator in the above equations. 
According to (7) and the magneto-mechanical coupling for 

isotropic MsM, stress-strain relation can be observed in a 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:14, No:9, 2020

231

 

 

matrix (8) [15], [18]: 
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Therefore, the strain energy of an elastic body for 

rectangular nano-plate based on Nonlocal elasticity theory is 
expressed as [19]: 
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D. Strain Energy Based on MCS Theory 

Based on the MCS theory, the density of strain energy is a 
function of curvature (conjugated with couple stress) and 
strain (conjugated with stress); the strain energy in an isotropic 
linear elastic material is given by [20], [21]: 
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where 

0l and G are material length scale parameter and shear 

module; also,
ij is symmetric curvature tensor which is 

defined as [21]: 
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where 

ijke  is the permutation symbol. 

E. Kinetic Energy 

The kinetic energy of the rectangular plate is calculated as 
[19]: 
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where   and A are the mass density and area of the MsNP. 

F. In-Plane Forces 

Rectangular plates are usually subjected to in-plane forces; 
therefore, the in-plane stresses effects must be considered in 
their analysis and vibrations. Uniform in-plane forces Nx and 
Ny are applied in x and y directions as shown in Fig. 1 and 
calculated as [22]: 
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G.  Elastic Medium 

Pasternak foundation is capable to consider transverse shear 
loads and normal loads. The effect of surrounding elastic 
medium on the nano-plate which is simulated with Pasternak 
model is considered as follows [23]: 

2 2

2 2
( )II w G

W W
F k W k

x y

 
  

 
  (14) 

 
where 

wk and 
Gk  are the Winkler modulus for a normal load 

and the shear modulus for transverse shear loads.  

H.  External Work 

The external work due to in-plane forces and the elastic 
medium is calculated as: 
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I. Hamilton’s Principle 

In this step, Hamilton’s principle is employed to obtain the 
motion equations and corresponding boundary conditions. 
This principle can be expressed as follows: 
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where U , K and   are a variation of strain energy, the 

variation of Kinetic energy and variation of external work. 
Substituting (9)-815) into (16) for FSDT and afterward using 
dimensionless parameters introduced in (17)-(19): 
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J. Motion Equations 

The motion equations for nonlocal elasticity theory and 
FSDT are obtained by setting the coefficient 

1 2, , , ,U V W      equal to zero as: 
 

:U 2 2 2 2

66 11 66 212 2

2 4 4 2
2

312 2 2 2 2

d

1 1

2 2

1
0

2

d

n

d U d U d V d V
Q Q Q Q

d dd d

d U d U d U d W
e G

dd d d d d d

    
  

   
  

 

 

   

    

 

 

(20) 

:V 2 2 2 2
66

66 21 22 2 2

2 4 4 2

322 2 2 2 2

1 1

d d2 2

1
0

2 d
n

Qd U d U d V d V
Q Q Q

d d d d

ed V d V d V d W
G

dd d d d d


  

   

  


 

     

   

    

 

 

(21) 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:14, No:9, 2020

232

 

 

:W  2 2
2 2 1 2

55 44 55 442 2

2 4 4 2
2 2 2

312 2 2 2 2

2 2 2 2
* * * *

32 2 2 2

4 4 2
* * *

4 2 2 2

d

1 1 1 1

2 2 2 2

2 d

1

2

1

n

w n w w g

n g g g n g

d dd W d W
Q Q Q Q

d dd d

d W d W d W d U
e G

dd d d d d

d V d W d W d W
G K W e K K K

d d d d

d W d W d W
e K K K e K

d d d d

 
   

  

   
    

  
   

    
 





 

   

   

    

   
4

*
2 2

4 2 4 4
* * * *

4 2 4 2 2

2 4 4
* * *

2 2 2 4
0

g x n x x

y n y y

d W

d d

d W d d d
K N e N N

d d d d d

d d d
N e N N

d d d d

W W W

W W W

 
 

      
    

   
   

   

   

 

 

(22) 

1 :  2 2 2
2 21 1 2

55 66 11 55 1 662 2

2 2 4 4
2 2 22 1 1 1

21 2 2 2 2 2

1

24

1 1 1 1

2 12 2 24

1 1 1 1

12 12 12 1
0

2

d

n

d d ddW
Q Q Q Q Q

d dd d

d d d d
Q e

d d d d d d d


  

    
  

   
   

      

   

   

 

(23) 

2 :  2 2 2
21 1 2

44 66 21 66 2

2 2 4 4
2 2 2 22 2 2 2

44 2 22 2 2 2 2 2 2

1

d

1 1 1

2 24 24

1 1 1 1 1

2 12 12 12 1

12 d

0
2n

d d ddW
Q Q Q Q

d d d d

d d d d
Q Q e

d d d d d d

  
   

   

   
    

     

 
  

    
(24) 

 
Also; the motion equations for MCS theory and FSDT are 

obtained by setting the coefficient 1 2, , , ,U V W     equal 

to zero as: 
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III. SOLUTION METHOD 

In this study, DQM has been utilized to solve motion 
equations and obtain frequency. In the DQM, the derivatives 
of a function are approximated with weighted sums of the 
function values at a group of grid points. Thus the partial 
derivatives of a function F (representing w ) at a given point 
are expressed as [24]: 
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where N is the number of grid points in the radial direction 

and  k
pqA is the respective weighting coefficients matrix.  

Applying DQM and considering boundary conditions 
yields: 
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in which  B is boundary condition ( domaindboundaryb :,: ). 

The eigenvalues of (31) are the frequency of the system. 

IV. NUMERICAL RESULTS AND DISCUSSION 

In this study, the vibration analysis of MsNP by two 
different theories for simply support boundary conditions is 
investigated. Table I shows the material properties of MsM. 

 
TABLE I 

ELASTIC PROPERTIES OF TERFENOL-D [8] 

Properties (Pa)E    3( / )k g m  31 32e e  

Terfenol-D 30 9e  0.25 39.25 10  442.55 / ( . )N m A  

 

Fig. 2 shows the variation of dimensionless natural 
frequency versus thickness ratio ( ) by using MSC theory 
and nonlocal theory. α changes from 0.01 to 0.2 for thin and 
thick plates and this figure demonstrates that the increasing 
thickness ratio leads to an increase of frequency ( /k m ) due 
to the effect of mass ( . .b .h)m a  and moment of inertia (

31

12
k I I bh  ) and consequently stability of MsNP increase. 

Also, it is obvious that the frequency of nano-plate by using 
MSC theory is more than nonlocal theory and the frequency of 
Macro-plate ( 0 , 0)0L e n   is between them.  
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Fig. 2 Variation of dimensionless natural frequency versus thickness 
ratios in MCS and nonlocal theories ( 41, ( ) 10cK C t   ) 

 
Fig. 3 illustrates the effect of the magnetic field on MsNP 

by changing the velocity feedback gain. It is worth to mention 
that when the MsMs are subjected to the magnetic field, they 
deform due to its reciprocal nature. As can be seen from the 
figure, the frequency of MsNP decreases with increasing 
velocity feedback gain from 4 5( ) 10 10cK C t to , especially at 

MCS theory. 
 

 

Fig. 3 Effect of magnetic field on the dimensionless frequency in 
MCS and nonlocal theories ( 1, 0.1   ) 

 
Figs. 4 and 5 depict the effect of the length scale parameter 

in the MCS where it changes from 0 to 0.1 in different aspect 
ratios. It clearly shows that the frequency increases with the 
increase of length scale parameter (

0L ) at MCS theory and it 

decreases with the increase of length scale parameter (
ne ) at 

Eringen's theory. The explanation might be that couple stress 
is needed to generate the gradient of rotation; the stiffness 
owing to the couple stress effect is added to the classical 
stiffness; thus, the total stiffness of the nano-plate is larger 
than that of its classical counterpart (

0 0L  ). Undoubtedly, 

with the increase of length scale parameter, the couple stress 
effect becomes more significant, therefore the stiffness of the 
nano-plate increases, which leads to the increase of the 
frequency and more stability while Fig. 5 shows that the effect 
of size in nonlocal theory which this figure has opposite 
results of MCS theory. Physical intuition reveals that 
increasing nanoscale stress leads to increasing the stiffness of 

nanostructure which is firstly established by Eringen's theory 
[10] while many papers [21], [23] have concluded otherwise. 
On the basis, MCS theory is more accurate than nonlocal 
theory in such problems. It is obvious that like thickness ratio, 
aspect ratio also increases the dimensionless frequency of 
MsNP. 

 

 

Fig. 4 Effect of size on the dimensionless frequency in the MCS 
theory ( 40.1, ( ) 10cK C t   ) 

 

 

Fig. 5 Effect of size on the dimensionless frequency in the Nonlocal 
theory ( 40.1, ( ) 10cK C t   ) 

 

 

Fig. 6 Variation of dimensionless frequency versus length scale 
parameter in different in-plane forces 4( 0.1, 1 , ( ) 10 )cK C t     

 

The effect of mechanical in-plane loadings is especially 
studied in Fig. 6; the result shows that in-plane forces change 
effectively the vibration response of embedded MsNP. Since 
the in-plane forces are vector quantity, the positive value 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:14, No:9, 2020

234

 

 

* *( , 0 )x yN N   indicates the compression force and negative 

value * *( , 0)x yN N   shows the extensional or tension force 

where in-plane compression forces decrease the dimensionless 
frequency and cause the instability of the system, but tension 
force increases the frequency and more stability. 

 
TABLE Ⅱ 

DIMENSIONLESS FREQUENCY FOR DIFFERENT WAVE NUMBERS 
( 41, 0.1, ( ) 10cK C t    ) 

Dimensionless frequency n=1 n=2 n=3 n=4 
Eringen theory ( 0.06ne  ) 0.3841 0.6827 0.9690 1.2081 

MCS theory ( 0 0.06L  ) 0.9893 2.2637 4.1219 6.4305 

 

All of the figures in the present work were plotted for the 
first wavenumber, but at Table Ⅱ, the natural frequency has 
been plotted for wavenumbers from 1 to 4. The natural 
frequency increases with an increase in the wavenumber. 

V. CONCLUSION 

At the present work, the free vibration of MsNP in the 
magnetic field was studied. Considering nonlocal elasticity 
and MCS theories, FSDT were utilized and motion equation 
was derived using Hamilton’s principle. The vibration 
equation was solved by DQM in simply supported boundary 
conditions. The effects of various parameters such as aspect 
ratio, thickness ratio, small scale parameter, magnetic field 
and compression and tension loads were investigated. The 
brief result of this study is listed as follow: 
 MSC theory is more accurate than nonlocal theory in such 

problems. 
 Increasing the aspect and thickness ratio leads to an 

increase of natural frequency due to the effect of mass and 
moment of inertia. 

 Increasing tension force leads to an increase of natural 
frequency while the compression force has a contrary 
effect. 

 Velocity feedback gain as a control parameter can be used 
to reduce the frequency of MsP and control its vibration 
behavior. 

According to the above results, MsNP can be used for 
active noise and vibration cancellation systems in nano/micro 
smart structures. 
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